This is NKS NKS-R NKS-B News Seminars NKS Reports Phantom Library

You are here: Homepage NKS Reports View document

List all reports List all NKS-R reports List all NKS-B reports Search Reports  
NKS Programme Area:NKS-R
Research Area:Thermo hydraulics
Report Number:NKS-168
Report Title:Steam Line Rupture Experiments with the PPOOLEX Test Facility
Activity Acronym:POOL
Authors:Jani Laine, Markku Puustinen
Abstract:The results of the steam line rupture experiment series in 2007 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology are reported. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. Air was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the initial phase of a postulated steam line break accident inside a BWR containment. Specifically, thermal stratification in the dry well compartment and ejection of water plug from the blowdown pipe were of interest. In addition, the effect of counterpressure on bubble dynamics was studied. A temperature difference of approximately 15 °C between the upper and lower part of the dry well was measured. In the wet well gas space, a temperature difference of more than 30 °C was registered. These were measured during the compression period of the tests. Towards the end of the tests the temperature differences tended to disappear. To get a more detailed picture of temperature distribution in the wet well, especially close to the water level, a dense net of measurements is required in future experiments. In longer experiments, heat conduction to structures and heat losses to surroundings should also be taken into account. Ejection of water plugs from the blowdown pipe did not cause notable loads to the structures due to the suppressing effect of the dry well compartment. The maximum measured pressure pulse at the pool bottom was only 10 kPa and the maximum strain amplitude at the pool bottom rounding was negligible both in axial and circumferential direction. As the counterpressure of the system increased, but the flow rate remained the same, the maximum size of the air bubbles at the blowdown pipe outlet got smaller and smaller. Furthermore, the magnitude of pressure oscillations in the wet well pool decreased with increasing counterpressure. Correspondingly, the formation frequency of bubbles increased with increasing counterpressure. Meanwhile, flow rate had no effect on the bubble formation frequency.
Keywords:Condensation pool; steam/air blowdown; non-condensable gas; steam line rupture
Publication date:01 Jul 2008
ISBN:ISBN: 978-87-7893-233-4
Number of downloads:3716
Download:pdf NKS-168.pdf
Contact NKS   NKS Sekretariatet
Boks 49
DK-4000 Roskilde
  Telephone +45 46 77 40 41
E-mail: nks@nks.org 
 

Address for visitors
Directions and map

Privacy policy

Cookie policy

 

Website last modified: 16 April 2024