
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 

 
 
 
 
 

NKS-470 
ISBN 978-87-7893-565-6 

 
 

 
SOurce CHAracterizatiOn accounting for 

 meTeorologIcal unCertainties  
(SOCHAOTIC) –  

final report 
 

 
Jens Havskov Sørensen1(co-ordinator), Henrik Feddersen1  

Kasper Skjold Tølløse1 
Andreas Uppstu2 

Heiko Klein3, Magnus Ulimoen3 
Lennart Robertson4 

Jan Pehrsson5 
Bent Lauritzen6 

Agnieszka Hac-Heimburg7, Henrik Roed7 
Einar Améen8, Naeem Ul Syed8 

Anna Maria Blixt Buhr9, Jonas Lindgren9 
Tuomas Peltonen10 

 
1Danish Meteorological Institute (DMI) 
2Finnish Meteorological Institute (FMI) 

3Norwegian Meteorological Institute (MET Norway) 
4Swedish Meteorological and Hydrological Institute (SMHI) 

5PDC-ARGOS 
6Technical University of Denmark (DTU) 

7Danish Emergency Management Agency (DEMA) 
8Norwegian Radiation and Nuclear Safety Authority (DSA) 

9Swedish Radiation Safety Authority (SSM) 
10Radiation and Nuclear Safety Authority (STUK) 

 
March 2023 



 

 

 
Abstract 
 
In recent years, events have occurred in which radionuclides were detected by 
filter stations in Europe without knowledge on the origin of those radionuclides. In 
such cases, there is a need to locate potential release sites. However, if the 
release site is actually known, or if a potential release site has been localized by 
inverse methods, then there is an additional need to estimate the release rates 
from this location as a function of time for the various radionuclides detected. 
 
While in the SLIM NKS project, methodologies were developed to localize an 
unknown source of radionuclides dispersed in the atmosphere, the SOCHAOTIC 
project has developed methodologies, suited for operational use, by which 
characterization of the source, whose location is known, can be derived, i.e. to 
estimate the temporal release profiles of the radionuclides detected. 
 
For operational use, nuclear decision-support systems should be extended with 
modules handling and analysing such monitoring data automatically, and 
conveying the data together with the geographical coordinates of the release 
point to the national meteorological centre accompanied by a request to estimate 
the temporal evolution of the release rates. 
 
A number of case studies have been selected, viz. the ETEX-1 and the October 
2017 case of Ru-106 in Europe as well as an artificial case. Methods for 
estimation of the temporal release profiles have been developed, and they have 
been applied to the selected cases by using the DERMA, MATCH, SILAM and 
SNAP atmospheric dispersion models. The methods have been applied both by 
using deterministic numerical weather prediction (NWP) model data and 
ensemble-statistical NWP model data derived by setting up and running the non-
hydrostatic high-resolution Harmonie model for the selected cases. Finally, an 
interface to a nuclear decision-support system, ARGOS, is described. 
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Introduction 
In recent years, several events have occurred in which radionuclides were detected by 
radiological filter stations in a number of European countries without any knowledge of the 
origin of those radionuclides. In such cases, there is a need to locate potential release sites by 
inverse dispersion modelling techniques. However, if the release site is actually known, or if a 
potential release site has been localized by inverse methods, then there is an additional need to 
estimate the release rates as a function of time from this location for the various radionuclides 
detected. 
 
Two kinds of radiological monitoring networks exist, viz. filter and gamma stations. Filter 
stations detect radionuclide-specific time-average concentrations with high accuracy and low 
thresholds; however, with long averaging periods (typically one and seven days). Gamma 
stations produce time-average radiation doses in which the radionuclides are lumped together, 
and with lower accuracy and higher thresholds; however, with short averaging periods (down 
to 10 minutes). 
 
While in the SLIM NKS project (Sørensen et al., 2022), methodologies have been developed 
to localize an unknown source of radionuclides dispersed in the atmosphere and detected by a 
radiological monitoring network, the SOCHAOTIC project has developed methodologies, by 
which a characterization of the source, whose location is known, can be derived, i.e. to 
estimate the temporal release profiles of the radionuclides detected. 
 
For operational use, nuclear decision-support systems should be extended with modules 
handling and analysing such monitoring data automatically, e.g. by employing the European 
Radiological Data Exchange Platform (EURDEP), and conveying the data together with the 
geographical coordinates of the release point to the national meteorological centre 
accompanied by a request to estimate the temporal evolution of the release rates. 
 
In the course of SOCHAOTIC, a number of case studies have been selected, namely the 
ETEX-1 and the October 2017 case of Ru-106 in Europe as well as an artificial case produced 
by running a dispersion model forward and calculating average concentrations at filter 
stations and gamma dose rates at nearby gamma stations. Methods for estimation of the 
temporal release profiles have been developed and described in the present report, and they 
have been applied to the selected cases by using the DERMA, MATCH, SILAM and SNAP 
atmospheric dispersion models. The methods have been applied both by using deterministic 
numerical weather prediction (NWP) model data and ensemble-statistical NWP model data. 
The ensemble data have been derived by setting up and running the non-hydrostatic high-
resolution Harmonie model for the selected cases. An additional section is prepared by SMHI 
for the Nord Stream leakage of methane in September 2022. In Appendix A, a full description 
of the SMHI contribution is given in addition to what is presented in the main report. Finally, 
an interface to the nuclear decision-support system ARGOS is described. 
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Atmospheric Dispersion Models 

Danish Emergency Response Model of the Atmosphere (DERMA) 
The Danish Emergency Response Model of the Atmosphere (DERMA) (Sørensen et al., 
2007; Sørensen, 1998) is a comprehensive numerical regional and meso-scale atmospheric 
dispersion model developed at the Danish Meteorological Institute (DMI). The model is used 
operationally for the Danish nuclear emergency preparedness, for which the Danish 
Emergency Management Agency (DEMA) is responsible (Hoe et al., 2002). Besides, the 
model is employed for veterinary emergency preparedness (Sørensen et al., 2000; 2001; 
Mikkelsen et al., 2003; Gloster et al., 2010a; 2010b), where it is used for assessment of 
airborne spread of animal diseases, e.g. foot-and-mouth disease. DERMA may also be used to 
simulate atmospheric dispersion of chemical substances, biological warfare agents and ashes 
from volcanic eruptions, and it has been employed for probabilistic nuclear risk assessment 
(Lauritzen et al., 2006; 2007; Baklanov et al., 2003; Mahura et al., 2003; 2005). 
 
The main objective of DERMA is to predict the dispersion of a radioactive plume and the 
accompanied deposition. However, the model may also be used in situations where increased 
levels of radioactivity have been measured but no information is revealed on a radioactive 
release. In such cases, inverse (adjoint) modelling may be applied whereby potential sources 
of radioactivity may be localised and release rates estimated. 
 
The three-dimensional model is of Lagrangian type making use of a hybrid stochastic 
particle-puff diffusion description, and it is currently capable of describing plumes at 
downwind distances up to the global scale (Sørensen et al., 1998). The model utilizes aerosol 
size dependent dry and wet deposition parameterisations as described by Baklanov and 
Sørensen (2001). 
 
Currently, DERMA makes use of analysed and forecasted meteorological data of various 
deterministic versions at DMI of the NWP model Harmonie (Bengtsson et al., 2017) covering 
North-western Europe, Greenland and the Faeroes, and from the global model developed and 
operated by the European Centre for Medium-range Weather Forecasts (ECMWF). Further, 
DERMA utilizes the COMEPS ensemble prediction system, which is based on the Harmonie 
model. 
 
DERMA is interfaced with the Accident Reporting and Guidance Operational System 
(ARGOS) (Hoe et al., 1999; 2002), a PC based nuclear decision-support system developed by 
the Prolog Development Center (PDC). The integration of DERMA with the ARGOS system 
is effectuated through automated online digital communication and exchange of data between 
the ARGOS system and the DMI High Performance Computing (HPC) facility. 

Method Employed for Source Characterization 
The method description is adapted from a recent study (Tølløse and Sørensen, 2022). In that 
study, we developed the method and applied it to the same Loviisa release case that we 
consider in this project. However, we considered an idealized case, where the same 
meteorological data, dispersion model and gamma dose rate model were used for both 
creating the data set and for conducting the source term estimation, i.e. model errors were 
negligible.  
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The temporal release profile of the various different radionuclides involved is estimated by 
using filter and gamma station measurement data and employing an atmospheric dispersion 
model. 

Assume an overall start time 𝑡𝑡0 and end time 𝑡𝑡𝑁𝑁 of the release, and separate the release period 
[𝑡𝑡0, 𝑡𝑡𝑁𝑁] in time bins (𝑗𝑗), e.g. of one- or three-hour duration, and for each of these assume a 
unit release of each of the considered radionuclides (𝑖𝑖), see Figure 1. For all considered test 
cases, we assume a point release near the surface of the Earth. Thus, some generalization of 
the method is needed if this assumption does not hold.  

 

Figure 1  Time-binned unit release of radionuclide 𝒊𝒊. 
 
For each release time bin 𝑗𝑗, and for each radionuclide 𝑖𝑖, the atmospheric dispersion model is 
run forward in time calculating average activity concentrations 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖, where the 𝑘𝑘-index 
corresponds to the location and time of a specific measurement at a filter station. Also, the 
instantaneous activity concentrations 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 and deposition values 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 are calculated, where the 
𝜅𝜅-index corresponds to the location and time of a specific measurement at a gamma station. 
By using a semi-infinite gamma dose model, the contributions 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖�𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖� to the 
gamma dose rates are calculated. 

For each radionuclide 𝑖𝑖, a linear combination of the time-binned releases, with non-negative 
coefficients 𝜆𝜆𝑖𝑖𝑖𝑖, is assumed. For a given set of coefficients 𝜆𝜆𝑖𝑖𝑖𝑖, the predicted average 
concentration is calculated at filter stations, 

𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚 = ∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 

and predicted gamma dose rates at gamma stations, 

𝛤𝛤𝑖𝑖𝑚𝑚 = ∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 

where the superscript m indicate that these are model predictions. 
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Figure 2  Estimated release rate of radionuclide 𝒊𝒊 as function of time. 
 
The corresponding piece-wise constant temporal profile of the source term is calculated for 
each radionuclide 𝑖𝑖, see Figure 2. 

Bayesian approach 
The probability distribution for 𝛌𝛌 is obtained by Bayes’ theorem 
 

𝑃𝑃(𝛌𝛌|𝐂𝐂o,𝚪𝚪o, 𝐼𝐼) =
𝑃𝑃(𝛌𝛌|𝐼𝐼) 𝑃𝑃(𝐂𝐂o,𝚪𝚪o|𝛌𝛌, 𝐼𝐼)

𝑃𝑃(𝐂𝐂o,𝚪𝚪o|𝐼𝐼) ∝ 𝑃𝑃(𝛌𝛌|𝐼𝐼)𝑃𝑃(𝐂𝐂o,𝚪𝚪o|𝛌𝛌, 𝐼𝐼), 

 
where 𝐼𝐼 is any available background information about the release, and 𝐂𝐂o and 𝚪𝚪o are the 
observed concentrations and gamma dose rates, respectively, indicated by the superscript o. 
𝑃𝑃(𝛌𝛌|𝐂𝐂o,𝚪𝚪o, 𝐼𝐼) is the posterior probability distribution for the coefficients 𝛌𝛌, 𝑃𝑃(𝛌𝛌|𝐼𝐼) is the 
prior probability distribution for the coefficients, and 𝑃𝑃(𝐂𝐂o,𝚪𝚪o|𝛌𝛌, 𝐼𝐼) is the likelihood (the 
probability of observing (𝐂𝐂o,𝚪𝚪o) given a proposed set of coefficients, 𝛌𝛌). Finally, 𝑃𝑃(𝐂𝐂o,𝚪𝚪o|𝐼𝐼) 
is called the evidence and is a 𝛌𝛌-independent normalization constant.  

For a high-dimensional 𝛌𝛌, it is not computationally feasible to systematically explore all parts 
of the parameter space. Instead, the posterior probability distribution can be sampled using 
Markov Chain Monte Carlo methods (MCMC) such as Metropolis-Hasting or Gibbs 
(Hastings, 1970; Casella and George, 1992). The basic idea behind these methods is to 
iteratively propose source term models and accept them with a probability proportional to 
𝑃𝑃(𝛌𝛌|𝐂𝐂o,𝚪𝚪o, 𝐼𝐼). This way, areas with high probability are more likely to be explored, and 
therefore 𝑃𝑃(𝛌𝛌|𝐂𝐂o,𝚪𝚪o, 𝐼𝐼) can be estimated even for a high-dimensional 𝛌𝛌. When a sufficient 
number of models are accepted, the posterior statistics can be extracted from the selection of 
accepted models. In this study, we use the Hamiltonian Monte Carlo (HMC) method No U-
Turn Sampling (NUTS), cf. Hoffman and Gelman (2014), which is implemented in the python 
library PyMC3 (Salvatier et al., 2016). HMC methods generally have an advantage over 
random-walk based MCMC methods, because the model proposals are not generated by a 
random walk but instead based on an estimate of a functional form of 𝑃𝑃(𝛌𝛌|𝐂𝐂o,𝚪𝚪o, 𝐼𝐼).  An 
additional advantage of the NUTS algorithm is that it has built-in adaptive step sizing, which 
in practice means that almost no parameter tuning is necessary. 

In this study, we started by using the default parameters, but in order to ensure convergence, 
the target acceptance rate was increased from the default 0.8 to 0.99. Aside from this, 
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everything was kept at the default values; two simultaneously running chains, each with 1000 
tuning steps and 1000 draws from the target distribution. Thus, this provides a total of 2000 
realizations of the posterior probability distribution. For further details on the NUTS 
parameters, see (Hoffman and Gelman; Salvatier et al., 2016). 

Prior probability distribution 
Defining useful prior probability distributions for the release rates is challenging, since the 
magnitude of the release is unknown. To allow for variation over several orders of magnitude 
while ensuring non-negative values, we use log-normal prior distributions. Assuming a 
normal distributed variable 𝑥𝑥 ~ 𝒩𝒩(𝜇𝜇,𝜎𝜎), then the variable 𝑧𝑧 = 𝑒𝑒𝑥𝑥  ~ Lognormal(𝜇𝜇,𝜎𝜎) is log-
normal distributed with parameters μ and σ. Thus, these denote the mean and standard 
deviation of x and not the log-normal distributed variable z. The prior probability distribution 
for the coefficients 𝜆𝜆𝑖𝑖𝑖𝑖 can be written as: 
 

𝑃𝑃�𝜆𝜆𝑖𝑖𝑖𝑖�𝐼𝐼� = Lognormal(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖), 
 
where 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 are parameters to be determined for the specific radionuclide. For all three 
cases, we use 𝜎𝜎𝑖𝑖 = 1 2⁄ log(103). Thus, 𝜇𝜇𝑖𝑖±2𝜎𝜎𝑖𝑖 includes six orders of magnitude for each 
release rate and thereby acts as a broad uninformative prior. Further, 𝜇𝜇𝑖𝑖 should ideally be 
chosen such that it is a few orders of magnitude smaller than the actual release rate. The 
reason for this is that for time bins where data do not constrain the release rate sufficiently, the 
algorithm will tend to sample the prior distributions. Thus, by ensuring that 𝜇𝜇𝑖𝑖 is small 
compared to the actual release, the posterior distribution will favor low values, if data do not 
“suggest” otherwise. 
 
Since the magnitude of the release is unknown a priori, it is not trivial to choose 𝜇𝜇𝑖𝑖. However, 
a test run can be performed to find the approximate magnitude of the release, and then 𝜇𝜇𝑖𝑖 can 
be determined. It is important to note that 𝑃𝑃�𝜆𝜆𝑖𝑖𝑖𝑖�𝐼𝐼� will still be a broad uninformative prior 
distribution, but it will slightly prefer lower values if there is no information in data. 
 
The numeric value of 𝜇𝜇𝑖𝑖 depends on the units assumed for each unit release: we use [ng/s] for 
ETEX and [Bq/s] for the Ru-106 case and the Loviisa case. For ETEX and the Ru-106 case, 
we use 𝜇𝜇𝑖𝑖 = log(107), and for the Loviisa case, we use 𝜇𝜇𝑖𝑖 = log(108). 
 
Further, for the Loviisa case, we can use information about the core inventory to reduce the 
parameter space by imposing correlations between release rates of certain radionuclides, 
inspired by the method by Saunier et al. (2013; 2020). For example, two different isotopes of 
the same element will largely behave similarly during a release. Thus, if the half-lives of two 
such isotopes are long compared to the duration of the release and if there is no significant 
ingrowth from other processes, the ratio of the release rates between two isotopes can be 
assumed constant and equal to the ratio of the amounts in the core inventory. For example, 
Cs-134 and Cs-137 have half-lives of approximately 2 and 30 years, respectively. Thus, the 
ratio of their activity concentrations in the core inventory can be considered constant during 
the release. Accordingly, based on the amounts of the two isotopes in the core, we can assume 
the ratio of their release rates to be constant. 
 
For other isotope pairs, it is necessary to take into account the difference in half-lives, in order 
to set realistic constraints on the release rates. In this case, knowing the amount of the two 
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isotopes at the time of SCRAM gives one limit for the isotopic ratios, while estimating the 
activity concentration n hours later will provide an estimate of the other limit, assuming no 
significant ingrowth. An example is the isotope pair I-131 and I-133, which has half-lives of 
approximately 8 days and 20.8 hours, respectively. Based on their activity concentrations in 
the core at the time of the accident, we have 𝑞𝑞𝐼𝐼−133

𝑞𝑞𝐼𝐼−131
< 2.1. Assuming that the duration of the 

main release is less than 24 hours, we can determine the other limit. Due to radioactive decay 
during these 24 hours, the amount of I-133 is decreased by a factor of 0.45, while we assume 
that the amount of I-131 is unchanged due to its relatively long half-life. Thus, a lower limit 
can be determined 𝑞𝑞𝐼𝐼−133

𝑞𝑞𝐼𝐼−131
> 0.9. Following this approach, we determine the following 

constraints: 
 

𝑞𝑞𝐶𝐶𝐶𝐶−134
𝑞𝑞𝐶𝐶𝐶𝐶−137

= 1.4,    0.001 < 𝑞𝑞𝐼𝐼−132
𝑞𝑞𝐼𝐼−131

< 1.5,    0.9 < 𝑞𝑞𝐼𝐼−133
𝑞𝑞𝐼𝐼−131

< 2.1    and    0.15 < 𝑞𝑞𝐼𝐼−135
𝑞𝑞𝐼𝐼−131

< 2.0. 
 
where 𝑞𝑞 denotes the release rates. For Cs-134 and Cs-137, this effectively means that only one 
release rate needs to be determined instead of two, and that the combined set of measurements 
of the two isotopes can be used. For the other isotope pairs, the constraints allow us to define 
log-normal distributions with upper and lower bounds, which depend on the release rate of 
one of the other nuclides. Let 𝜆𝜆𝑚𝑚𝑖𝑖 and 𝜆𝜆𝑛𝑛𝑖𝑖 be the coefficients for two release rates, which are 
related by the flexible constraints 𝑟𝑟lower < 𝜆𝜆𝑛𝑛𝑖𝑖 /𝜆𝜆𝑚𝑚𝑖𝑖 < 𝑟𝑟upper . Then, the prior probability 
distribution for 𝜆𝜆𝑚𝑚𝑖𝑖 will be defined as the log-normal distribution described above, while the 
prior probability distribution for 𝜆𝜆𝑛𝑛𝑖𝑖 can be written as: 
 

𝑃𝑃�𝜆𝜆𝑛𝑛𝑖𝑖�𝐼𝐼,constraints� ∝ �𝑃𝑃�𝜆𝜆𝑛𝑛𝑖𝑖�𝐼𝐼�   if    𝑟𝑟lower < 𝜆𝜆𝑛𝑛𝑛𝑛
𝜆𝜆𝑚𝑚𝑛𝑛

< 𝑟𝑟upper

 0                              otherwise            
 . 

Likelihood 
The likelihood is the probability of observing the set of measurements (𝐂𝐂o,𝚪𝚪o) given a 
proposed source term, 𝜆𝜆. The likelihood is evaluated by assuming a probability distribution 
for the residuals 𝐶𝐶𝑖𝑖𝑖𝑖𝑜𝑜 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚�𝜆𝜆𝑖𝑖𝑖𝑖� and 𝛤𝛤𝑖𝑖𝑜𝑜 − 𝛤𝛤𝑖𝑖𝑚𝑚�𝜆𝜆𝑖𝑖𝑖𝑖�. 
 
In this study, we use a log-normal likelihood, which is less sensitive to outliers than the 
Gaussian distribution and automatically gives higher weight to measurements/predictions of 
low values. This makes it useful when dealing with measurement values over several orders 
of magnitude, cf. e.g. Liu et al. (2017). 
 
One practical challenge when dealing with log-normal distributions is that only positive 
values are allowed, while the physical quantity may in principle be zero. For the gamma dose 
rates, this is not an issue, since we add background radiation to the modelled measurements, 
thereby ensuring that values are always positive. For the air concentration measurements, on 
the other hand, modelled predictions may be zero, while the measured predictions may be 
below the detection limit. 
 
Assume that for a given measurement, 𝐶𝐶𝑖𝑖𝑖𝑖𝑜𝑜 , the detection limit is 𝜖𝜖𝑖𝑖𝑖𝑖. To avoid zero-values, we 
use these altered observations and model predictions 𝐶𝐶𝚤𝚤𝑖𝑖𝑜𝑜� = max(𝐶𝐶𝑖𝑖𝑖𝑖𝑜𝑜 , 𝜖𝜖𝑖𝑖𝑖𝑖) and 𝐶𝐶𝚤𝚤𝑖𝑖𝑚𝑚� =
max(𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚, 𝜖𝜖𝑖𝑖𝑖𝑖). For the ETEX case, we use the detection limit 𝜖𝜖𝑖𝑖𝑖𝑖 = 0.01 ng/m3, and for both 
the Ru-106 and Loviisa cases, we use 𝜖𝜖𝑖𝑖𝑖𝑖 = 0.1 mBq/m3, which is the order of magnitude of 
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the average detection limit in the Ru-106 data set. These altered forms have the additional 
benefit that they provide a theoretically sound way of using non-detections, since these will 
only contribute to the likelihood, when the modelled concentration is above the detection 
limit. Thus, there is no risk of falsely interpreting a low value as a zero. The likelihood is 
given as: 
 

𝑃𝑃�𝐂𝐂o� ,𝚪𝚪o�𝛌𝛌, 𝐼𝐼� = �Lognormal�𝐶𝐶𝚤𝚤𝑖𝑖𝑚𝑚� ,𝜎𝜎𝑓𝑓�
𝑖𝑖𝑖𝑖

� Lognormal�𝛤𝛤𝑖𝑖𝑚𝑚,𝜎𝜎𝑔𝑔�
𝑖𝑖

, 

 
where 𝜎𝜎𝑓𝑓 and 𝜎𝜎𝑔𝑔 are related to the uncertainty of the measurements as well as the unknown 
model errors. Since model errors are unknown, these are treated as nuisance parameters, i.e. 
they are kept as free parameters and sampled by the Monte Carlo algorithm. In practice, a 
wide uniform distribution has been used as prior distribution for the nuisance parameters 
𝜎𝜎𝑓𝑓 ,𝜎𝜎𝑔𝑔~𝑈𝑈(0,100), which allows for a broad range of shapes of log-normal distributions.  

As discussed in the Loviisa result section, we found that in case very limited filter 
measurement data are available, a Gaussian likelihood may be better suited.  

Usage of meteorological ensemble forecasting 
Assuming that the ensemble members are independent, the p’th ensemble member will also 
result in an independent set of modelled measurements �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ,𝛤𝛤𝑖𝑖𝑖𝑖𝑚𝑚�. One can combine two 
independent probability densities simply by multiplication, 𝑃𝑃(𝐶𝐶|𝐴𝐴,𝐵𝐵) = 𝑃𝑃(𝐶𝐶|𝐴𝐴) 𝑃𝑃(𝐶𝐶|𝐵𝐵). 
Thus, by assuming independence, the resulting likelihood becomes: 
 

𝑃𝑃�𝐂𝐂o� ,𝚪𝚪o�𝛌𝛌, 𝐼𝐼� = ���Lognormal�𝐶𝐶𝚤𝚤𝑖𝑖𝑖𝑖𝑚𝑚� ,𝜎𝜎𝑓𝑓�
𝑖𝑖𝑖𝑖

� Lognormal�𝛤𝛤𝑖𝑖𝑖𝑖𝑚𝑚,𝜎𝜎𝑔𝑔�
𝑖𝑖

�
𝑖𝑖

. 

 
In addition, we run the algorithm individually with each meteorological ensemble. This will 
give an indication of how much the different source term estimates differ from each other.  

Additional considerations 
The result is sensitive to the choice of 𝑡𝑡0, 𝑡𝑡𝑁𝑁 as well as the width of the time bins. In case of 
an accident at a nuclear power plant, the time of the onset of the accident (scram) may be 
known, which provides a natural choice for 𝑡𝑡0. During the early phase of an accident, the 
release may not be over, when a source term estimation is first attempted. Thus, 𝑡𝑡𝑁𝑁 may be set 
to the present time. However, it takes some time for the material to reach the measurement 
station, which means that one should probably exclude the latest time bins, thereby allowing 
the signal from the latest included time bins to reach the nearest measurement locations. 
 
Further, it is challenging to determine the ideal bin width ∆𝑡𝑡bin a priori, since this will most 
likely depend on several different parameters: the coarseness of the measurement network, the 
duration of the measurements observations, the distance travelled from release location to 
measurement stations, as well as the weather situation. Ideally, we would always choose a 
high temporal resolution, but due to the limited measurement capabilities, this leads to a 
larger risk of having an underdetermined problem. In practice, we found that the amount of 
data available limits the choice of ∆𝑡𝑡bin, and that this will therefore be case dependent. See 
the selected values of 𝑡𝑡0, 𝑡𝑡𝑁𝑁 and ∆𝑡𝑡bin in the result section for each case. 
 



12 
 

 

Multi-scale Atmospheric Transport and Chemistry model (MATCH) 
The Multi-scale Atmospheric Transport and Chemistry model (MATCH) (Robertson et al., 
1999) is multi-purpose Eulerian chemical transport model (CTM) developed by the SMHI. 
The model is used for emergency application such as nuclear and natural events (volcanos), 
aerosol dynamics and optics (Andersson et al., 2015), complex chemistry, and data 
assimilation (Robertson and Langner, 1998; Kahnert, 2008; Kahnert, 2018). The MATCH 
model is used operationally for chemical forecasts in CAMS (Copernicus Atmospheric 
Monitoring Service) and for SSM (Swedish Radiation Safety Authority) serving the ARGOS 
system needs (Hoe et al., 1999; 2002). Other applications are studies for air quality and health 
issues in climate projections. In most applications MATCH is used as a limited-area model on 
various possible scales, but also for global applications.  
 
The MATCH model is basically an Eulerian model but for emergency applications a 
Lagrangian particle model is used in the near field of the emission location.  
 
A wide range of possible driving meteorological data is applicable like analyses and forecasts 
from HARMONIE, IFS (ECMWF) and WRF. 

Method Employed for Source Characterization 
In these applications we have applied so called Poor-man source inversion. This is a 
simplification of the complete 4Dvar where only one iteration is made followed of bias 
correction. In principle we run the adjoint model forced by the measurements where also 
adjoint gamma-dose may come in. We then pick up the adjoint solution for the column 
associated with the defined source location. A time series of such columns are then retrieved. 
The concept applies well for a Eulerian model. We now assume that these columns represent 
the source profile with an unknown scale factor to be determined. This is derived by running 
the forward model given the source suggestion from the adjoint run. When comparing the 
model and measurements we assume that there is only a scale factor other than implicitly one 
that is missing in a quadratic error sense. 
 
Bringing this into a mathematical language we may first consider the transport model in a 
general form, 
 

 
 
where xt is the model state, Mt is the transport equations and P an injector matrix to place the 
source column qt at the right location in the model grid. We now assume a cost function of the 
following form, 
 

 
 
that represents quadratic penalties for deviation from an initial source column guess and a 
penalty for deviation from the observations. Here the observation operator H is important, that 
maps the model grid values to the observation locations and in addition, when valid, perform 
gamma dose transform of the model nuclide specific model state. If we then bring the model 
as above a strong constraint we mat write, 
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Here λ represents the co-state or the adjoint state. The cost function will have minimum where 
the gradient with respect to the model state, xt, is zero that lead us to the adjoint transport 
model, 
 

 
 
It is worth to make short stop here and conclude that the adjoint state is integrated backward 
in time driven by the adjoint model equations (Mt

T) and forced by the deviation between 
model and measurements, transferred through the transpose (adjoint) of the observation 
operator, that in turn may include adjoint gamma dose rates. 
 
We could from above also derive the gradient with respect to a specific source column qt, 
 

 
 
that is derived from the adjoint state, where PT turns in to an extractor of a column that 
belongs to the source location. For a full variational assimilation the second term on the right 
side will be important, while in the Poor-man case this will disappear. We may stepwise 
update the source columns, 
 

 
 
where α is a scaling factor. The source columns may then be incrementally updated by 
forward and adjoint runs. The Poor-man approach does then simplify by just making one 
iteration, 
 

 
 
where α initially assumed to be unit. One forward run then will determine how good this 
assumption appeared to be. Then setting up quadratic cost function with the unknown 
factor α, 

 
and just using Newton-Raphson algorithm we could iteratively determine best α, 
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This procedure may be iterated a couple of turns with a forward model run in between. 
 
One element to consider is that the source term derived above is not directly the source 
intensity but the concentration that the source intensity would lead to. Converting from 
concentrations to source intensities could then in the final output be a bit arbitrary. 
 
The gamma dose operator is derived from Heinonen (2017) and references therein with 
tabulated gamma energies and range parameters. A generic gamma dose stencil is for each 
nuclide and model layer derived integrating in a surrounding of the cell coordinate then 
assumed applicable to any grid cell coordinate. The adjoint is the transpose of this generic 
gamma dose operator. 

System for Integrated modeLling of Atmospheric coMposition (SILAM) 
SILAM (System for Integrated modeLling of Atmospheric coMposition, , last access: 5 Jan 
2021) is an offline 3D chemical transport model (Sofiev et al., 2015). SILAM features a mass-
conservative positive-definite advection scheme that makes the model suitable for long-term 
runs. The model can be run at a range of resolutions starting from a kilometre scale in a 
limited-area up to a global coverage. The vertical structure of the modelling domain consists 
of stacked layers starting from the surface. The layers can be defined either in z- or hybrid 
sigma-pressure coordinates. The model can be driven with a variety of NWP (numerical 
weather prediction) or climate models. 
 
The model is used for emergency-response applications and includes radioactive 
transformation mechanism and various passive tracers. 

Method Employed for Source Characterization 
The source characterization is performed through optimization of the time-slot specific model 
emission. The cost function of the optimization is the sum of the squared model errors, to 
which an additional regularization term can be added. Here, the regularization term is set to be 
proportional the sum of the squares of the differences between the emission coefficients of 
consecutive time slots. A suitable trade-off between the smoothness of the optimized temporal 
evolution of the emission and the model to measurement error is found through an L-curve 
method, which utilizes a plot of the model error versus the residual error. The method can be 
used to effectively remove the length of the emission time slot from the degrees of freedom of 
source characterization. In other words, a short time slot of one hour can be applied, with the 
regularization helping to avoid overfitting in terms of temporal complexity. 
 
The optimization procedure itself is based on a standard application of the L-BFGS-B 
algorithm, as applied within the Python package scipy. As the method is computationally 
light, at least for the cases studied here, a brute force method of iterative application of 
random initial guesses spanning up to ten orders of magnitude is applied to ensure that good 
optimization results are achieved. Although the vertical emission profile is fixed, the impacts 
profile alterations can be studied through separate simulation runs. 
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Severe Nuclear Accident Program (SNAP) 
The Norwegian Meteorological Institute (MET-Norway) is responsible for modelling 
atmospheric dispersion of radioactive debris in the event of a nuclear emergency related to a 
nuclear accident or detonation. An additional task of the MET-Norway in a nuclear 
emergency is to identify unknown sources of radiation indicated by elevated levels of 
measurement. The basic tool used by the MET-Norway for such events is the Severe Nuclear 
Accident Program (SNAP) (Bartnicki et al., 2011; Klein and Bartnicki, 2018). 
 
The SNAP model was developed at the MET-Norway in 1994 as a Lagrangian particle model. 
The present version is fully operational at the MET-Norway and takes into account 
atmospheric transport and deposition of gases, noble gases and particles of different size and 
density emitted during nuclear accidents or explosions. SNAP can also be run remotely by 
experts from the Norwegian Radiation and Nuclear Safety Authority (DSA) where the 
Norwegian Crisis Committee is located. 
 
Once released into the air, radioactive gases and particles are subject to advection, turbulent 
diffusion and deposition (dry and wet). In the SNAP calculations, the advection process is 
immediately followed by the diffusion process. A random walk approach is used to 
parameterise horizontal and vertical diffusion. When large and dense particles are released, 
gravitational settling is more effective than vertical diffusion, and this process is taken into 
account. The SNAP model has been used both for simulations of historical events, e.g. 
nuclear detonations in Novaya Zemlya, Chernobyl Accident (Bartnicki et al., 2016), and real-
time simulations, e.g. the Fukushima accident. It was tested in the ETEX-1 experiment and 
showed good agreement with observations (Saltbones et al., 1998). SNAP is the dispersion 
model currently used by the MET-Norway in the Center of Excellence: CERAD CoE. 

Method Employed for Source Characterization 
The method for the source characterization follows the approach chosen by (Eckhard et al., 
2008), (Tichy et al., 2020) and (Brodtkorb et al., 2023). The temporal release characteristics 
of the release is estimated by using the observations from air filter stations and gamma 
stations. The release is assumed consisting of releases at disjoint time bins 𝑡𝑡𝑖𝑖 in [𝑡𝑡0, 𝑡𝑡𝑛𝑛] where 
each bin has a duration of one hour. These time bins are illustrated by Figure 1. The SNAP 
model is run forwards assuming a constant unit release of the radionuclides for each time bin 
𝑡𝑡𝑖𝑖 from a predetermined location, such as a suggested facility following the methods 
developed during the SLIM project. Each model run is then co-located with observations to 
form the source-receptor matrix 𝑀𝑀𝑖𝑖𝑖𝑖. 

𝑀𝑀𝑖𝑖𝑖𝑖 =  𝑞𝑞𝑖𝑖(𝑜𝑜𝑖𝑖) 

where 𝑞𝑞𝑖𝑖 is the result of the unit release at each location and 𝑜𝑜𝑖𝑖 is the location of the 
observation. The release characteristics is described by the linear system 

𝑦𝑦 = Mx 

Where 𝑦𝑦 describes the real observations at the positions 𝑜𝑜𝑖𝑖 , and 𝑥𝑥 are the different releases. 
The matrix M does not take into account uncertainties from the dispersion model or the 
atmospheric conditions and which is included by an additional term ΔM giving: 

y = (𝑀𝑀0 + Δ𝑀𝑀)x 
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Finding a suitable M0 + Δ𝑀𝑀 can be challenging and we solve it by the approach provided by 
(Eckhardt et al., 2008) and (Brodtkorb et al., 2023). First, we start from suitable a-priori 
emissions 𝑥𝑥𝑎𝑎, which usually are given from source-term expert or visual observations (e.g. 
fire, inventory fraction) at the source. The model-results of this a priori is 𝑦𝑦𝑎𝑎. By defining 𝑥𝑥� =
𝑥𝑥 − 𝑥𝑥𝑎𝑎 and 𝑀𝑀𝑥𝑥� = 𝑦𝑦� we obtain a least-squares term: 

𝐽𝐽1 = �|𝑀𝑀𝑥𝑥� − 𝑦𝑦�|� 

which when solved should be close to our a priori solution. To allow for errors in 
observations (e.g. representativeness error), we add a matrix σ𝑜𝑜 with observation errors on the 
diagonals, providing an additional least squares correction term: 

𝐽𝐽1 = �|σ𝑜𝑜−1(𝑀𝑀𝑥𝑥� − 𝑦𝑦�)|� 

Similarly, we can add an uncertainty to our a priori (σ𝑥𝑥) resulting in another term: 

𝐽𝐽2 = �|σ𝑥𝑥−1(𝑥𝑥 − 𝑥𝑥𝑎𝑎)|� = �|σ𝑥𝑥−1𝑥𝑥�|� 

This σ𝑥𝑥 is a matrix with the errors of the a-priori on the diagonal. We started by setting the a-
priori errors to ½ of the a-priori values, or a minimal value in case of 0, dividing it by a scalar 
tuning factor ϵ𝑎𝑎 between 0.1 and 1 with: 

σ𝑥𝑥 =
1
ϵ𝑎𝑎
⋅

1
2 𝑥𝑥𝑎𝑎 

To avoid sharp gradients, we introduce an additional smoothing term to our matrix: 

𝐽𝐽3 = ϵ�|𝐷𝐷𝑥𝑥�|� 

The matrix D is a second derivate matrix with -2 on the diagonal and 1 on the first off-
diagonals. ϵ is a scalar value for the smoothness, which we set to 1e-4. 

The complete problem is formulated as a Tikhonov problem with the equation to solve for 
given by: 

x  =  xa  +  [MTσo−2 M + σ𝑥𝑥−2 +  ϵDTD]−1𝑀𝑀𝑇𝑇σ𝑜𝑜−2𝑦𝑦� 

There are still a number of free parameters, i.e. the observation errors σ0, the smoothing 
factor ϵ, the choice of the a-priori and the errors of the apriori. In this work we only tuned the 
a priori and the a priori error ϵ𝑎𝑎. 

The solution can arrive at negative emissions which is unrealistic. In these cases, the 
corresponding σ𝑥𝑥 a-priori uncertainties are reduced and thus pushing the results to be closer to 
the a-priori. This procedure is re-run iteratively until a solution with only positive terms has 
been arrived at. 
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Semi-infinite Gamma Dose Model 
The gamma ray flux at point r originating from the in-air or deposited concentration of a 
nuclide emitting radiation at energy E is calculated from the expression (CERC, 2012) 

 
 

 

where c(r0) is the concentration of the nuclide, f(E) is the branching ratio, B(E, μ(E)|r − r0|) is 
the build-up factor, and μ(E) is the linear attenuation coefficient. In the dose rate calculator, 
the build-up factor is based on Berger’s expression, i.e. 

 
 
 

where a(E) and b(E) are fitting constants that are readily available as tabulated data (CERC, 
2012). In the atmosphere, μ(E) is not a constant, but varies as a function of air density, which 
in turn mostly depends on the height above sea level. μ(E) is calculated from the mass 
attenuation coefficient μ0(E) through μ(E) = μ0(E)ρair, where ρair is the average air density 
between the source and point r. In the dose rate model, the air density is simply taken from a 
standard atmosphere. 
 
Berger’s expression and the corresponding fitting constants are strictly speaking not valid 
when the attenuation coefficient depends on r, but as the air density is varying only slowly as 
function of altitude compared to the scale of attenuation of gamma radiation in the 
atmosphere, the resulting error is expected to be small. The benefit of the method is that the 
dose rate calculator can be applied for any height above surface, even for typical flight 
altitudes, where the attenuation coefficient is only a fraction of the value at the surface. 

The effective dose rate D at energy E is calculated from Φ(r, E) based on 
 
 
 
where µabs is an energy-dependent absorption coefficient and C(E) a conversion factor from 
dose rate to effective dose rate. 
 
The dose rate calculator approximates the radioactive cloud to be semi-infinite in the 
horizontal plane, which is a reasonable approximation for standard dispersion model output, 
as the horizontal size of the computational cell of a dispersion model is typically much larger 
than the relevant length scale of the attenuation. In the dose rate calculator, to simplify the 
calculations and to increase the computational speed, the height above the surface is 
approximated to equal the height above the sea level, which is a reasonable approximation for 
most parts of the world. If the dispersion model output is given in terms of hybrid levels, the 
levels are converted to height using the air density of a standard atmosphere. These 
approximations allow for performing the integration of Eq. 1 through pre-computed 
integration weights wdr,i(E), i.e. 
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where hdr is the requested height for the dose rate calculation, i is the layer index of the 
dispersion model output, and ci is the concentration of the nuclide inside layer i. The weights 
wi are calculated using cylindrical coordinates (h, ρ, φ) from 
 

 

 

where 

ρmax→∞, and we have defined . hi,1 and hi,2 are the lower and upper 
bounds of layer i, respectively. In the expression, the dependency on the polar angle φ has 
already been integrated out. However, the lack of an analytical solution prevents from doing 
that for the radial distance ρ. 
 
Currently, instead, the radial part of the integral is computed numerically, with ρmax set to 
1500 m. While performing the numerical integration, the lengths of the integration steps in the 
h and ρ directions are optimized based on the magnitude of µ. The integration weights are 
calculated separately for in-air and deposited concentrations of nuclides. 

Because of the approximation of taking the air density from a standard atmosphere, Eq. 5 
needs to be solved only at the start of the dose rate calculation, but independently for all 
output heights hdr and gamma emission energies E. However, tabulated values for µ0(E), a(E) 
and b(E) exist only for specific energies, and in its two-dimensional form, the integral is also 
somewhat heavy computationally. Thus it is beneficial to perform the calculation of the 
vertical integration weights for a restricted number of different energies, with interpolation of 
the weights applied for all intermediate emission energies. The weights wdr,i are computed for 
all the energies listed in Table 1, rather than for all of the emission energies of all of nuclides 
in the output of the dispersion model. Each emission at energy Eems is set to contribute to the 
total emission through a linear combination of the closest pre-computed values, i.e. weights 
for different pre-computed energies can be 3 defined as 

 

 

 

if the growth of the gamma flux rate as function of energy is approximated to be exponential. 
E− is the closest pre-computed energy value below the emission energy Eems and E+ is the 
closest pre-computed energy value above it. wems- and wems+ are the corresponding weights 
assigned for the precomputed energies. Final energy-dependent weights wems are acquired by 
summing the individual weights obtained for all the gamma emission energies of a specific 
nuclide. By combining Eqs. 4, 6, and 7 we end up with the expression for the total gamma ray 
dose rate Dn(hdr) originating from the concentration of nuclide n, i.e. 

 

 

where the index j runs over all the energies in Table 1 and i over all the vertical layers of the 
dispersion model output. As discussed, the weights wems,j and wdr,i(Ej) need to be calculated 
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only at the start of the run. The emission energies Eems and the corresponding branching ratios 
f(Eems) are obtained from a database maintained by STUK. 

Table 1. Tabulated values of the parameters of the dose rate calculation (CERC, 2012). µ0m is the linear 
attenuation coefficient at sea level. 
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ETEX-1 
After the Chernobyl accident in April 1986 and the adoption of the Convention on Early 
Notification of a Nuclear Accident (IAEA, 1986), the International Nuclear Safety Advisory 
Group (INSAG) of the International Atomic Energy Agency (IAEA) recommended inter alia 
that the IAEA should, in collaboration with the World Meteorological Organisation (WMO), 
review and intercalibrate the models of atmospheric transport of radionuclides over short and 
long distances and of radionuclide deposition on terrestrial surfaces, and establish a database 
for validation studies of these models. 
 
Following this recommendation, the joint IAEA/WMO Atmospheric Transport Model 
Evaluation Study (ATMES) was initiated in November 1986. The objective of ATMES was 
to compare the evolution of the radioactive cloud (I-131 and Cs-137) with the evolution 
predicted by mathematical models for atmospheric dispersion, using as input only the 
estimated source term of the Chernobyl accident. 
 
The ATMES suffered, however, from a number of weaknesses regarding lack of monitoring 
data and large uncertainties regarding the source term. Therefore, it was decided to carry out a 
tracer experiment in Europe. The sponsoring organisations were the European Commission 
(EC), the World Meteorological Organization (WMO) and the International Atomic Energy 
Agency (IAEA), and later joined by the US Department of Energy (USDOE). 
 
The experiment was named ETEX, European Tracer Experiment (Graziani et al., 1998; ETEX 
web-site, 2019). It was designed to test the readiness of interested services to respond in the 
case of an emergency, to organise the tracer release and compile a data set of measured air 
concentrations and to investigate the performance of long-range atmospheric transport and 
dispersion models using that data set. In total, thirty-six organisations around the world were 
involved in the project. 

Sampling network 
The sampling network consisted of 168 ground-level sampling stations in western and eastern 
Europe. National meteorological services hosted the samplers at a number of WMO synoptic 
stations over their territory. Thus, ETEX could take advantage of this existing network, which 
is homogeneously distributed throughout Europe and linked to the WMO. 
 
A final number of 168 sampling stations were selected, almost all located at existing WMO 
stations. Three samplers were located in the North Sea: one on a Dutch oil platform, the other 
two on gas platforms. The average spacing between two sampling stations in the resulting 
configuration was about 80 km. 
 
Each station was labelled with one or two letters identifying the Country where it was located, 
and numbered sequentially. 
 
It was planned to start the sampling operations at each station about 6 hours before the 
expected time of tracer arrival to obtain contemporaneous measurements of the tracer 
background levels and to ensure that the plume arrival was not missed. Each station was 
designed to sample over a period of 72 consecutive hours (24 three-hour samples), with 
sampling starting time progressively delayed from West to East. The stations closest to the 
source started sampling 3 hours before the release start; the most distant stations ended 
sampling 90 hours after the release start. The sampling network is depicted in Figure 3. 
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Figure 3  ETEX Sampling network (ETEX web-site, 2019). 

Synoptic situation 
Weather predictions suggested the following conditions on Sunday 23 October, 1994: 

• the presence of a rather strong West to South-westerly flow, advecting the tracer 
during the experiment over several tracer stations 

• no centre of high- or low-pressure, and no extending ridges or troughs, would have 
passed close to the release site 

• no frontal systems would have passed the release site shortly before, during or after 
the release 

Therefore, on Friday 21 October, 1994, the alert procedure was started. 

23 October, 1994 
A deep low, 975 hPa, to the East of Scotland was slowly moving north, maintaining a strong 
south-westerly flow over the release-site (Rennes). The advected air was unstable, with 
showers, some accompanied by thunder and squall-lines. Similar observations could be made 
from satellite pictures. The 12:00 UTC radio sounding of Brest showed a temperature profile 
which was unstable with respect to moist air, allowing the development of shower clouds up 
to about 28000 ft. Also the radio sounding of Paris showed an unstable atmosphere but with 
lower water vapour content. At both locations, the upper winds were Southwest and rather 
strong. The release started at 16:00 UTC. 
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24 October, 1994 

 
Figure 4  24 October, 1994, 00 UTC (ETEX web-site, 2019). 

There was still an unstable flow over the release site and the advection area. However, 
because of the northerly movement of the controlling low over the North Sea, the wind in the 
advection area decreased. The expected cold front was to be seen south of Ireland. 

25 October, 1994 

 
Figure 5  25 October, 1994, 00 UTC (ETEX web-site, 2019). 

The further deepening of the mentioned cold front had not developed. The system was to be 
seen as a minor secondary low, at 52°N, 5°E. The cold front over The Netherlands, an 
instability front with showers, had the pressure pattern of a trough. The wind was backing 
more to the south with the approach of the front during the day, and after the passage of this 
front the wind was veering to the Southwest. 
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26 October, 1994 

 
Figure 6  26 October, 1994, 00 UTC (ETEX web-site, 2019). 

There was still a complex low-pressure system over the North Sea and Scotland. Shower 
weather with a wind tending to veer a bit over Western Europe towards west-southwest. The 
high-pressure cell over the Black Sea indicated that southerly winds could block any further 
movements of the tracer cloud towards the East. 

Tracer release 
Atmospheric tracers were released in the form of a homogeneous air stream containing a few 
percent of perfluoromethylcyclohexane (PMCH) tracer. The gas stream passed through a 
small chimney where the gas was released at the top. 
 
The release started at 16:00 UTC on October 23, 1994, and lasted 11 hours and 50 minutes. 
340 kg of the non-depositing inert gas PMCH (perfluoromethylcyclohexane) were released 
from Monterfil (48°03’30”N, 2°00’30”W) at an average flow rate of 8.0 g/s. 

Results of DERMA 
The results are based on all available measurements, both non-zero measurements and non-
detections, which are used as described in the method section. The selected start time, 𝑡𝑡0, is 
September 23, 1994, 00:00 UTC, i.e. 16 hours before the actual release began, while end time, 
𝑡𝑡𝑁𝑁, is September 25, 1994, 00:00 UTC, i.e. 20 hours after the release ended. Further, we use 
time bins of 3-hour duration, i.e. ∆𝑡𝑡bin = 10800 s. 
 
First, Figure 7 shows the results based on the deterministic meteorological forecast. From this 
figure, we see that the timing of the release is reasonably well estimated and the estimated 
released amount is roughly 160-225 kg, while the true release was 340 kg. We see that there is 
an additional peak at around 35 hours, 5-10 hours after the actual release ended.  
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Figure 7 Left: Estimated release rate. The solid blue line shows the median of the posterior distribution, and the 
dashed blue lines show the 10th and 90th percentiles. The black line shows the true release rate. Right: Probability 
density for time integrated release. The red vertical line indicates the true release. 
 
Next, Figure 8 shows the modelled air concentrations as function of observations.  
 

 
Figure 8 Modelled concentrations as function of observations. The solid black line shows perfect correlation, 
while the dashed black lines indicate a factor of 5 between model and observation. 
 
Next, Figure 9 shows the results based on the meteorological ensemble forecast. Figure 9 
shows all 21 ensemble members in the same plot. This shows that all estimated source terms 
agree that the release peaks at around 21-27 hours, while most source terms also have a 
second peak at within the period 30-39 hours. The estimated time integrated release varies 
from roughly 100 kg to 400 kg.  
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Figure 9 Left: Estimated release rates. The solid colored lines show the medians for the different ensemble 
members, and the dashed colored lines show the 10th and 90th percentiles. The black line shows the true release 
rate. Right: Probability density for time integrated releases for all ensemble members. The colors correspond to 
the colors of the release rates. The red vertical line indicates the true release. 
 
Finally, Figure 10 shows the results based on using all the meteorological ensembles in the 
same source term inversion as described in the method section. Figure 10 thus shows a single 
source term based on all 21 meteorological ensemble members. Qualitatively, this does not 
differ significantly from the other results. On the other hand, it does not seem to be the best 
estimate either. This makes sense, since this source term somehow must combine the 
information from all the ensemble members. The best source term estimate, on the other hand, 
should be the one that uses the “best” ensemble member. 
 

 
Figure 10 Left: Estimated release rate. The solid blue line shows the median of the posterior distribution, and the 
dashed blue lines show the 10th and 90th percentiles. The black line shows the true release rate. Right: Probability 
density for time integrated release. The red vertical line indicates the true release. 
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Results of MATCH 
This experiment was run with ERA5 weather data on 0.2 degree resolution covering the 
period 12URC 23 October to 00UTC 26 October, 1994. 
 
A subset of 50 out of 930 non-zero observations were extracted by first restrict to 
observations valid after the release ended (9 UTC 24 to 00 UTC 26, October). The subset was 
then extracted by so called weighted bootstrapping with withdrawal, that implies that a 
random selection will favour larger measured values, and that an observation only could be 
selected once. The very ten largest observation in the set were though explicitly selected to 
avoid being randomly excluded. Locations for the selected stations are shown in Figure 11. 
 
The retrieved vertical source distribution is shown in Figure 12 (top) and total release rate 
(bottom). The timing of the retrieved release very much catches the true release period, 
although 86 kg of the release is retrieved less than the 340 kg in reported emitted. Anyhow the 
transport pattern is well caught as shown in Figure 13 and Figure 14.  In Figure 15 finally we 
present scatter diagrams for dependent and independent observations. 
 

 
Figure 11  The sites for the 50 observations used for the source inversion. 
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Figure 12  Retrieved source profile given as vertical extension (top) and emission rates (bottom). 
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Figure 13  Assimilated ETEX-I plume at 09 UTC 24 October, 1994, together with the observations used (left) 
and all observations (right). 

 

   
Figure 14  Assimilated ETEX-I plume at 09 UTC 25 October, 1994, together with the observations used (left) 
and all observations (right). 
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Figure 15  Scatter diagram observations vs. model for dependent observations (left) and independent (right). 

Results of SILAM 
The source term retrieval was performed through optimizing scaling coefficients for a linear 
combination of one-hour long emission slots by minimizing the root-mean-square error 
(RMSE) between modelled values and observations, with an added cost term penalizing non-
smooth solutions. The optimization was performed for every ensemble member separately. 
The model ensemble was run with a vertical emission profile of 8 to 50 m, as it represents a 
realistic estimation of the actual source profile, although already based on ERA5 results, this 
may lead to an underestimation of the source.  
 
The results of the source term retrieval are displayed in Figure 16, which shows the 10th, 50th 
and 90th percentiles for the full ensemble, as well as the same for the ten ensemble members 
with the smallest RMSEs with regard to the observations. By calculating the gradient of the 
RMSE with respect to changes in the retrieved emission profile, it was ensured that the entire 
temporal profile displayed in the figure is sensitive to the observed values. 

 
Figure 16  Retrieved emission from the SILAM model based on the full ensemble (left) and the best ten 
ensemble members in terms of the RMSE (right). The solid lines indicate the median emission and the dashed 
lines the 10th and 90th percentiles. The indicated total emissions are based on the median emission curve. 

While the temporal window of the release is obtained with a similar accuracy as with the 
deterministic ERA5 data, the magnitude of the release is underestimated even more strongly 
than with the ERA5 data. Despite penalizing less smooth solutions in a similar way as with 
the ERA5 data, there are also more fluctuations in the ensemble median result. The negative 
bias of the retrieved emission is mostly due to the emission plume not properly reaching the 
correct measurement stations in any member of the ensemble. As shown with the 
deterministic ERA5 results, this is partly corrected if a vertical emission profile extending to a 
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higher elevation is selected (or even one that assumes full initial mixing in the atmospheric 
boundary layer), but the effect may also be accidental, as optimally the SILAM model itself 
should decide on the amount of vertical mixing. 
 
Based on the temporal median curve, the estimated total emission is 41 kg for the full 
ensemble and 44 kg for the ten best performing members. However, this method may 
underestimate the emissions due to the fact that the emissions may peak at different times for 
different members. Computed over the totals for all individual ensemble members, the 10th, 
50th and 90th percentiles for the total emission are 35 kg, 45 kg and 53 kg, respectively, and 
40 kg, 46 kg and 57 kg for emission of the ten best performing members. The ensemble 
member with the smallest RMSE corresponds to a total emission of 63 kg. 

Results of SNAP 
The SNAP model was first run in forward mode to examine if the model is able to match the 
observations. A setup with wide initial spread in the entire grid-cell and with full mixing 
within the atmospheric boundary layer gave realistic results as can be seen in Figure 17 with 
only a slight overestimation of the model results with an NMB of 0.23. 

 

Figure 17  Scatterplot SNAP model results vs observations with known emissions giving a slight overestimation 
of the model results. The gray lines indicate a factor 10 over- and underestimation. 

As a second test, we ran the model with the known a priori emissions. Depending on the 
factor ϵ𝑥𝑥, i.e. the confidence factor for the a-priori, we retrieved total emissions of 206 g/s for 
high confidence (1) to 106 g/s for medium confidence (0.4). For lower confidence, the results 
showed lower releases rates, but indicated many of the iterations steps lead to negative 
emissions and were thus have disregarded. A reduction of total emissions is to be expected as 
the model showed a positive bias compared to real emissions. 

To test sensitivity of the model to the a priori term, we additionally ran tests with initial 
guesses which did not correspond to the real a priori. From the NKS-SLIM project, the results 
showed highest likelihood of emissions between 1994-10-23T11:00 and 1994-10-24T11:00, 
which we used as start and end time for our modified a priori. We scaled our emission using 
three different constant a priori emission rates: 1 g/s, 10 g/s and 100 g/s. 



31 
 

 

    
Figure 18  Results of SNAP inversion with the real emission as a priori and with 3 a prioris with longer 
emissions in three orders of magnitudes. All a posterioris have been selected at 𝛜𝛜𝐱𝐱 of 0.5. 

The results of the inversion can be seen in Figure 18 and gives in the three case 1, 10, 100 g/s 
total emissions of 77 kg, 355 kg and 374 kg, compared to the real emissions of 340 kg. The 
method is not able to increase a priori emissions that are too low compared to real emissions, 
but manages to reduce emissions when a high initial emission rate is used. The temporal 
profile corresponds most to the real release best for the 10 g/s emissions a priori, although the 
real constant time-profile was not estimated. The a priori with the largest overestimation tends 
to be less smooth with short bursts of emissions reaching up to 20 g/s. 

The method was run with all ensemble members of the meteorological ensemble and the 
inversion results have been computed for each ensemble-member separately and results for 
mean, 70th and 90th percentiles of the ensembles provided in Figure 19. The results with a 
priori of 10 g/s emissions over a longer time-span provided best results for the total emissions, 
although the emissions are offset by 6 hours to a later time and the total amount is still 
somewhat lower than the true total release. 
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Figure 19 Ensemble results with true a priori, and a prioris with 1 g/s, 10 g/s and 100 g/s. 
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The Autumn 2017 Case of Ru-106 
During the period 3–6 October 2017, the Incident and Emergency Centre of the International 
Atomic Energy Agency (IAEA) was informed by Member States that low concentrations of 
Ru-106 were measured in high-volume air samples in Europe. The detected isotopes did not 
contain any other radionuclides (e.g. other fission products such as Cs-137) and were at levels 
far below those requiring public protective actions, however not accounting for the 
anticipated higher concentrations at the release site. Corresponding data and information were 
obtained from the IAEA (2017a, 2017b). The data comprise 387 measurements of Ru-106, 
some of which correspond to levels below minimum detectable activities. The data are time-
average concentrations corresponding to varying time periods of up to seven days, cf. 
Figure 20 below. 
 
From a meteorological point of view, seven days can be a long time with potentially a number 
of meteorological phenomena such as front passages taking placing at the release site within 
the period. Possible sampling scenarios include evenly distributed low concentrations at the 
station site throughout the sampling period, or brief high concentrations corresponding to a 
narrow plume passing over the site in a short while. Therefore, such measurement data should 
possibly be discarded in a localization study. The discarded data can, however, be used for 
verification purposes. 
 

 
Figure 20  Locations where concentrations of Ru-106 in the air have been reported to the IAEA (IAEA, 2017a; 
2017b). The measurements were taken during different sampling periods ranging from daily to weekly. 
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Results of DERMA 
The results are based on all available measurements, both non-zero measurements and non-
detections. Measurements were obtained from Masson et al. (2019). The source location is 
assumed to be the Mayak nuclear facility, and the start time and end time were selected based 
on estimates from previous studies, cf. e.g. Tølløse et al. (2021). The selected start time, 𝑡𝑡0, is 
September 23, 2017, 00:00 UTC, while end time, 𝑡𝑡𝑁𝑁, is September 27, 2017, 00:00 UTC. 
Further, we use time bins of 6-hour duration, i.e. ∆𝑡𝑡bin = 21600 s. 
 
First, we show the result based on the deterministic meteorological forecast, see Figure 21. 
 

 
Figure 21  Left: Estimated release rate. The solid blue line shows the median of the posterior distribution, and 
the dashed blue lines show the 10th and 90th percentiles. Right: Probability density for time integrated release. 
 
The resulting source term has a large peak after about 48 hours, which is at 0 UTC on 
September 25, 2017. Further, there is a release, although much more uncertain, from 18 UTC, 
September 25 to 6 UTC, September 26. Both the timing and magnitude of the release is 
similar to estimates by previous studies, cf. e.g. Masson et al. (2019), Le Brazidec et al. 
(2020) and Tølløse et al. (2021). 
 
Next, Figure 22 shows the modelled air concentrations as function of observations. 
 

  
Figure 22  Modelled concentrations as function of observations. The solid black line shows perfect correlation, 
while the dashed black lines indicate a factor of 5 between model and observation. 
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Next, we show the results based on the meteorological ensemble forecast. Figure 23 shows all 
21 ensemble members in the same plot. From this figure, we see that the estimated source 
terms depend strongly on the meteorological ensemble used. This is true for both the time of 
the peak of the release and the magnitude of the release. As opposed to the ETEX case where 
all source terms looked qualitatively similar, the source terms for this case vary significantly. 
This makes sense considering the long travel distance from Mayak to most filter stations as 
well as the low temporal resolution of measurement data compared to ETEX. 
 

 
Figure 23  Left: Estimated release rates. The solid colored lines show the medians for the different ensemble 
members, and the dashed colored lines show the 10th and 90th percentiles. Right: Probability density for time 
integrated releases for all ensemble members. The colors correspond to the colors of the release rates. 
 
Next, we show the results based on using all the meteorological ensembles in the same source 
term inversion. Figure 24 thus shows a single source term based on all 21 meteorological 
ensemble members.  
 

 
Figure 24  Left: Estimated release rate. The solid blue line shows the median of the posterior distribution, and 
the dashed blue lines show the 10th and 90th percentiles. Right: Probability density for time integrated release. 
 
The estimated source term in Figure 24 is quite different from any of the source term 
estimates based on single ensemble members. We suspect that the different ensemble 
members constrain release rates in different time bins, and therefore the resulting release 
profile is constrained for most time bins. However, if the different ensemble members predict 
the same release at different times, this may lead to an overestimation of the source. Thus, 
when the meteorological uncertainties are large, this may not be the ideal way of making use 
of the meteorological ensemble prediction. Instead, one should perhaps look at the individual 
predicted source terms to get an idea about the possible source terms and the uncertainty of 
these estimates. 
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In addition, Figure 25 shows the result when excluding the four ensemble members that give 
the worst fit with data, determined by looking at the maximum likelihood, which is a measure 
of how well model predictions match the data.  
 

 

 

 
Figure 25  Upper figures are like Figure 23 but excluding the four members with lowest maximum likelihood. 
Lower figures are like Figure 24 but excluding the four members with lowest maximum likelihood. 
 
The overall shape of the release profile in Figure 25 is very similar to that in Figure 24. 
However, we see that the magnitude of the release is predicted to be somewhat smaller. Again, 
the release profile is quite different from the release rates based on the individual ensemble 
members.   
 
Finally, Figure 26 shows the ensemble member with the highest likelihood. 
 

 
Figure 26  Left: Estimated release rate. The solid blue line shows the median of the posterior distribution, and 
the dashed blue lines show the 10th and 90th percentiles. Right: Probability density for time integrated release. 
 
Although the different source terms are not exactly identical, they all suggest that there was a 
release during the first half of September 25, while most also predict that part of the release 
occurred on September 23.  
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Results of MATCH 
The met data used were IFS data on 0.2 degrees for the period 25 September to 5 October, 
2017. 
 
From out of 131 measurements with up to 36 hours sampling time a reduced set of 
30 measurements were randomly selected by weighted bootstrapping (with withdrawal). The 
10 largest measured values were taken before the random selection. Remaining measurements 
were used for validation. Figure 27 shows the sites for the selected measurements, and sites 
for validation. 
 
The retrieved source profile for the Mayak location is shown in Figure 28 and Figure 29. The 
rather deep source may to some extent originate from long-range backward adjoint transport 
where the adjoint plume will be vertically distributed during the course of the transport. A 
total amount of 2e12 Bq is retrieved as total activity released. 
Figure 30 shows scatter plots for dependent and independent observations. A rather good fit 
to independent observations as well is seen. 
 

   

Figure 27  Sites for the reduced set of 30 measurements (left) and sites for validation measurements. 
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Figure 28  Vertical distribution of the source profile for the Mayak location. 

 

Figure 29  Temporal source profile for the Mayak location. A total estimate of 2e12 Bq release would explain 
the measurements used. 
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Figure 30  Scatter plots for observations vs model with dependent measurements (left) and independent 
measurements (right). 

Results of SILAM 
The ensemble results for Ru-106 emission at Mayak were calculated in a similar way as for 
the ETEX case. When calculating the gradient of the RMSE with respect to the retrieved 
emission profile, it was noted that for every ensemble member, the measurements show zero 
sensitivty to emissions that occur before 2017-09-24 09:00 UTC. Thus the results presented 
here do not include estimations for emissions occurring before that point in time. 
 

 
Figure 31  Retrieved temporal emission profile at Mayak from the SILAM model for the full ensemble (left) and 
for the ten best ensemble members in terms of RMSE (right). The solid lines indicate the median emission and 
the dashed lines the 10th and 90th percentiles. The indicated total emissions are based on the median emission 
curves. 

Figure 31 shows the retrieved 10th, 50th and 90th emission percentiles based on the full 
ensemble and the ten best performing ensemble members in terms of the RMSE. Based on the 
temporal median curve, the estimated total emssion is 122 TBq for the full ensemble and 
182 TBq for the ten best performing members. However, computed over the totals for all 
individual ensemble members, the 10th, 50th and 90th percentiles for the total emission are 
250 TBq, 380 TBq and 800 TBq, respectively, and 280 TBq, 330 TBq and 520 TBq for the 
total emission of the ten best performing members. 
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Results of SNAP 
To investigate the source characteristics following the Ruthenium episode, the two likely 
release locations of Mayak and NIIAR were chosen. For both release scenarios the expected 
time of release was set between 2017-09-25 T12:00 and 2017-09-27 T00:00 as determined by 
the NKS-SLIM project. 
 
The inversion-method used with the SNAP model has input files for observations requiring 
constant measurement times and same end-times of measurements. This is the case for the 
ETEX case and for the Loviisa case, but is not true for the highly irregular measurements of 
106Ru. Since it was considered complicated and error-prone to adapt a new input-file format to 
the inversion-method, we rather put the measurements in 12 h bins as a best effort approach. 
 
As a priori, we again choose 3 different orders of magnitude of emissions (1e9 Bq/s, 
1e10 Bq/s, 1e11 Bq/s) over the 36 h period mentioned above. The other setup of the inversion 
is identical to the ETEX-1 case. 

Mayak 

 
Figure 32  Results of SNAP-Mayak inversion with a a priori of 1 e9Bq/s (130 TB) (left), 1e10 Bq/s (1300 TB) 
(middle) and 1e11 Bq/s (13000 TB) (right) 

The results of the Mayak ensemble inversion is included in Figure 32 for three a priori with 
total releases of 130 TB, 1300 TB and 13000 TB resulting in total a posteriori emissions of 
85 TB, 305 TB and 1933 TB. Since the inversion-method rather removes than increases 
emissions, the first a priori may be considered unrealistically low. Since the last a priori has 
been heavily reduced, while the second a priori is only slightly reduced (per time step), the 
results of the middle scenario were considered the most reasonable. The release has been 
moved rather to the end of the pre-selected time, i.e. between 2017-09-26 16:00 and 2017-09-
17 00:00, which is later than expected by other participants of this work, but the total release 
of 305 TBq is comparable with the DERMA and literature results. 
 
It should be noted that not all member of the ensemble gave reasonable results. In two cases, 
member 7 and 13, the algorithm could not provide a solution with non-negative terms within 
50 iterations and those members have not been used in the results. 
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Niiar 

 
Figure 33  Results of SNAP-Niiar inversion with a priori of 1e9 Bq/s (130 TB) (left), 1e10 Bq/s (1300 TB) 
(middle) and 1e11 Bq/s (13000 TB) (right) 

The results for the Niiar inversion can be seen in Figure 33 with total releases of 130 TB, 
1300 TB and 13000 TB resulting in total a posteriori emissions of 111 TB, 707 TB and 
4267 TB. With the same argumentation as for the ETEX-1 case and the Mayak case, the first 
a priori needed a emission increase, which does not work well with this inversion method and 
the last a priori needed too strong reductions, leaving the middle results, i.e. 707 TBq released 
mainly between 2017-09-25 16:00 and 2017-09-16 08:00 as most likely release. 
 
The inversion-algorithm failed also in the Niiar case to calculate reasonable emissions terms 
for some members. Members 0, 1, 7, 12, 13 and 19 had to be removed, leaving the ensemble 
with only 14 members for quantile, mean and standard-deviation calculations. 
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Artificial Case of a Release from the Loviisa NPP 
A crude method was applied to select the most important nuclides to capture the pre-set of a 
large scale event by means of gamma dose rates at nearby gamma monitoring stations and 
national air filter stations. 
 
The source term from which the selection of nuclides is derived is based on the outcome of 
calculated release sequence using the MELCOR computer code with an input deck for unit 4 
at Ringhals NPP. The selected source term is a representative source term for a core melt 
event without functioning mitigation systems. The initial event is a total loss of all power 
systems without battery back-up, in addition to all steam-driven systems. Source terms from 
this type of event are connected with large uncertainties. Therefore, the selected source term 
is used to represent a large release for all Swedish nuclear power units in operation (see 
Johansson et al., 2017). The filtered containment venting system is assumed disconnected and 
instead comprise an exhaust pathway from the reactor containment. It was postulated that the 
exhaust pathway was open at the time of melt-through of the reactor vessel. 
 
The MELCOR outcome (proportions of mass of the core inventory) has been translated into 
the accumulated released activity per nuclide including all 285 nuclides in the declared core 
inventory for unit 4 at Ringhals NPP. Almost 200 nuclides were selected and the released 
activity per unit of time was corrected for decay and ingrowth for the time period between the 
scram and the time of the release. 
 
The time evolution is given in 1 hour time steps starting at the onset of the accident (time of 
the scram) and the following 12 hours, intended to represent the first part of release to 
undergo subsequent detection by the gamma monitoring stations and, if possible, capture by 
the air filter stations (see Figure 34 below). 
 

 
Figure 34  Released fraction of activity for selected nuclides in the case of a postulated event without 
functioning mitigation systems. Figure taken from Appendix 3 of Johansson et al. (2017). 
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The total dose rate at the gamma monitoring stations would reflect both the contribution from 
cloud and ground since the stations are not shielded from activity deposited on the ground. 
Over time the contamination of the station itself would also contribute to the measurement. 
The accumulated activity per nuclide for the 12 hour time period was multiplied with the 
nuclide specific cloud dose gamma factor, values taken from Eckerman and Leggett (2013). 
Here, no considerations were made regarding the differences among the amount of released 
nuclides subject to dispersion and plume depletion during the transport from release to the 
station. Furthermore, no corrections were made for decay and ingrowth during the plume 
transport as implied by the crude methodology employed. The accumulated released activity 
was multiplied with the nuclide specific ground deposition gamma factor (Eckerman and 
Leggett, 2013) for all nuclides except noble gases as a rough approximation for the ground 
contribution); the ground deposition gamma factors selected are those for 1 cm soil 
entrainment to simulate surface roughness. 
 
The accumulated released activity for the 12 hour time period, excluding the noble gases, was 
combined with the information on the energy and yield (i.e. photon energy per nuclide 
transformation for each nuclide (Eckerman and Ryman, 1993) as a first approximation) to 
mimic the air filter station signals. No account was taken for decay and ingrowth for the 
period of time between the capture of the release in the filter and the subsequent gamma 
detector measurement. 
 
Based on the investigation, a set of 11 nuclides was chosen to represent important nuclides: 
Kr-88*, Xe-133*, Xe-135*, Xe-135m*, Cs-134#, Cs-137, I-131#, I-132*#, I-133#, I-135# and 
Te-132. The list consist of top 5 for the gamma monitoring station (denoted with *), top 5 for 
the air filter stations (denoted with #) representing more than 90% of the dose rate 
contribution in the first 12 hours of the postulated event with the crude methodology 
employed. Moreover, two nuclides from the top 10 list, Cs-137 and Te-132, were included 
since they represent key nuclides as seen from historical releases. 
 
The artificial scenario consisting of simulated filter station and gamma station measurements 
was derived by predicting the atmospheric dispersion of radionuclides from a 9-hour release 
at the Loviisa nuclear power plant starting at 8 UTC on 2021-09-22. The FMI atmospheric 
dispersion model SILAM was applied to the release scenario described above using Harmonie 
NWP model forecast data of 5 km horizontal resolution and hourly time resolution thereby 
providing 48 hours of hourly average concentration values at filer stations and gamma doses 
at gamma stations by using the gamma dose model described above in section Semi-infinite 
Gamma Dose Model. Note that in a real case, the filter stations are likely to measure average 
concentrations at longer time periods, e.g. 12 or 24 hours, or even a week. 
 
By using the artificially generated filter station and gamma station data, the task for the 
atmospheric dispersion models now is to estimate the time profiles of the release of the 
various radionuclides detected by the filter stations involved. 

Results of DERMA 
For this case, we used the instantaneous concentration values at the locations of the five 
available filter stations to compute averages over 24 hours, from 8 UTC every day to 8 UTC 
the next day. If the average concentration is below the threshold value 0.1 mBq/m3, the 
measurement is interpreted as a non-detection. The reasoning for this is to obtain a realistic 
dataset. However, the result is that each of the five measurement stations provide only two 
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measurements in the period. Thus, there are only ten 24-hour measurements of each particle, 
and most of these are non-detections. Thus, only very limited filter measurement data are 
available for this case. The selected start time, 𝑡𝑡0, is September 22, 2021, 05:00 UTC, i.e. the 
time of SCRAM, while end time, 𝑡𝑡𝑁𝑁, is September 24, 2021, 00:00 UTC. Further, we use time 
bins of 6-hour duration, i.e. ∆𝑡𝑡bin = 21600 s. 
 

 

 

 
Figure 35  Left: Estimated release rates. The solid blue line shows the median of the posterior distribution, and 
the dashed blue lines show the 10th and 90th percentiles. The black line shows the true release rate. Right: 
Probability densities for time integrated release. The red vertical lines indicate the true release.  
 
First, we show the results based on the deterministic meteorological forecast obtained by 
including both filter and gamma measurements. We include 10 of the 11 described 
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radionuclides, excluding Xe-135m due to its short half-life. As examples, we show the result 
for the radionuclide Cs-134, I-131, Te-132 and Kr-88. 
 
From Figure 35, we see that the estimated release rates do not really resemble the true release 
rates. Only the release rate of Kr-88 seems to reasonably capture the timing of the release. 
Further, the magnitudes of all releases are underestimated. When examining this, we found 
that the gamma dose rates predicted by DERMA+ARGOS are larger than the simulated 
observations by about 2 orders of magnitude on average. We have included a discussion on 
the matter in the discussion section below. 
 
Next, Figure 36 shows the modelled air concentrations as function of observations. Here, we 
see that the modelled air concentration measurements are underestimated (for high values), 
while the magnitude of modelled gamma dose rates reasonably correspond to observations. 
Again, we discuss this matter in the section below. 
 

 
Figure 36  Left: Modelled concentrations as function of observations. Right: Modelled gamma dose rates as 
function of observations. The solid black line shows perfect correlation, while the dashed black lines indicate a 
factor of 5 between model and observation. 
 
Based on the attempt above, we have decided to exclude the gamma dose rates. Further, we 
found that when only limited data are available, a Gaussian likelihood is better suited, since it 
gives high weight to the few measurements of high values. Thus, we use the likelihood: 
 

𝑃𝑃�𝐂𝐂o��𝛌𝛌, 𝐼𝐼� = ∏ Gaussian�𝐶𝐶𝚤𝚤𝑖𝑖𝑚𝑚� ,𝜎𝜎𝑓𝑓�𝑖𝑖𝑖𝑖 . 
 
In Figure 37, we show the results obtained by this approach. As examples, we show the result 
for the radionuclide Cs-134 and I-131 and Te-132. The release profiles for the noble gasses, 
on the other hand, cannot be determined when excluding the gamma measurements. 
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Figure 37  Left: Estimated release rates. The solid blue line shows the median of the posterior distribution, and 
the dashed blue lines show the 10th and 90th percentiles. The black line shows the true release rate. Right: 
Probability densities for time integrated release. The red vertical lines indicate the true release. 
 
For all three isotopes, the timing of the release is reasonably captured. However, the 
magnitude of the release is systematically underestimated. 
 
Next, Figure 38 shows the modelled air concentrations as function of observations. 
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Figure 38  Modelled concentrations as function of observations. The solid black line shows perfect correlation, 
while the dashed black lines indicate a factor of 5 between model and observation. 
 
We see that the high measurements are all very well estimated. This makes sense, since the 
Gaussian likelihood gives high weight to these, and because there is one measurement per 
particle, which is much higher than the remaining; this single measurement completely 
determines the release rates. 
 
Finally, we show the results based on the meteorological ensemble forecast (again only 
including filter measurements). Further, some of the estimated source terms essentially just 
look like the prior distribution and these have been excluded: 
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Figure 39  Left: Estimated release rates. The solid colored lines show the medians for the different ensemble 
members, and the dashed colored lines show the 10th and 90th percentiles. The black line shows the true release 
rate. Right: Probability density for time integrated releases for all ensemble members. The colors correspond to 
the colors of the release rates. The red vertical line indicates the true release. 
 
From Figure 39, we see that the estimated released amounts vary significantly. The timing of 
the release is determined to either 6-12hours or 12-18hours for all members, which is 
reasonable. However, measurements from nearby gamma dose rate stations should give a 
better estimate of the release period in practice (even if they are not very useful for source 
term estimation).  
 
Finally, Figure 40 shows show the results based on using all the meteorological ensemble 
members in the same source term inversion. From this figure, we see that the resulting source 
term when using all ensemble members is actually worse than the results from individual 
ensemble members. Thus, this indicates that when the source terms from the different 
ensemble members are too different, this is probably not the best way to use the ensemble 
predictions; or it is an indication that the meteorological uncertainty plays a significant role in 
this case. 
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Figure 40  Left: Estimated release rate. The solid blue line shows the median of the posterior distribution, and 
the dashed blue lines show the 10th and 90th percentiles. The black line shows the true release rate. Right: 
Probability density for time integrated release. The red vertical line indicates the true release. 

Discussion of use of gamma dose rates 
In a recent study, we examined the use of gamma dose rates based on an idealized case, where 
the same meteorological prediction, dispersion model and gamma dose rate model were used 
for both creating the data set and for the source term estimation (Tølløse and Sørensen, 2022). 
In this study, we showed that the gamma dose rates are useful for source term estimation in 
the case, where model errors are negligible.  
 
However, in the study presented in this report the “measured” gamma dose rates are produced 
by the SILAM gamma dose rate model, while for the source term inversion, we use a 
combination of the Danish version of the Harmonie model, the DERMA model, and the 
gamma dose rate model implemented in ARGOS. Figure 41 shows both the simulated 
observations from the SILAM model, and our modelled gamma dose rates when imposing the 
true source term. We have subtracted the background observations and removed non-
detections for this comparison. 
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Figure 41  Left: gamma dose rates from DERMA+ARGOS vs gamma dose rates from SILAM. Right: 
histograms showing gamma dose rates from both models. 

 
From Figure 41, we clearly see why we would not expect the gamma dose rates to be useful 
for source term estimation for this specific problem. From the histograms in the right plot, we 
see that the gamma dose rates predicted by the DERMA+ARGOS models are on average 
roughly two orders of magnitude larger than those from SILAM. However, it does not seem to 
be systematic, since the left plot indicates that there is no clear correlation between the two 
sets of observations.  
 
Since the two data sets are produced using different meteorological predictions, dispersion 
models and gamma dose rate models, it is not possible to say with certainty, why the two data 
sets differ so much. However, a likely explanation is the meteorological forecasts, since the 
two data sets are produced using models with different resolution (2.5 km for the Danish and 
5 km for the Finnish). The higher resolution could allow local-scale weather phenomena such 
as land breezes/sea breezes to be resolved, which may significantly impact the concentration 
pattern (and thus the radiation pattern). 

Results of MATCH 
The met-data used for this case is operational IFS data on rotated lat-long grid with 0.1 degree 
resolution. 
 
We retrieved the source profiles from both synthetic filter data and modified gamma doses at 
EURDEP locations. For the filter station we used all hourly provided data. while we for the 
gamma doses we first only considered measurements above 5 micro Sv/h and then made an 
extraction to 50 measurements by weighted bootstrapping. Figure 42 shows the sites used in 
the both cases. A bit though odd to find gamma dose sites over the Finish bay. 
 
For retrieval of nuclides from gamma doses we assumed three nuclides, I-132, Kr-88 and Xe-
135, to be the dose carrier. In the following we present retrievals of Kr-88 as one nuclide 
appearing in both data sets. A complicating factor is that the modelled gamma doses only 
consider air cloud contribution while the observed gamma doses may also include ground 
shine. 
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We found some issues regarding filter data where the Kotka site dominates the scene and very 
much defines the solution. Moreover, we had to slightly move the Loviisa power plant 
somewhat to the east to got hit by the adjoint plume from Kotka. The Figure 43 shows the 
retrieval of Kr-88 profile using filter data. The retrieved release considering Kr-88 is here in 
between 12 and 18 UTC 22 September, 2021, with the total activity released for this nuclide 
of about 1.8e16 Bq. 
 
To illustrate the dominance of Kotka for the filter data, Figure 44 shows the retrieval where 
Kotka is left out. The signal does then mainly arise from Kiruna and Umeå filter stations. The 
retrieved emission profile is in time about 12 hours earlier and with significant lower total 
activity released. 
 
The retrieval of the release profile of Kr-88 derived from gamma dose measurements is 
shown in Figure 45 where the release is proposed to be lasting from 12 UTC 22 September to 
06 UTC 23 September. Here the three nuclides I-132, Kr-88 and Xe-135 are proxy for the 
nuclides not included. The retrieved total activity of Kr-88 is then amplified in relation to the 
filter data to 1.4e17 Bq. The retrieved activities released for I-132 and Xe-135 are 2.2e17 and 
3.0e16 Bq, respectively, that in total lead to 3.8e17 Bq. 
 
Figure 46 show scatter diagram of gamma doses for observations vs model with dependent 
and independent observations. The dependent the model does fairly well for lower 
magnitudes of the data while some high observations are not included in the source inversion. 
For independent observations the scatter is not all to convincing. The modelled gamma doses 
only consider air cloud contribution while the observed gamma doses also included ground 
shine. 

   
 
Figure 42  Locations for filter station data (left) and for gamma dose data (right). The Loviisa NPP location is 
plotted with a filled triangle. 
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Figure 43  Retrieved source profile for Kr-88 with filter data for Loviisa NPP showing a rather short emission 
pulse. 

 
Figure 44  Retrieved source profile with filter data for Loviisa where the site Kotka is excluded. The retrieved 
profile is shifted somewhat earlier than in the retrievals above, and with significant lower total activity. 
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Figure 45  Retrieved source profile for Kr-88 using gamma dose measurement and I-132, Kr-88 and Xe-135 as 
dose carriers. 

   
Figure 46  Scatter diagram for gamma dose observations vs model gamma doses for dependent observations 
(left) and independent observations (right). 

Results of SILAM 
The source retrieval was based on using the simulated dose rate observations, as due to the 
nature of the observation method, hourly dose rate observations are normally readily 
available, unlike hourly in-air concentrations. The emission was set to occur between 25 and 
30 m in elevation. A background dose rate of 0.1 μSv/h is added to the model results. Half of 
the emitted nuclides of the original simulation of the accident, i.e. I-131, I-132, Kr-88, Cs-
137, and Xe-135 were selected as dose rate carriers, emitted evenly in terms of activity. Thus 
the retrieved results refers to emission of this specific species cocktail, as dose rate 
measurements do not provide sufficient data for treating the nuclides separately. 
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Figure 47  Retrieved profile of the emission at Loviisa NPP from the SILAM model. Left: emission profile for 
the full ensemble. The solid lines indicate the median emission and the dashed lines the 10th and 90th percentiles. 
The indicated total emission is based on the median emission curve. Right: emission profiles based on the two 
best performing members of the ensemble. 

In contrary to the ETEX and Ru-106 cases, the performance of the individual ensemble 
members with respect to the simulated observations is much more uneven for the Loviisa 
case. While for the other ensemble members the optimized emission yields an average RMSE 
with respect to the observations of about 4 μSv/h or more and a correlation below 0.15, 
similar to the simulation with the ERA5 data, two members correspond to an RMSE of about 
2.6 μSv/h and a correlation of about 0.75. Thus in Figure 47 results for the full ensemble as 
well as the two best performing members are presented separately. For the full ensemble, the 
median temporal emission curve yields a total emission of about 54 Pbq, calculated over the 
optimized emission totals of the ensemble members, the 10th, 50th and 90th percentiles are 
160 PBq, 300 PBq and 830 PBq, respectively. 

Results of SNAP 
For the Loviisa case, SNAP was first run in forwards mode with the real release and the 
SNAP concentration and deposition fields were adapted to gamma-doserates using the FMI 
doserate converter. The results can be seen in Figure 48 showing a negative bias for the air-
concentrations. In addition, none of the air-concentrations corresponded within a factor 10 
between the model and the observations. The observations show a few values larger than 
100 Bq/m3 at a station close by the source (Kotka) where the SNAP model fails to resolve 
any concentration values. In Figure 49 the SNAP concentrations are plotted at the time when 
SILAM predicts the maximum concentrations (> 5000 Bq/m3) at Kotka. Both stations at 
Helsinki and Kotka are not hit by the SNAP concentration fields, likely due to 
parameterization within the dispersion model which provides less diffusion than is necessary. 
In addition, the chosen meteorological condition at the time of the release where difficult to 
model with winds changing direction almost 180 degree within the first few hours. With 
models differing so largely at the few selected stations, an inversion was not feasible and 
provided results which were not realistic. 
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Figure 48  Tempo-spatial scatterplot for the hourly observations in the Loviisa case. Cs-137 concentrations 
(left), gamma-dose rates (right). 

As the observations included many gamma-stations compared to air filter stations, results of 
dose rates provided an improved bias of 0.17 and a reasonable spread of results mostly within 
a factor 10 for the gamma-dose rates (see Figure 48 (right)) and inversion using gamma-dose 
rates were attempted. 

 

Figure 49  SNAP concentration fields with closest approach to Kotka and Helsinki (black dots). 

For the gamma dose rate inversion SNAP was run forward in the same way as for the ETEX 
and Ruthenium case with unit-emissions in all radionuclides for all time steps between 2021-
09-22 00:00 and 2021-09-23 00:00. The inversion method has been tried with the following  a 
priori: true release; all nuclides with 1e+16, 1e+17 and 1e+18 Bq/h. Bias ranges from 1.65 for 
the true release, 3.59 for 1e+16, 58.4 for 1e+17 up to 1875 for the release of 1e+18. Figure 50 
shows the method is not able to decrease the a priori to a sufficient degree. For the Cs-134 
isotope we see some reductions based on the meteorological ensemble member, although the 
a posteriori is not decreased to a sufficient level as to approach the true release rate. For most 
other components, such as Xe-133 as in Figure 51 we do not see any changes from the a 
priori. The scatter plot of Figure 52 show some correlation between observations and the 
model, although the uncertainty is too low. 
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Figure 50  Temporal release characteristics in the Loviisa case for Cs-134 using the SNAP inversion method. 

 

Figure 51  Temporal releease characteristics in the Loviisa case for Xe-133 using the SNAP inversion method. 

 

Figure 52  Scatter plot of gamma observations for the SNAP inversion method. Blue dots show the mean of all 
ensemble members with error bars providing the 0.3-0.7 quantiles. Full black line show perfect correspondence, 
dashed lines show a factor 10. 
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Nord Stream leakage of methane in September 2022 
In Appendix A, a full description is made of the source localisation and inversion described 
for the MATCH system at SMHI. This is based on Bayesian inference where the prior 
distribution is derived from the adjoint footprint of the observations used and a full source 
profile derived by 4Dvar data assimilation. Here, we present the case of methane (CH4) 
release from broken Nord Stream pipe lines. 
 
In late September 2022, the pipe lines Nord Stream I and II were broken close to the Danish 
island Bornholm. The locations are known and the source rate of methane (CH4) was 
estimated to 2.3×107 g/h (Reuters, 2022). The network for measuring greenhouse gases 
(ICOS, 2022) have two Swedish sites recording a pulse from the broken pip-lines, Norunda 
and Hyltemossa, as shown in Figure 53 and Figure 54, where the locations of the stations are 
shown in Figure 55. 
 

 
Figure 53  Time-series of measured methane (CH4) at Norunda station north of Stockholm. The peak at 27-28 
September were used for source inversion. 

 
Figure 54  Time-series of measured methane (CH4) at Hyltemossa station in southern Sweden. The peak around 
28-29 September were used for source inversion. 
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Figure 55  Locations of the two stations used for CH4 source inversion at Norunda and Hyltemossa. 

Figure 56 shows the footprint from these measurements (time-integrated adjoint run) from 
which uniform and Gaussian priors are derived. We have here restricted the priors to only be 
valid for sea areas. This is partly related to the lack of observational information, where then 
more knowledge is put into the prior. Figure 57 shows the sampling of uniform and Gaussian 
distributions in a Bayesian context, and Figure 58 shows the resulting posteriors for the 
highest ranked locations. The locations of the sources are in this analysis slightly to the west 
of Bornholm for the both priors while the known broken pipe lines are slightly to the east of 
Bornholm. 
 

 
Figure 56  Footprint (left) of the methane (CH4) peaks in Figure 53 and Figure 54 from which two priors are 
derived, uniform prior (middle) and Gaussian (right). 
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Figure 57  Sampling of the priors in Figure 56 for uniform prior (left) and Gaussian prior (right). 

 
Figure 58  The most promising source locations given by the posterior for uniform prior (left) and Gaussian 
prior (right). 
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Figure 59  Retrieved source profile at the most likely position in Figure 58. The origin of the pulses are shown. 
Note that one the part of the release seen by Norunda and Hyltemossa are visible in the time profile. See also 
Figure 60. 

The source profile that arise by the used measurements, for the most likely location, is shown 
in Figure 59 that also arrive at source rates in the same order as the reported (≈ 2×107 g/h). In 
this source term, only those parts of the source that could be verified by the measurements are 
captured. By assuming the background error matrix in 4Dvar to have correlation in time (see 
Appendix A, Section 6.4) the retrieved source will be continuous as shown in Figure 60. Note 
that the magnitude of the source rate does not change by adding time correlation. 

 
Figure 60  As for Figure 59 by where the background source error is assumed to have temporal correlation. The 
temporal correlation acts as a smoothing function filling the gap between the pulses shown in for Figure 59. 



61 
 

 

The Nord Stream case illustrates both the importance of the prior in Bayesian inference and 
the background error formulation of the source errors in 4Dvar. Assuming potential source 
locations for both land and sea will not put the source at the vicinity of Bornholm (for these 
few observations). Then limiting of the prior just to sea areas is meant to illustrate that expert 
judgement may be needed to confine the solution, especially when only a few observations 
are available. The observations do by nature only catch a fraction of the source that did hit the 
measurement sites. For continues sources the background error in the 4Dvar enables filling 
the gap between the pulses (seen by the observations) when the background error is assumed 
correlated in time.  
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ARGOS and Source Characterization 
The Long-Range dispersion model interface in ARGOS has been developed in close 
cooperation with the different model providers through a number of years. The default 
interface is capable of handling forward deterministic Atmospheric Dispersion Modelling. As 
well, interfaces have been developed for specific modelling needs such as handling ensemble 
calculations (developed in cooperation with DMI) and Adjoint modelling results (developed 
in cooperation with SMHI and SSM). Likewise, new interfaces will have to be developed in 
order to handle Source Localization (SL) as well as Source Characterization (SC) based on 
various measurements of radionuclide air concentration and gamma doses. The implications 
of such interfaces will be discussed in this section. 

Concentration Measurements in ARGOS 
The ARGOS-DSS features several different options for visualising different kinds of 
radiological measurements. An example is shown below where a plot of European Monitoring 
Stations is presented in ARGOS. Station data are imported using the EURDEP-protocol, see 
Figure 61. 
 

 
Figure 61  European Monitoring Stations presented in ARGOS. 

 
The typical output from these types of Permanent Monitoring Stations is a dose rate; normal 
unit μSv/h. 
 
Likewise, ARGOS is capable of importing and presenting data from Air Sample Stations – 
again importing data using the EURDEP-protocol. Typical output from these Air Sample 
Stations is an air concentration; normal unit Bq/m3 (per nuclide). 
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Request for Source Characterization Calculation from ARGOS 
The existing Request dialog in ARGOS today is focused on doing forward Atmospheric 
Dispersion modelling; giving the user options for selecting a release point (a reactor) and a 
release description (source term – or ensemble of source terms) and a release time, see 
Figure 62. 

 
Figure 62  Forward atmospheric dispersion modelling request dialog in ARGOS. 

For Source Localization and Characterization, the needs are quite different from (normal) 
forward ADM. The user needs to provide a (number of) detection(s) of time-average air 
concentrations to be part of the request sent to the model, and for source characterization 
potentially also gamma measurements. As ARGOS already today has a module for presenting 
different measurements in the system (see section above) it would be natural to base the GUI 
for requesting SL or SC on the existing GUI for selecting measurement data to be visualized 
in the system. Due to the number of different types of measurement data, the GUI for 
selection is rather complicated, see Figure 62. 
 
The needs for SL and SC can be narrowed down to these three parameters: 

• The area of interest – the area from which the system should select measurement data 
• The time frame of interest – the time period from which the system should select 

measurement data 
• The type of measurements 
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Figure 63  GUI for selecting measurement data to be visualized in the system. 

Request interface for SL and SC modelling 
The request interface should be able to at least provide information from ARGOS to the SL 
and SC models about 

• General 
o List of nuclides 
o List of measurements 
o Position of source if known 

• Per measurement 
o Position of measurement 
o Time (time frame) of measurement 
o Air concentration (Bq/m3) per nuclide 
o Detection limits (per nuclide) 
o Gamma dose rates 

 
In case of too few measurements, ARGOS should be able to receive the reply back from the 
national meteorological service that the problem is undetermined, and to communicate this to 
the ARGOS user. 

Result interfaces for SL and SC 
The result of SL will resemble ordinary dispersion modelling; however, here the results 
shown on a map will be probability densities for the location of the source. For SC, the model 
result will to a high degree resemble a source term description, thus it would be quite efficient 
to reuse the interface for source term description from ARGOS to the ADM models as the 
interface from SC to ARGOS. 
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Types of measurements 
As can be seen from the GUI for visualising measurements in ARGOS above, ARGOS can 
handle quite many types of measurements. In order to simplify the GUI, we will restrict the 
selection for SLC to be limited to: 
 
• Permanent Monitoring Stations – dose rates, 
• Air Sampler Stations – air concentrations, 
 
or a combination of the two. 
 
It has to be considered how to distinguish between “lack of data” from a station and “below 
detection limit measurements”. Of course, in the radiological domain there will always be 
some background radiation. 

Permanent gamma monitors and filter stations 
In Europe, many radiological filter station measurements are taken once a week. However, in 
special cases it is possible to change to daily measurements. From a meteorological 
perspective, a week can be a long time covering a number of different meteorological 
phenomena taking place over the station site within the period. Additionally, a week could be 
longer than the accidental release. Thus, if the intended use of the measurements among other 
things is to assist in locating the release point or to characterize the source, daily 
measurements are of much greater value. The filters are changed manually, and in most cases 
sent by regular mail for analysis. This implies a delay in retrieving the measurement data, and 
it means that short-lived radionuclei have decayed when the filter is measured. 
 
The detection limit depends first of all on the amount of air drawn through the filter. Thus, the 
pump efficiency and the measurement period are key parameters for the detection limits, and 
therefore detection limits vary across Europe. In addition, the presence of many radionuclei 
on a filter makes it difficult to measure concentrations accurately. 
 
There are currently no international agreements on routine distribution of filter station 
concentration measurements. For the October 2017 case of Ru-106 measurements in Europe, 
the IAEA collected the available filter station data (IAEA, 2017a,b). 
 
The European Radiological Data Exchange Platform (EURDEP), see 
https://eurdep.jrc.ec.europa.eu/Entry/, is a network for the exchange of radiological 
monitoring data between most European countries. Currently, EURDEP is used for the 
European automatic gamma monitoring network which does not provide activity 
concentrations, only gamma dose rates. However, EURDEP might be used also for filter 
station measurements which could be very helpful in future events. 
 
In comparison with filter-stations, the gamma monitoring network in Europe is much denser 
and reports automatically at high frequency, e.g. hourly, all of which make such data 
attractive for an operational nuclear DSS. However, in order to use the gamma-monitoring 
data for inverse modelling it is beneficial that measurements of nuclide-specific average 
activity concentrations are provided. Further, the measurement sensitivity is several orders of 
magnitude worse than for filter stations. Thus, gamma monitoring results are most likely only 
useful for source localization at the early phase of a nuclear accident. They might, however, 
be of value for the characterization of the release. 

https://eurdep.jrc.ec.europa.eu/Entry/
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The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) includes a monitoring 
network of 80 radiological stations measuring radioactive particles, around half of them also 
noble gasses. Near real time access to these data will be very helpful for locating or 
characterizing an unknown release of radionuclei. 
 
All in all, there is a need for automated and uniform handling of filter station measurements 
and for a network or an organization to take care of the collection of data and providing them 
in an organized way for Emergency Management Organizations and DSS systems. 
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Summary, Conclusions and Outlook 
 
For a source, with a known geographic location, of radionuclides which have been 
accidentally released to the atmosphere, it is important to estimate the release rates for the 
dose-contributing nuclides. In the course of the SOCHAOTIC NKS project, various methods 
have been developed for estimation of the release employing measurements of activity 
concentrations at filter stations as well as gamma dose measurements at gamma monitors. The 
methods have been applied to three cases, viz. the European Tracer Experiment (ETEX), the 
2017 case of Ru-106 in Europe, and an artificial case of a release from the Loviisa nuclear 
power plant in Finland. 
 
For the selected cases, deterministic numerical weather prediction model data have been 
obtained from the global model of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) and both deterministic and ensemble-statistical data from the Harmonie high-
resolution non-hydrostatic model. By employing the atmospheric dispersion models DERMA, 
MATCH, SILAM, and SNAP, four different approaches have been applied in order to 
estimate the release rates for the selected cases. However, qualitatively these methods have 
provided quite similar results, and it has therefore not been possible to prioritize these 
methods. 
 
The previous NKS projects MUD (Sørensen et al., 2014), FAUNA (Sørensen et al., 2016) 
and AVESOME (Sørensen et al., 2019) have demonstrated that inherent meteorological 
uncertainties play an important role for the atmospheric dispersion model results; see also 
(Sørensen et al., 2020). In the SOCHAOTIC project, we have examined the uncertainties of 
the source estimation arising from the inherent meteorological uncertainties. This was carried 
out by applying the methodologies developed in the first year of SOCHAOTIC to an 
ensemble of numerical weather prediction model results. Subsequently, ensemble-statistical 
methods were applied to quantify the uncertainties of the estimated release profiles.   
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Appendix A  Description of the source inversion approaches for the 
MATCH modelling system 
 
Here follows a thorough description of the source inversion approaches for the MATCH 
modelling system. 
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Abstract

Through the NKS contracts AFT/B(19)6 and AFT/B(20)3 we have developed means for
source localisation and source profile inversion. The contracts have enabled refinement of
already existing methodology and new developments.

The outcome from these contracts are from our perspective Bayesian inference for
source localisation and improved variational source profile inversion. The latter have im-
plied building a generic library for variational data assimilation. The resulting tools are
contained in a pre-operational environment.

1 Introduction

The NKS SOCHAOTIC project follows upon the SLIM project that both are devoted to various
aspects of source inversion from given sets of observation material (contracts AFT/B(19)6
and AFT/B(20)3). While SLIM were more oriented towards source localisation SOCHAOTIC
is devoted to source inversion where the location is assumed known. The projects had also
a component of using ensemble weather predictions.

We have in this presentation chosen to span over both of these project then covering source
localisation as well as source profile inversion, that of course are connected.

In Section 2 we describe the cost function that leads to the adjoint transport model and
adjoint gradient for the source term update. We present the so called “Poor-man” variational
approach that is an approximation and a short-cut to the full variational evaluation but
proper enough Bayesian inference.

This is followed by a description of our implementation of Bayesian inference in Section 3,
where the meaning of each element is illustrated in Section 4 using the 106Ru case in 2017.
We then refine the Bayesian inference by Markov Chain Monte Carlo (MCMC) described in
Section 5, and the full variational source profile inversion is described in Section 6.

Results for the 106Ru case from Bayesian inference, MCMC and variational source inversion
are shown in Section 7. The most prominent candidate appears from this analysis to be
Mayak, where also a nuclear waste treatment facility is located, with a total release of 2⇥1012

Bq.

Exploring the use of ensemble weather predictions is made by en extension to ensemble
variational source profile inversion is shown in Section 8

In Section 9 we as ask to what level we could have identified the source location during the
course of the event.

Finally we make two extensions: first to a 133I case in 2016 in Section 10 where we discuss
the impact of zero measurements, and secondly the Nord Stream CH4 leakage in September
2022 in Section 11.

The described methodology is developed within the framework of the MATCH modelling sys-
tem at SMHI [Robertson et al., 1999].
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2 Cost function, the Poor-man approach and hit-rate

2.1 Cost function

We shall describe variational source inversion by means of a cost function. We first define
our transport model operating from time-level 0 to T forced by a set of source columns
Q = Q1, Q2, ...QT at the position r,

xt+1 = Ltxt � ⇤txt + FrQt+1 (1)
x0 = 0 (2)

where the different elements are:

• xt: model state (mixing ratio of activity, Bq/kg air),

• Lt: forward transport model (that includes the meteorology),

• ⇤t: depletion processes (deposition, decay etc.),

• Qt+1: time dependent source column,

• Fr: injector of the source column into the grid at location r.

We now introduce a cost function that is a measure of the distance between the source term
and some background and the distance between the model and the measurements,

J =
TX

t=1

1

2
(Qt �Qt,b)

TB�1(Qt �Qt,b) +
1

2
(Htxt � dt)

TO�1
t (Htxt � dt) (3)

where Qt,b is some background emissions, dt are the measurements, Ht the observation
operator bringing the model to the observations, and B and O are the background and
observation covariance matrices, respectively, both assumed diagonal. The observation op-
erator may just be an interpolation from the grid points to the observation sites, but may
contain transformations such as gamma-dose conversion, and imply averaging in time when
observations are sampled over longer time periods than the model time resolution (one hour).
However the latter is our normal case we have simplified the presentation by assuming model
and observations to have the same time resolution. The first term in Eqn 3 with the square
difference between the source and background acts as a balancing term not to over-fit the
observations.

The cost function Eqn 3 should be solved having the model (Eqn 1) as a strong constraint,

J =
TX

t=1

1

2
(Qt �Qt,b)

TB�1(Qi �Qi,b) +
1

2
(Htxt � dt)

TO�1
t (Htxt � dt) +

�T
t+1(Ltxt � ⇤txt + FrQt+1 � xt+1) (4)
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where �t+1 is the Lagrangian or adjoint state. The minimum of the cost function in Egn 4 is
found where the gradient with respect to the model state, xt, is zero and we arrive at,

�t = (LT
t � ⇤t)�t+1 +HT

t O
�1(Htxt � dt) (5)

�T = 0 (6)

which is the adjoint model (LT
t ) integrated backwards in time and forced by the innovations

(model minus observations). HT
t is the adjoint of the observation operator that will in the

case of gamma dose measurements project the gamma dose innovation back to the con-
tributing nuclides. The initial condition 6 does also come with zero boundaries [Le Dimet
and Talagrand, 1986]. The depletion operator ⇤t is assumed diagonal and it is worth noting
that this process acts symmetrical in forward and adjoint mode. In forward mode the de-
pletion reduce the impact of the emissions, while in adjoint mode the depletion reduce the
impact of the observations.

The gradient of the cost function Eqn 4 with respect to the source term Qt is given by,

rJ(Qt) = FT
r �t +B�1

t,t (Qt �Qt,b) (7)

where FT
r is extracting a column at location r of the 3D adjoint state �t, plus a friction

term with the departure from a background source. The observations contribute to this
gradient through the adjoint state, �t. The source column could iteratively be updated by an
approximation of the Newton-Raphson iteration method,

Qn+1
t = Qn

t � ↵rJ(Qt) (8)

where each new source term will feed back to the innovation and thus an iterated adjoint
solution. Formally ↵ is the inverse Hessian of the cost function. In full variational assimila-
tion this is approximated by conjugate radient methods [Gilbert and Lemaréchal, 1989] but
as shown in next section this could be a scalar as we apply in the Poor-man assimilation
approach.

2.2 The Poor-man assimilation approach

The Poor-man approach were proposed by Robertson and Langner [1998] and restrict the
variational solultion to one iteration of the emission update Eqn 8. The assumption is that
nothing is known about the source, except for the location, and emissions are thus set to
zero, Qt = Qb = 0, and the model state will consequently be zero at all time levels. By taking
one step in Eqn 8 we follow the steepest descent towards emissions from the assumption of
no sources. Starting with ↵ = 1 our first source term estimate is,

Qfg
t = FT

r �fg
t (9)
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where the first guess adjoint solution is given by,

�fg
t = (LT

t � ⇤t)�
fg
t+1 +HTO�1dt (10)

From making a forward run using this first-guess emissions we may derive ↵ that fit the
best to the observations in quadratic sense,

J(↵) =
1

2

TX

t=1

(↵Htx
fg
t � dt)

TO�1
t (↵Htx

fg
t � dt) (11)

here xfg
t is the solution given the source set Qfg. Some care is needed to determine the initial

value of ↵. Consequently we arrive for the Poor-man source term at,

Qt = ↵Qfg
t (12)

In summary the Poor-man approach is using the time-variation given by the steepest descent
gradient scaled to fit to the observations.

2.3 Hit-rate

We will here discuss hit-rate or source-receptor relation. This is by nature derived individu-
ally for each observation considered. The hit-rate for observation k is derived by the adjoint
formulation forced by a unit response at this observation site over the time the observation
is valid,

�⇤
t,k = (LT

t � ⇤t)�
⇤
t+1,k +HT

t,k (13)

We will then end up with a catalogue of hit-rates for each observation from which we could
get the full adjoint formulation,

�t =
NX

k=1

�⇤
t,k�

�2
k (Ht,kxt � dt,k) (14)

that is a summation over all observations at some time-level t, where �k is the observation
error. In turn the forward model integration at the observation point k is derived by a
summation over time-steps,

Ht,kxt =
TX

t=t

QT
t (F

T
r �⇤

t ) (15)
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The relations in Eqns 14 and 15 were first suggested by Marchuk [1995] and represents
the Lagrangian duality of adjoint operators. The notation hit-rate may be understood by
viewing the depletion process, ⇤t. If the depletion is switched off the hit-rate will increase
and the emissions needed to hit the observations could be reduced in comparison to when
the depletion is on. In Eqns 14 and 15 we have expressed the model at the observation point
as an issue of one single model time-step. Normally, however, are the observations covering
several model time-steps. The formalism will still hold as the source-receptor relation will
be inherent in the hit-rate.

3 Bayesian inference

The Bayesian inference imply spampling a prior probability distribution, adding observations
and arriving at a prosterior probability distribution from which we could deduce the source
most likely [Monache et al., 2008, Keats et al., 2008, Smith and Gelfand, 1992]. We will
consider the following elements for our Baysian inference,

• r, the source location,

• ↵, the Poor-man ↵ parameter,

• D, detectability,

• d1, . . . , dT , the observations

The motivation is as follows: the location r and observations d are obvious elements in the
inference, with the Poor-man ↵ we may favour locations with larger hit-rate (lower ↵) that
otherwise score similar toward the observations. The detectability may be understood by
the prior distribution that may include locations downstream of one or several observations.
Detectability is meant to penalise such locations having in mind that the observations may
be wrong.

This lead us to the following Bayesian formula,

p(r,↵, D|d1, . . . , dT ) / p(d1, . . . , dT |r,↵)p(↵|r)p(D|r)p(r) (16)

On the left had side we find the posterior, the ability for the observations to see our param-
eters, and on the right hand side is the likelihood, the ability of our parameters to see the
observations (that require forward model evaluation), followed by the probability of the ↵, D,
and finally the prior of the location r it self. We have dropped an unknown normalisation
constant as we only interested in the distribution of the posterior not its absolute value. It
could also be noted for the right-hand side that ↵ and D are assumed uncorrelated.

We solve the Bayesian formula in 16 from the right to the left by sampling a prior distribution
and the implications of the different elements are shown in Section 4 having the 106Ru in
2017 as example (Appendix A). In Bayesian inferences the prior is what we may know before
the observations and the posterior when the observations are added.
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4 Components of the Bayesian inference

We are here continuing the description in Section 3 sorting out the various elements in Eqn
16 having the 106Ru case (Appendix A) as example.

4.1 Prior distribution

We propose to derive the prior from the adjoint gradient fed by the observations integrated
over time (footprint). Figure 54 shows the time integrated adjoint columns (left) normalised
to yield unit maximum. This gives a signal of were or were not we may expect a potential
source to be found. The gradient is not a probability suggestion as such but we may still
process this to provide a useful prior distribution. In the middle panel we have deduced the
prior by setting equal probabilities in an area that enclose values of the integrated gradient
down to 1% its maximum value. We have then abandoned any possible variation within the
prior domain. A way to gain some more information from the integrated gradient is shown
in the rightmost panel in Figure 54 where we have applied a normal quantile transform of
the gradient into a Gaussian distribution with moderate spread [Bogner et al., 2012]. This
prior will in a soft way favour solutions in the main stream of the integrated gradient.

Figure 54: Normalised time integrated adjoint gradient columns (left) from where we have
deduces two priors, uniform (middle) and Gaussian by normal quantile transform (right).

Figure 55 shows Gibbs sampling for 100 points from the two priors in Figure 54, uniform
distributed prior (left) and normal quantile transform prior to the (right). For each of the
sampled points we derive a Poor-man source term for which we will get the ↵ (see Section
2), the likelihood, and the detectability D. Figure 56 shows the different components in our
Bayesian formula that are described in the following.
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Figure 55: Sampling of unit distributed prior (left), and normal quantile transform prior
(right).

Figure 56: The various components in the Bayes formula in Eqn 16, posterior, likelihood, ↵
and detection probabilities for each selected source location. The likelihood do as expected
dominate the posterior output. The contributing distributions are individually normalised
to 1.

4.2 Likelihood

The likelihood represents the ability of the model to see the observations within the range of
the uncertainty of the observations, and we have defined this as Gaussian distributed,

p(d1, . . . , dT |r,↵) /
TY

t=1

e�
1
2 (Htxt�dt)

TO�1(Htxt�dt) (17)
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The likelihood involves a forward model evaluation that connect our model parameters with
the observations. The forward model at the observation sites (Htxt) are solved by using the
hit-rate and the current source estimate (see Eqn 15).

4.3 ↵ probability

The Poor-man ↵ is a measure of the integrated hit-rate. Larger ↵ is a compensating scaling
for lower hit-rate in order to reach up to the measurements. We aim at favour source
locations with lower ↵ (thus higher inverse) but as seen from Figure 57 the inverse ↵ ranges
in more than 6 magnitudes. This will be a too strong measure and we apply normal quantile
transform that take us from left to right in Figure 57 in order to limit the penalty of low
hit-rate.

Figure 57: Invers Poor-man ↵ (left) and the ↵ probabilities (right). The right panel is a normal
quantile transform of the left one in order to yield a less dramatic measure.

4.4 Detection probability

The detectability probability is simply the number of observations seen by the source loca-
tion (through the hit-rate) over the total number of observations. As seen from Figure 56
(rightmost panel) there are proposed source locations to the south-west of the domain with
lower detectability. It there are some dominating measurements a source location in the
vicinity may score well despite being down stream of several observations. The detectability
is aimed to penalise such soure location. This may however not be the case in the 106Ru case
2017 example where the likelihood is low for source locations with low detectability (Figure
56, second panel).
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5 MCMC refinement

It would be just by chance that random selection from the prior would have hit the location
that maximize the posterior distribution, and we therefore need to refine the sampling. This
is done for the most promising candidates where the surroundings is search by means of
Markov Chain Monte Carlo [Grasserman, 2003, Walsh, 2004, Vrugt, 2016]. Figure 58 shows
such random walk and deduced particle filter standard deviation around the mean. The
latter is there to illustrate additional use of the random walk.

Figure 58: Example of Markov chain random walk (left), and from which we could deduce
particle filter standard deviation around the mean for one and two standard deviations (�)
(right).

6 4D variation source inversion

In Section 2 we made a short-cut to the cost function (Eqn 3) arriving at the Poor-man
approach and end up omitting the background source term. In a full variational assimilation
we have to account for this element. In the following we describe some steps we have to take
for the implementation of the variational scheme: change to virtual emissions, background
error estimate, and measures to ensure positive emission solutions.

6.1 Change of emission variable

We first restrict us to view the background covariance matrix to be diagonal and with con-
stant error variance, B = �2

b I (see an extension in Section 6.4). The standard way of solving
the costs function such as Eqn 3 is to change variable to a virtual source term, vt [Courtier
et al., 1993], in our case defined as,
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�bvt = Qt �Qt,b (18)

that converts the cost function to,

J =
TX

t=1

1

2
vTt vt +

1

2
(Htxt � dt)

TO�1
t (Htxt � dt) (19)

We may identify that the virtual emission, vt, has zero mean and unit error variances, and is
thus an emission space that simplifies minimisation. The gradient with respect to the virtual
emission, vt, is then,

rJ(vt) = vt + �bF
T
r �t (20)

6.2 The background error

The next part to define is the background error, �b, where we will get some help from the
Hessian, the second derivative of J . This represents the inverse relative analysis covariance
matrix (relative to the background errors) or the information matrix, that is given by,

J 00(vt) = 1 + �b(A1A2 . . . AT )(A1A2 . . . AT )
T�b (21)

At = FT
r

NX

k=1

�⇤
t,k�

�1
o (22)

where At summarise over all observation hit-rates at time-level t. Note that the information
gain is dependent on the hit-rate but not on the observation values as such. This may look
a bit more complicated than it will be in practice. We will only look into the trace of J 00 (the
diagonal) and moreover sorting out the element that appears at maximum. If we then define
a maximum allowed information gain (left hand of Eqn 21) the background error, �b, remains
to be the only unknown. We have set the maximum allowed information gain (�2

b/�
2
a) to 2.

6.3 Positive definite solution

Variational data assimilation is solved by assuming linear processes where the minimisation
is free to suggest negative emissions. Negative emission may also be as good as positive
ones to explain the observations in quadratic sense. We therefore need to explicitly tell the
minimisation that we dislike negative emissions. On way is redefine the source term in the
model equation 1,

xt+1 = Ltxt � ⇤txt + FrS+(Qt+1) (23)
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where S+ is an element-wise softplus function, ln(1 + ex), which derivative s+ is the sigmoid
function, 1/(1+e�x), appearing in the gradient of the cost function with respect to the virtual
emissions,

rJ(vt) = vt + s+(Qt)�bF
T
r �t (24)

where vt relates to Qt from Eqn 18. The nature of the modifications of the model equa-
tion and gradient are show in Figure 59. The implication for the forward model is that for
suggested positive emissions these will be returned untouched, while negative suggested
emissions are returned as zero. For the gradient negative suggested emissions will switch
off the gradient. This implies that the forward model will always be fed with positive or
zero emissions while we do not allow the gradient to direct towards negative emissions. The
non-linearity introduced comes with more iterations during the minimization.

Figure 59: The softplus function (left) and the sigmoid (right), used to ensure positive emis-
sions in the variational data assimilation.

6.4 Background error correlated in time

In the above we have assumed the background error matrix to be diagonal. We may though
make an extension where the errors are correlated in time. This is used in Section 11
where we discuss the Nord Stream case. We then describe the background error matrix as
following,

B = �bDDT�b (25)

where D is a square-root diffusion operator in time. The virtual emission (Eqn 18) will then
appear somewhat differently,

�bDv = Q�Qb (26)
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where the suffix t is removed as all time-steps are involved, and consequently the gradient
is filtered by the diffusion,

rJ(v) = v +DT�bF
T
r � (27)

The idea behind is that we assume the time correlations to be Gaussian and that the Gaus-
sian equation is a solution to the diffusion equation (given some constraints) [Elbern et al.,
2007]. To make the diffusion square-rooted is straight forward. For clarity we have included
the transpose of the diffusion operator but the diffusion operator is symmetric.

7 Results for the 106Ru case in 2017

The results presented are mostly based on the unperturbed member of the HARMONIE
forecasts provided by DMI on a resolution of 0.2o. The normal quantile transform prior is
used giving somewhat more priority to the mayor flow direction. An outlook is made to some
other of the met ensemble member in Section 7.3 in terms of posterior of most promising
source locations.

7.1 The most promising source locations

Figure 60 shows the posterior for the most promising source locations from the first Gibbs
sampling and after MCMC refinement, respectively using the unperturbed HARMONIE fore-
cast. The MCMC refinement works as expected were specifically a couple of locations to the
west of Mayak have moved in close to Mayak. The MCMC also moved sampled locations
south of Dimitrograd closer rising the probability for this location.
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Figure 60: The most promising source locations from the Gibbs sampling (left) and the
MCMC refinement (right).

7.2 Source profile and information gain

Figure 61 shows results from variational source inversion for the first guess, the final varia-
tional source, and the information gain, respectively. The first guess is the Poor-man source
term and the information gain is the trace of the Hessian of J (J 00) from which we have
derived the source background error, �b = 12 ⇥ 103 mBq/m3, given by an observation error
�o = 1 mBq/m3. The assimilated source has a peak near surface around 15 UTC Tuesday 26
September. The model source is however spread over three days from 25 to 27 September
and propagates up to 10 km during the course of long range inverse transport. We have thus
not put any constraints on the expected vertical extent, just given the model free hands to
suggest what best fit the observations. The total emission needed to explain the observations
is 2 ⇥ 1012 Bq. We should realise that the measurements used are up to 1 day of sampling
that are not able to return a distinct pulse if that could have been the case.
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Figure 61: First guess emission profile for the 106Ru case in 2017 (upper left), assimilated
emission profile (upper right, and information gain (lower middle).

7.3 The source locations suggested by different met ensemble mem-
bers

The results above are from using the unperturbed met forecasts. Figure 62 shows posterior
for the most promising locations using the met ensemble members 5, 10, 15, 20, together
with the unperturbed. The ensemble members are more or less giving the same picture as
the unperturbed. The ensemble members 10 and 20 do also pinpoint Dimitrograd as the
second most likely. This also true for the unperturbed met forecast even-though not as
strong. The ensemble member numbering is a bit unambiguous as consequtive forecasts
charing the same member number are not connected except for the unperturbed member.
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Figure 62: Posterior of the most promising locations for the ensemble members 5, 10, 15,
20 and the unperturbed member.

8 Ensemble variational assimilation of source profiles

In the above we have shown how to perform source inversion for a single met forecast or
single ensemble member. We may though by a slight tweak of the variational scheme solve
for a number of ensemble members simultaneously. We first rewrite the model in Eqn 1 to
denote different ensemble members, i = 1 . . .M ,

xt+1,i = Lt,ixt,i � ⇤t,ixt,i + FrQt+1,i for i = 1, . . . ,M (28)

where the model operator Lt,i is ensemble specific as we use different weather-data, as well
as for the depletion, ⇤t,i, where deposition processes are dependent on the meteorology. The
trick we do is to define a cost function where the observation part uses the ensemble mean,
and we add a constraint of fulfilling all the used ensemble models,
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J =
TX

t=1

✓
1

2
(Qt �Qt,b)

TB�1(Qt �Qt,b) +
1

2
(Htx̄t � dt)

TO�1
t (Htx̄t � dt)

MX

i=1

�T
t+1,i(Lt,ixt,i � ⇤t,ixt,i + FrQt+1,i � xt+1,i)

!
(29)

where x̄t is a weighed ensemble mean,

x̄t =
MX

i=1

wixt,i (30)

We have chosen to have the weights, wi, equally set to 1/M , but other weighting could be
possible, like having stronger weight on the unperturbed member. The adjoint solution for
the member i is then,

�t,i = (LT
t,i � ⇤t,i)�t+1,i + wiH

TO�1(Htx̄t � dt) (31)

which means that ensemble source update is driven by its share of the ensemble mean
deviation from the observations. Figure 63 shows an example of what could be expected
together with the ensemble standard deviation that illustrates the disagreements among the
ensembles.
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Figure 63: Demonstration of ensemble variational source inversion for a location close to
Mayak. Shown are the single source inversion using unperturbed met data (upper left),
assimilation where also perturbed ensembles contribute through the ensemble mean (upper
right), and the ensemble standard deviation (bottom). The perturbed members used are 5,
10, 15 and 20.

9 What if?

During an event we are first served with some early measurements while more follow during
the course of the event. International cooperation may imply additional measurement as
time goes by. We may then ask how well this proposed approach would have answered the
source inversion issue at different dates. Figures 64 and 65 show measurements used up
to 1 and 2 September, respectively, for values and number of measurements, respectively.
Some of the sites have measurements both for 1 and 2 September. Figure 66 shows the
impact on localisation for these two datasets. Having just observations up to 1 September is
not sufficient to point out neither Dimitrograd nor Mayak, while when adding observations
from 2 September Mayak become clearly pointed out. The conclusion is that we are depen-
dent on the observations available and that the pointed out source locations may change as
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the event proceeds.

Figure 64: Values for selected observations up to 1 September (left) and up to 2 September,
2017 (right).

Figure 65: Number of measurements for selected observations up to 1 September (left) and
up to 2 September, 2017 (right).
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Figure 66: Impact on source localisation using observations for one day up to 1 September
(left) and for two days up to 2 September (right).

10 Outlook A: 133I case in 2016 - handling of zero measure-
ments

A case of zero measurements pose a specific demand on the source inversion. The zero
measurements may indicate by their adjoint influence area (footprint) where the source
should not be expected. We suggest to bring this into the prior then excluding these areas
already when sampling the prior. Figure 67 shows maximum measurements for a 133I case
in 2016, except for sites Helsinki, Ivalo and Sodankylä that have zero measurement marked.
The site Helsinki did however not have zero measured for all times (see Apendix B).
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Figure 67: 133I measurements where maximum values are shown except for Helsinki, Ivalo
and Sodankylä that show zero measurements.

Figure 68: Time integrated adjoint gradient columns (left) for the 133I case from where we
have deduces two priors, unified distributed (middle) and smooth Gaussian by normal quan-
tile transform (right). Note that the footprint of zero measurents are excluding western part
of the domain from the priors.

11 Outlook B: CH4 case from broken Nord Stream pipe-lines
in the Baltic

In late September 2022 the pip-lines Nord Stream I and II were broken close to the Danish
island Bornholm. The locations are known and the source rate of CH4 was estimated to
2.3⇥107 g/h [Reuters, 2022]. The network for measuring greenhouse gases [ICOS, 2022] have
two Swedish sites recording a pulse from the broken pip-lines, Norunda and Hyltemossa, as
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shown in the Figures 69 and 70, where the locations of the stations are shown in Figure 71.

Figure 72 shows the footprint from these measurement (time-integrated adjoint run) from
which uniform and Gaussian priors are derived. We have here restricted the priors to only
be valid for sea areas. This is partly related to the lack of observational information, where
then more knowledge is put into the prior. Figure 73 shows the sampling of uniform and
Gaussian distributions and Figure 74 shows the resulting posteriors for the highest ranked
locations. The locations of the sources are in this analysis slightly to the west of Bornholm
for the both priors while the know broken pip-lines are slightly to the east of Bornholm.

The source profile that arise by the used measurements, for the most likely location, is
shown in Figure 75, that also arrive at source rates in the same order as the reported
(⇡ 2⇥107 g/h). In this source term only those parts of the source that could be verified by the
measurements are captured. By assuming the background error matrix to have correlation
in time (see Section 6.4) the retrieved source will be continuous as shown in Figure 76. Note
that the magnitude of the source rate does not change by adding time correlation.

Figure 69: Time-series of CH4 in ppm at Norunda (Sweden), 17.66E, 60.03N, September
2022.

Figure 70: Time-series of CH4 in ppm at Hyltemossa (Sweden), 13.42E, 56.8N, September
2022.
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Figure 71: Locations of the stations Norunda and Hyltemossa.

Figure 72: Footprint (left), uniform prior (middle) and Gaussian prior (right). The priors are
restricted to sea areas.
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Figure 73: Sampled uniforn prior (left) and Gaussian prior (right).

Figure 74: Potential source locations from uniform prior (left) and Gaussian prior (right).
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Figure 75: Source profile for the most likely source location close to Bornholm. The first two
peakes arrise from the Norunda site and the third from Hyltemossa.
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Figure 76: Source profile for the most likely source location close to Bornholm where the
background error matrix is assigned correlation in time.

12 Conclusions

Bayesian inference is a strong tool for source localisation in combination with MCMC re-
finements and variational source profile inversion. The Poor-man approach open up for
simplification making massive Bayesian sampling durable. The methodology did, by the se-
lected observations used, quite clearly point out Mayak as the possible source for the 106Ru
event in 2017 with a release amount of 2⇥ 1012 Bq. The reason and location for the event is
however so far not disclosed.

We have also shown that the message may be less clear during the course of the event. Hav-
ing only early measurements at hand does not point out Mayak as the most likely location,
while adding another day of measurements does.

Measured zero values are important as “invalid” source locations could be excluded from the
solution. We propose to put this into the prior distribution and thus already when sampling
the prior exclude locations that will have strong impact on measurement that should be
explained as zero.

The Nord Stream case with leakage of CH4 from broken pipe-lines in late September 2022 is
well captured both in location and in magnitude of the source rate. This case with contin-
uous source opened up to show that background error matrix with time correlation enable
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the source inversion to catch a contentious source.
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A The 106Ru case in 2017

In 2017 a case with elevated 106Ru was recorded at a rising number of filter stations over
Europe [IAEA, 2017]. The source of the event is still not known. 106Ru arise specifically
during nuclear waste treatment that limits potential site origins and potential candidates
were the waste treatment plants in Dimitrograd or Mayak (Russia).

We have restricted the case to a period from 25 September to the 5 October, 2017. From
the 320 number of measurement we have selected 30 with sampling periods up to 24 hours
(Figures) 77 and 78. The selection was made by first taken the 10 largest measured values
(with the limit on sampling time), and then random selection using weighted boot-strapping
for the remaining 20 measurements, where the weights were the measured values. The limit
to 30 measurements were taken for computational load reasons.

The forcing meteorological data were provided by DMI for HARMONIE ensemble prediction
forecasts (REF?). The provided weather data resolution was 5 km on Lambert projection but
we have extrapolated to 0.2 degree resolution in rotated latitude-longitude projection.

Figure 77: All measurements compiled by IAEA for the period 25 September to 13 October
2017 (left) and the ones used in this study for the period 25 September for 5 October 2017
(right).
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Figure 78: Sampling time in days for the various measurements. The selected measurements
are all with sampling times within one day.
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Table 1: Measurements used for the 106Ru case, mBq/m3.

Site Longitude Latitude Value Start End Duration (h)
Constanta 28.64 44.16 88.1 2017 09 29 00 2017 09 30 00 24
Cernavoda 28.04 44.33 81.28 2017 09 29 00 2017 09 30 00 24
Bechet 23.96 43.79 66.6 2017 09 29 00 2017 09 30 00 24
Craiova 23.8 44.34 59.82 2017 09 29 00 2017 09 30 00 24
Bucuresti 26.15 44.4 37.91 2017 09 29 00 2017 09 30 00 24
Mol 5.1 51.22 1.71 2017 09 29 07 2017 09 30 07 24
Laa_a/d_Thaya 16.4 48.74 4.51 2017 09 29 19 2017 09 30 20 25
Cernavoda 28.04 44.33 57.89 2017 09 30 00 2017 10 01 00 24
Bechet 23.96 43.79 127.59 2017 09 30 00 2017 10 01 00 24
Craiova 23.8 44.34 106.27 2017 09 30 00 2017 10 01 00 24
Bucuresti 26.15 44.4 145.01 2017 09 30 00 2017 10 01 00 24
Leopoldschlag 14.51 48.62 4.51 2017 09 30 13 2017 10 01 13 24
Bechet 23.96 43.79 18.11 2017 10 01 00 2017 10 02 00 24
Baia_Mare 23.59 47.66 47.48 2017 10 01 00 2017 10 02 00 24
Bucuresti 26.15 44.4 18.11 2017 10 01 00 2017 10 02 00 24
Arad 21.32 46.19 64.42 2017 10 01 00 2017 10 02 00 24
Leopoldschlag 14.51 48.62 4.2 2017 10 01 13 2017 10 02 16 27
Laa_a/d_Thaya 16.4 48.74 40.01 2017 10 01 21 2017 10 02 10 13
BERGAMO 9.68 45.69 12.2 2017 10 02 00 2017 10 03 00 24
MILANO 9.23 45.48 6.31 2017 10 02 00 2017 10 03 00 24
Arad 21.32 46.19 30.41 2017 10 02 00 2017 10 03 00 24
PERUGIA 12.34 43.09 6.2 2017 10 02 00 2017 10 03 00 24
Nicosia 33.37 35.17 0.05 2017 10 02 00 2017 10 03 00 24
Stockholm_(SEP63) 17.96 59.39 9.81 2017 10 02 09 2017 10 03 09 24
Wien 16.49 48.26 46.01 2017 10 02 09 2017 10 03 09 24
Linz 14.29 48.27 8.01 2017 10 02 10 2017 10 03 10 24
UDINE 13.24 46.07 54.3 2017 10 03 00 2017 10 04 00 24
Baia_Mare 23.59 47.66 24.61 2017 10 03 00 2017 10 04 00 24
BELLUNO 12.25 46.17 9.31 2017 10 03 00 2017 10 04 00 24
Unknown 8.95 46.16 0.32 2017 10 04 00 2017 10 05 00 24
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B Measurements used from the 133I case in 2016

Measurements provided by SSM for a 133I case in 2016. The hour of the measurements is
set to 00 UTC that may not be fully true.

Table 2: Measurements used for the 133I case in 2016, µBq/m3. The zero measurement are
marked in bold.

Site Longitude Latitude Value Start End Duration (h)
Warszava 21.0 52.22 1.3 2016 10 10 00 2016 10 17 00 168
Bialystok 23.22 53.07 1.04 2016 10 10 00 2016 10 17 00 168
Gdynia 18.53 54.52 0.56 2016 10 10 00 2016 10 17 00 168
Lublin 22.57 51.23 0.9 2016 10 10 00 2016 10 17 00 168
Torun 17.86 53.68 0.61 2016 10 10 00 2016 10 17 00 168
Narva-Joseuu 28.05 59.46 0.88 2016 10 15 00 2016 10 23 00 192
Harku 24.6 59.4 0.797 2016 10 15 00 2016 10 23 00 192
Toravere 26.46 58.26 1.09 2016 10 16 00 2016 10 23 00 168
Osteras (Norway) 10.35 60.0 0.4 2016 10 16 00 2016 10 24 00 192
Orland (Norway) 9.6 63.67 0.4 2016 10 16 00 2016 10 24 00 192
Helsingfors 24.9 60.2 1.1 2016 10 16 00 2016 10 18 00 48
Ivalo 27.5 68.65 0.0 2016 10 17 00 2016 10 24 00 168
Sodankyla 26.58 67.42 0.0 2016 10 17 00 2016 10 25 00 192
Loviisa 26.3667 60.3667 1.0 2016 10 17 00 2016 10 25 00 192
Stockholm 18.1 59.8 0.7 2016 10 17 00 2016 10 22 00 120
Kajaani 27.75 64.22 1.0 2016 10 17 00 2016 10 24 00 168
Kuopio 27.66 62.88 1.1 2016 10 17 00 2016 10 24 00 168
Lakiala 23.6 61.7 1.6 2016 10 17 00 2016 10 25 00 192
Rovaniemi 25.7 66.5 0.4 2016 10 17 00 2016 10 24 00 168
Helsingfors 24.9 60.2 0.0 2016 10 18 00 2016 10 20 00 48
Helsingfors 24.9 60.2 1.2 2016 10 20 00 2016 10 22 00 48
Helsingfors 24.9 60.2 4.0 2016 10 22 00 2016 10 24 00 48
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Abstract 
max. 2000 characters 

In recent years, events have occurred in which radionuclides were 
detected by filter stations in Europe without knowledge on the origin 
of those radionuclides. In such cases, there is a need to locate 
potential release sites. However, if the release site is actually known, 
or if a potential release site has been localized by inverse methods, 
then there is an additional need to estimate the release rates from this 
location as a function of time for the various radionuclides detected. 
 
While in the SLIM NKS project, methodologies were developed to 
localize an unknown source of radionuclides dispersed in the 
atmosphere, the SOCHAOTIC project has developed methodologies, 
suited for operational use, by which characterization of the source, 
whose location is known, can be derived, i.e. to estimate the 
temporal release profiles of the radionuclides detected. 
 
For operational use, nuclear decision-support systems should be 
extended with modules handling and analysing such monitoring data 
automatically, and conveying the data together with the geographical 
coordinates of the release point to the national meteorological centre 
accompanied by a request to estimate the temporal evolution of the 
release rates. 
 
A number of case studies have been selected, viz. the ETEX-1 and 
the October 2017 case of Ru-106 in Europe as well as an artificial 
case. Methods for estimation of the temporal release profiles have 
been developed, and they have been applied to the selected cases by 
using the DERMA, MATCH, SILAM and SNAP atmospheric 
dispersion models. The methods have been applied both by using 
deterministic numerical weather prediction (NWP) model data and 
ensemble-statistical NWP model data derived by setting up and 
running the non-hydrostatic high-resolution Harmonie model for the 
selected cases. Finally, an interface to a nuclear decision-support 
system, ARGOS, is described. 
 

Key words nuclear emergency preparedness, atmospheric dispersion modelling, 
source characterization, inverse modelling, concentration 
measurements, gamma dose measurements, uncertainty 
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