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Abstract 
 
This project investigates the feasibility of performing reactor physics calcu-
lations for nuclear cores using a hybrid neutron transport methodology, by 
combining deterministic and probabilistic modelling techniques. In the pre-
sented implementation, a deterministic response matrix method was de-
veloped in Matlab. The necessary probabilities appearing in the response 
matrix method were estimated in advance using a probabilistic solver – the 
Monte Carlo code Serpent2. Ultimately, the hybrid framework will combine 
the advantages of the deterministic approach (fast running calculations) 
with the ones of the probabilistic approach (high flexibility in modelling any 
geometry and high accuracy). In the response matrix method, two grids 
are used: one fine grid for estimating the scalar neutron flux and a coarse 
grid for computing the neutron currents on this grid. Because of the large 
efforts developing a new computational framework represents and be-
cause such a developmental work is error-prone, this first phase of the 
project implemented and tested the hybrid framework on a system as sim-
ple as possible: a two-dimensional representation of a simplified BWR fuel 
assembly. Such a choice was governed by the necessity to lower the 
computational time and to have a tractable system during the develop-
mental phase of the framework. The development of the hybrid route was 
demonstrated to be feasible, after some modifications of the Serpent2 
code. Although promising, the solution computed by the framework was 
demonstrated to be not fully realistic. Additional investigations are neces-
sary to identify the root cause of the observed deviations from the ex-
pected physical behaviour of the system. 
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1. Introduction 
 
The modelling of neutron transport problems for radiation transport purposes and nuclear 
reactor systems has long been divided into two types of approaches: the deterministic 
approach and the probabilistic approach. 
 
In the deterministic approach, the neutron transport equation is solved explicitly after 
reducing the complexity of the task at hand (typically using space-homogenization, energy-
condensation, and angular discretization techniques) (Demazière, 2013). The problem is first 
solved in a very small part of the computational domain using proper boundary conditions, 
and the solution then computed is used for transforming the problem into a problem 
encompassing a larger computational domain, at the expense of a simplification of the true 
complexity of the system. Typically, three to four of such “bottom-up” simplifications are 
used to model a full reactor core. Nevertheless, the validity of the approximations used in 
each of the computational steps are never corrected by the results of the calculations 
performed at the following computational step when a better (i.e. taking a larger 
computational domain into account) solution has been computed. Such methods are fast-
running methods originally developed when the computing resources were limited. 
 
In the probabilistic approach, also referred to as Monte Carlo, no equation as such is solved. 
Rather, the probability of occurrence of a nuclear reaction/process of a given type on a given 
species at a given energy for a given incoming particle (which can still exist after the nuclear 
interaction) is used to sample neutron life histories throughout the system (Lux and 
Koblinger, 1991). Using a very large number of such histories, the true behaviour of neutrons 
in the system can be reproduced. Due to the size and complexity of the systems usually 
modelled, Monte Carlo techniques are extremely expensive computing techniques, originally 
used for reference and shielding calculations. 
 
With the development of cheap computing resources, both the deterministic approach and the 
probabilistic approach are currently being used on massively parallel clusters to circumvent 
the limitations mentioned above. In the deterministic case, the process of averaging (“bottom-
up”) is now being complemented by a de-averaging process (“top-down”) in an interactive 
manner, so that a better modelling of the boundary conditions can be achieved using the 
information available from the coarser mesh. The modelling of full cores in one 
computational step only is also being attempted. In the probabilistic case, the use of large 
clusters allows modelling full reactor cores, and efforts are being pursued to include the 
effects induced by changes in the composition and/or density of the materials. Due to the 
complexity and level of details in the deterministic approach based on the averaging/de-
averaging process, the deterministic route has become as computationally expensive as the 
probabilistic route for high-fidelity simulations. 
 
The present project proposes to combine deterministic methods with probabilistic methods. 
The main advantage of such a hybrid route would be to lower the computational cost of the 
calculations (thanks to the use of deterministic methods) while still guaranteeing a high level 
of details and of reliability of the calculations (thanks to the use of probabilistic methods). 
A promising candidate for such a hybrid route is to use the so-called response matrix method, 
also known as the interface current method (Stacey, 2001; Stamm’ler RJJ & Abbate MJ). This 
method is essentially a deterministic method, where two computational grids are used: one 
coarse grid for resolving the neutron currents between the thus-defined cells (assuming that 
the neutron emission densities are known within the cells), and one finer grid for resolving 
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within each cell the neutron emission densities (assuming that the neutron currents between 
cells are known). The solutions of the two grids are iteratively updated until convergence is 
reached. The application of such a method requires the prior determination of some specific 
probabilities within each cell. The prior determination of the necessary probabilities is a very 
difficult task, because of the three-dimensional nature of the problem at hand and of the 
possible geometrical complexity of the system. 
 
The present project thus proposes: 
• To determine using a Monte Carlo code the required collision probabilities for the 

response matrix method. 
• To develop a software for testing the response matrix method using Monte Carlo-

generated collision probabilities. 
Because of the large efforts developing a new computational framework represents and 
because such a developmental work is error-prone, it was decided in the first phase of the 
project to keep the system as simple as possible. With the objectives to lower the 
computational time and to have a tractable system, only two-dimensional systems 
representative of fuel assemblies having a regular lattice of fuel pins surrounded by coolant 
were thus considered. This also means that the fine grid was chosen as made of a fuel pin and 
its associated coolant and the coarse gird was correspondingly made of the juxtaposition of 
such cells. 
 
In a later phase of the project, the method will be tested on three-dimensional systems 
representative of an entire nuclear core (with the coarse grid being of the size of axial slices 
of fuel assemblies and the fine grid modelling the spatial inhomogeneity within such slices of 
fuel assemblies). 
 
 
2. Survey of the field 
 
The governing equation for neutron transport is given by the neutron transport equation or 
Boltzmann equation. Due to the integro-differential/integral nature of the equation, the 
number of variables to be resolved and the usual large size of the system, the Boltzmann 
equation is ultimately simplified into a simpler formalism based on multi-group diffusion 
theory when a deterministic framework is used. The balance equations are then integrated on 
small volumes (finite volume approach) and on small energy bins (multi-group approach), 
and dedicated solution procedures are used for resolving the spatial, temporal, and energy 
distribution of the neutrons (Demazière, 2013). One of the major obstacles in this modelling 
procedure is that the balance equations make use of spatially- and energy-integrated 
macroscopic nuclear cross-sections. In order to properly homogenize (i.e. average in space) 
and condense (i.e. average in energy) such cross-sections, the nuclear reaction rates have to 
be preserved during such a double averaging procedure, and the scalar neutron flux used as a 
weighting function. Since the scalar neutron flux is the quantity one wants to determine and 
because of the parabolic nature of the neutron diffusion equations, which requires to solve the 
entire problem, a multi-step computational approach is used in deterministic neutron 
transport. A very small part of the computational domain is first considered, and assumptions 
on the surrounding of this domain and on the entry of the neutrons at the boundary of this 
domain are made. The neutron transport equation is then used to determine a good enough 
guess of the neutron flux, so that the macroscopic cross-sections can be properly 
homogenized and condensed. The main approximations and limitations used in the multi-level 
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computing scheme highlighted above are manifold. The most important one lies with the fact 
that the calculations performed on a restricted part of the domain rely on many intertwined 
steps where some approximations about the re-entry of neutrons at the boundaries of the 
domain are necessary. Such approximations are considered to be the main limitation in 
reaching highly accurate results for deterministic neutron transport (Roberts et al., 2010). 
 
To circumvent the limitations highlighted above, large international efforts in the area of both 
deterministic neutron transport and probabilistic neutron transport are on-going. On the 
deterministic side, one can refer to the Consortium for Advanced Simulation of Light Water 
Reactors (CASL) Energy Innovation Hub sponsored by the Department of Energy in the USA 
(U.S. Department of Energy, 2015b) and to the Center for Exascale Simulation of Advanced 
Reactors (CESAR) (U.S. Department of Energy, 2015a). Such initiatives intend to make use 
of world-class computing techniques thus allowing to use fine-mesh (in space, energy, and 
angle) neutron transport methods without using a classical multi-step procedure as 
highlighted above (see e.g. Davidson et al., 2014 and Boyd et al., 2013 for CASL and 
CESAR, respectively). On the probabilistic side, one can mention the EU-sponsored project 
High performance Monte Carlo reactor core analysis (HPMC), where high performance 
computing techniques are used to resolve the interdependence between neutron transport, 
material properties and compositions (Ivanov, 2014; Dufek & Anglart, 2014; Dufek & 
Hoogenboom, 2014). 
 
Other international efforts in the area of hybrid methods are also on-going, although on a 
much more limited scale compared to full use of deterministic methods or full use of 
probabilistic methods and the corresponding projects in these areas. The one driven by 
Georgia Institute of Technology, USA (Zhang & Rahnema, 2012), with the development of 
the COMET code (Coarse Mesh Transport), makes use of the computation of “response 
functions”, i.e. the response of a given cell to an incoming angular neutron flux. Such 
responses are computed using a Monte Carlo code assuming different expansions with respect 
to angle, space, and energy of the angular neutron flux. In addition, the effective 
multiplication factor of the system is an input to the Monte Carlo simulations. Similar efforts 
were initiated by Hitachi some years ago (Moriwaki et al., 1999; Ishii et al., 2009). Other 
efforts, such as the ones led by and in collaboration with MIT, USA (Lee et al., 2014; Li et 
al., 2014) and the University of Michigan, USA (Wolters et al., 2011), in the area of hybrid 
methods, focus on the acceleration of the convergence of the fission source in full core Monte 
Carlo simulations using a full core low-order deterministic approach. 
 
In the present project, it is proposed to use the response matrix method in a deterministic 
sense while using a Monte Carlo solver to estimate the required probabilities. Even if the 
proposed method belongs to the same class of methods as the effort led by Georgia Tech, the 
implementation proposed here is radically different. Namely, the Monte Carlo code is used to 
directly compute within-cells probabilities, and the response matrix method would be applied 
both at the fine mesh and the coarse mesh levels to resolve neutron fluxes and neutron 
currents once such probabilities are determined. The main advantage of this implementation is 
the fact that the effective multiplication does not need to be used as an input parameter in the 
Monte Carlo runs, as is the case of the method developed by Georgia Tech. In addition, the 
proposed implementation opens the possibility of performing the computation of the 
probabilities in three dimensions directly, due to the small size of the computational domain 
considered for the within cells-Monte Carlo simulations. 
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3. Theoretical framework 
 
In order to better highlight the proposed method, the neutron transport equation is recalled 
hereafter, and the balance equations in the response matrix formalism are derived. Using 
standard notations in multi-energy group theory and using a classical transport correction of 
the total and scattering macroscopic cross-sections, the steady-state transport equation in its 
integral form written for the energy group g  reads as (Stamm’ler and Abbate, 1983): 

 ( ) ( ) ( )0
,0 0

, exp , ,
s

g T g g
s E ds q s dsy

¥ é ù
W = - S - ¢W ¢ ´ - W Wê ú

ê úë û
ò òr r r   (1) 

where the emission density is given by: 
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u
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p
¢

¢ ¢
¢=

é ùSê úW = S +ê ú
ê úë û

å
r

r r r   (2) 

Partitioning the volume V  of the system into sub-volumes 
i
V , such that 

i
i

V V=  , and 

partitioning the outer surface S   of the system into sub-surfaces 
a
S , such that 

a
a

S S=  , 

multiplying Eq. (1) by the transport-corrected total cross-section, assuming a homogeneous 
emission density on each sub-volume and integrating on one of the sub-volumes 

i
V  lead to: 

 0
, , , , , , , ,T g j g j j a in g a g a j i g i g i j

a i

V S J P VQ Pf
 

S = +å å   (3) 

where the emission density in energy group g  and region i  is given by: 

 , , ,
, 0, , ,

1

1
4

[ ]
G

g i f g i

g i s g g i g i
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Q
k

c n
f

p
¢ ¢

¢ ¢
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Taking again Eq. (1) this time at the outer boundary of the system, multiplying this equation 
by nW⋅ , assuming a homogeneous emission density on each sub-volume and integrating on 

a given surface S  and for solid angles such that 0nW⋅ >  lead to: 

 
, , , , , , ,a out g a b in g b g b a i i g g i a

b i

S J S J P VQ P = +å å   (5) 

In the previous two equations, the different quantities have the following meaning: 

• 
, ,in g a

J   and 
, ,out g a

J  represent the averaged incoming, outgoing respectively, neutron 

currents on the surface area 
a
S . 

• 
,g i j
P 

 represents the probability for a neutron emitted in the volume 
i
V  in an isotropic 

manner and having a given emission density to have its first collision in the volume 

j
V . 

• 
,g a j
P


 represents the probability for a neutron entering through the surface 

a
S  to have 

its first collision in the volume 
j
V . 
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• 
,g i a
P


 represents the probability for a neutron emitted in the volume 

i
V  in an isotropic 

manner and having a given emission density to escape without interaction through the 
surface 

a
S  . 

• 
,g b a
P


 represents the probability for a neutron entering through the surface 

b
S  to 

escape without interaction through the surface 
a
S . 

The above system of equations has nevertheless very limited practical usefulness since for a 
large system, the number of probabilities to be computed would be enormous. The essence of 
the response matrix method is thus to use two computational grids. If one considers that the 
system to be studied contains 1,...,I N=  sub-systems, each having respectively a volume 

I
V   

delimited by a surface
I
S , Eqs. (3) and (5) can be written on each of the sub-systems as: 

 0
, , , , , , , , ,

I I

T g j g j j a in g a g a j i g i g i j
a S i V

V S J P VQ Pf  
Î Î

S = +å å  for 
I

j VÎ  (6) 

 
, , , , , , ,

I I

a out g a b in g b g b a i g i g i a
b S i V

S J S J P VQ P
 

Î Î

= +å å for 
I

a SÎ  (7) 

If I
out
J  represents the vector having for components each of the currents 

,out a
J   on all sub-

surfaces belonging the boundary of the sub-system I , if I
in
J   represents the vector having for 

components each of the currents 
,in a

J  on all sub-surfaces belonging the boundary of the sub-

system I , and if I
source
J   represents the vector having for components the contribution to the 

current 
,out a

J   due to volumetric sources inside the sub-system I , the set of equations (6) can 

be recast in the following vector equation: 

 I I I I
out in source

= ´ +J R J J   (8) 

where IR  is referred to as the response matrix for the sub-system I . Such a vector equation 
can be written for any sub-system I of the computational domain, and thus one can write: 
 

out in source
= ´ +J R J J   (9) 

for the entire system being modelled. In this equation, R  is referred to as the response matrix 
for the entire system. Since the outgoing current from a given sub-system is equal to the 
incoming current to its neighbouring sub-system, a topographical relationship exists between 

in
J  and 

out
J  which can be generically written as: 

 
in out
= ´J P J   (10) 

where P  is a matrix defined for the entire system being considered. Combining Eqs. (9) and  
(10) leads to: 

 
in in source
= ´ ´ + ´J P R J P J   (11) 
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This equation represents the global problem, i.e. the problem defined for the entire 
computational domain. Likewise, Eq. (6) can also be recast into the following vector 
equation: 

 I I I I

in source
f f= ´ +S J   (12) 

This equation represents the local problem, i.e. the problem defined for the sub-system I . 
The probabilities 

,g a j
P 

, 
,g i j
P 

, 
,g b a
P 

, and 
,g i a
P 

 need to be calculated prior to the 

application of the response matrix method. Nevertheless, compared to the original 
formulation of the transport problem as given by Eqs. (3) and (5), only probabilities within 
each sub-system need to be evaluated when two computational grids (i.e. a global problem 
and a local problem) are used. Once the different probabilities have been evaluated, the 
solution procedure goes as follows. From a known distribution of the emission densities for 
the entire computational domain, the global problem is solved, i.e. the neutron currents 
between each sub-system are computed using Eq. (11). Once the currents have been 
determined, the local problem is solved for each of the sub-systems, i.e. the scalar neutron 
fluxes within each sub-system are determined using Eq. (12). The calculated neutron fluxes 
within each sub-system are then used to calculate an updated distribution of the emission 
densities for the next inner iteration. 

In this project, the Monte Carlo tool Serpent2 was used to evaluate the probabilities within 
each of the sub-systems for both the global and the local problems (Leppänen et al., 2015). 
Compared to the work carried out by Georgia Tech and Hitachi earlier mentioned where only 
the global problem was solved deterministically, the main difference lies with the fact that the 
local problem is also solved in a deterministic sense, while using probabilities estimated from 
a probabilistic route. The main advantage is that the effective multiplication factor of the 
system is not any longer a necessary a priori input to the Monte Carlo simulations, but can be 
calculated on-the-fly by the deterministic solution procedure, using a classical power iteration 
method (Stamm’ler and Abbate, 1983): 

 
( 1) ( )

( ) ( 1)

( 1) ( 1)

p p
p p

p p

x x
k k

x x

-
-

- -

⋅
=

⋅
  (13) 

where p  represents the iteration number, k  is the dominant eigenvalue of the system, and the 
vector x  represents the result of the application of the fission operator onto the scalar neutron 
flux, i.e. x Ff f= ´ . The components of this vector are formally given by: 

 
, , , , , , ,

( )
i i

fission
g j i g i g i j i g i j g i f g i g i

i V i V g

x VQ P VP c n f¢ ¢ 
¢Î Î

= = Så å å   (14) 

In addition, the computational burden of estimating the probabilities are left to the Monte 
Carlo tool. Because of the small sizes of the sub-systems, estimating such probabilities is 
relatively fast. Furthermore, the estimation of the probabilities represents independent tasks, 
and parallel computing techniques could be used to distribute the required calculations when 
large scale systems would have to be considered. 

It has to be mentioned that such a hybrid solution procedure nevertheless relies on some 
necessary approximations for both the spatial and angular distributions of the angular neutron 
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flux at the boundaries between the different sub-systems (isotropic and homogeneous 
emissions). 
 
 
4. Description of the test system 
 
In order to guarantee a simple enough system in this developmental phase of the project, the 
method was applied on a system representative of an axial slice of a BWR fuel assembly 
(two-dimensional system). The fine grid (local problem) was chosen as made of a fuel pin and 
its associated coolant and the coarse gird (global problem) was correspondingly made of the 
juxtaposition of such cells. 
 
In a later phase of the project, the method will be tested on three-dimensional systems 
representative of an entire nuclear core (with the coarse grid being of the size of axial slices 
of fuel assemblies and the fine grid modelling the spatial inhomogeneity within such slices of 
fuel assemblies). 
 
For the sake of simplicity, the water gaps, cladding and fuel box were disregarded, resulting 
in a regular lattice of fuel pins for the system considered, as illustrated in Fig.  1. 
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3 5 6 6 6 6 6 6 5 3

5 6 6 6 6 6 6 6 6 5

5 6 6 6 6 6 6 6 6 5
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ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 

 
  

 Fuel pin 
number 

U-235 [1] U-238 [1] O-16 [1] 

 1 0.015867 0.86563 0.1185 
 2 0.018512 0.86299 0.1185 

 3 0.022919 0.85858 0.1185 
 4 0.026445 0.85505 0.1185 
 5 0.029971 0.85153 0.1185 
 6 0.032615 0.84888 0.1185 
 
Fig.  1 Radial layout of the modelled fuel assembly (left) with the corresponding fuel pin types (right) and their 

respective compositions (mass fractions of materials in the fuel pins). 
 
The radius of each fuel pellet is 0.4335 cm and the fuel pin pitch is 1.295 cm. The fuel density 
is set to 10.424 g/cm3. The moderator, assumed to be made of H2O, has a density of 0.444 
g/cm3. 
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5. Implementation 
 
In this section, the practical implementation of the chosen hybrid method is described. The 
method was applied to the case of 2 energy groups. 
 
5.1 Estimation of the required probabilities 
 
There are four probabilities that need to be determined for each subsystem, where a 
subsystem is made of a fuel pin and its surrounding coolant, as can be seen in Fig.  2. These 
are: 

• 
,g i j
P


: the probability for a neutron emitted in the volume 

i
V  in an isotropic manner 

and having a given emission density to have its first collision in the volume 
j
V . 

• 
,g a j
P 

: the probability for a neutron entering through the surface 
a
S  to have its first 

collision in the volume 
j
V . 

• 
,g i a
P 

: the probability for a neutron emitted in the volume 
i
V  in an isotropic manner 

and having a given emission density to escape without interaction through the surface 

a
S  . 

• 
,g b a
P


: the probability for a neutron entering through the surface 

b
S  to escape without 

interaction through the surface 
a
S . 

 
 north  

west 

 

east 

 south  

Fig.  2 Representation of an elementary subsystem (fuel region in red and coolant region in blue). Each 
subsystem has 4 surfaces defining its outer boundary (north, east, south, and west). 

 
The estimation of these probabilities was carried out using Serpent2, using detectors, surfaces 
and materials, in combination with a newly introduced flagging feature. A surface detector is 
specified as: 
 

det <detector name> ds <surface name> <direction> 
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The direction is defined differently depending on whether it is a plane surface or a surface of 
a geometry and is defined by a 1-  or 1 . For a plane, the direction is specified by the positive 
direction of the positive coordinate axis. For a geometry surface, the inward directions is 
defined as 1-  and the outward direction as 1 . 
 
The flagging feature allows for setting and removing flags if a detector is scored and scoring a 
detector if a flag is or is not set. The flagging feature, called ‘dfl’ has two inputs and is written 
as follows: 
 

dfl <flag number> <option> 

 
where the ‘flag number’ is the number associated with a certain flag and the ‘option’ has four 
different inputs from 0 to 3: 

• 0: remove the specified flag number when the detector is scored. 
• 1: set the specified flag number when the detector is scored. 
• -2/2: check if the specified flag number is set and score detector if set. 
• -3/3: check if the specified flag number is set and score detector if not set. 

 
Further, there is an option to set whether a series of ‘dfl’ tests act on an ‘or’ or an ‘and’ logic. 
This is done by setting a minus sign in front of the <option>. 
 
It has to be mentioned that Serpent2 was also used to estimate the energy-averaged and 
region-averaged macroscopic data appearing in the deterministic computational framework. 
 
5.1.1 Neutrons entering through a surface 
 
The first set of probabilities to be determined are those due to neutrons entering the system 
through a surface. If looking at a specific surface a , any neutron entering through this surface 
must either leave the system again, through another surface, or react within the system, 
through scattering or absorption: 
 
 

, ,2 ,3 ,4in a moderator fuel out out out
J R R J J J= + + + +   (15) 

Normalising Eq. (15) with the current in through surface a  the equation may be rewritten as: 
 
 

, ,
1

II

g a b g a i
b S i V

P P 
Î Î

+ =å å   (16) 

This set of probabilities may be calculated by using a surface detector on one surface of the 
system, that measures the current of neutrons into the system, and setting flag 1  when this 
detector is scored. 
 

det surface_A ds A 1 dfl 1 2 

 
This will calculate all neutrons entering the system through the west surface and will also be 
used as the normalisation to calculate the probabilities. The surface detectors can be seen in 
Fig.  3a. Two material detectors are used in the moderator and fuel, with the criteria that flag 
1  is set, to count all neutrons that have entered through the west surface and that react in fuel 
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and moderator. These also have the ‘dfl’ setting that, when the detector is scored, flag 1  is 
removed, since after interacting with the system the neutron will be treated as coming from 
that region rather than from the west surface. These detectors are represented in Fig.  3c and 
Fig.  3b. 
 

det fuel_interaction dm fuel1 dr -1 fuel1 dfl 1 2 dfl 1 0 

det moderator_interaction dm cool dr -1 cool dfl 1 2 dfl 1 0 

 
 
Four other surface detectors are used to calculate the current out of the system with the 
criteria that 1  flag is set. This will give the contribution from the west surface since any 
neutron that interacted with the system will lead to removal of flag 1  and hence will not be 
counted. The contributions are represented in Fig.  3d. The three surface detectors are defined 
as: 
 

det surface_east ds east 1 dfl 1 2 dfl 1 0 

det surface_south ds south -1 dfl 1 2 dfl 1 0 

det surface_north ds north 1 dfl 1 2 dfl 1 0 

 
Measuring the neutron current out through the west surface is not required, since only 
neutrons that did not interact with the system are counted and it is impossible for a neutron to 
enter and leave through the same surface without interacting within the system. 
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a) Outer surface detectors and surface 
detector around the fuel highlighted in 
red. 

 
(b) Neutron entering through surface 1 and 
reacting in moderator. 

 

 
 

c) Neutron entering through surface 1 
and reacting in fuel. 

          
 

(d) Neutron entering through surface 1 and 
leaving through surface 2. 

 
Fig.  3 Illustration of the different neutron paths for a neutron entering through a surface. 

 
5.1.2 Neutrons emitted from a region 
 
Similarly, two more sets of probabilities must be defined for neutrons being emitted from a 
region in the system. Since there are two regions, fuel and moderator, there will be two sets of 
probabilities that need to be calculated in Serpent2. 
 
 

,1 ,2 ,3 ,4fuel fuel moderator out out out out
Emitted R R J J J J= + + + + +   (17) 

and 
 

,1 ,2 ,3 ,4moderator moderator fuel out out out out
Emitted R R J J J J= + + + + +   (18) 

Both equations can be normalised by the total number of neutrons emitted, thus leading to: 
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, ,

1
II

g fuel a g fuel i
a S i V

P P 
Î Î

+ =å å   (19) 

and 
 

, ,
1

I I

g moderator a g moderator i
a S i V

P P 
Î Î

+ =å å   (20) 

The calculation of the probabilities above is more complicated than the previous sets of 
probabilities. The reason lies with the difficulty in tracking neutrons emitted in one region 
and having their first collision in the same region.  
 
First, determining which neutrons were emitted from the region is difficult. The ‘dfl’ flagging 
feature does not allow for flagging source neutrons. This problem was remedied by adding a 
line of code to the source code in Serpent2: source neutrons were automatically flagged with 
flag number 1 . Hence, calculating the number of neutrons emitted in a region and having 
their first interaction in the same region was simply calculated by checking all reactions in the 
material while flag 1  was set.  
 
Then, the tracking of neutrons scattering in a region and thereafter first interacting in the same 
region is also a far from trivial task. This is treated as an emitted neutron in the response 
matrix method and hence needs to be determined. In Serpent2, however, no distinction is 
made between successive scattering events. To detect a following scattering event in a 
material, a flag would have to be set for the first scattering interaction. Nevertheless, after 
detecting a first scattering event, the second one would be scored as well since the scattering 
events happen within the same neutron history. This problem was solved by using the 
complementarity relationships given by Eqs. (19) or (20), i.e. using the fact all other the 
probabilities (i.e. other than the cumbersome probability) can be determined from Serpent2. 
 
The calculation of all the contributions needed for the sets of Eqs. (19) and (20) is more 
complex and many detectors are needed with intricate ‘dfl’ flagging compositions. For the 
sake of clarity, such details are not presented here and the interested reader is referred to 
Carbol (2017).  
 
 
5.2 Labelling of the system 
 
Because of the local and global problems to be simultaneously solved in the response matrix 
method, a careful labelling of regions and surfaces is necessary. For illustration purposes, the 
labelling is demonstrated hereafter on a system made of 2x2 fuel pins. 
 
The first step is to label all cells in the system. The labelling of a simple 2x2 system is given 
in Fig.  4. 

 
Fig.  4 Illustration of the labelling of cells. 
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The motivation to label the cells in this order is that the indexing of matrix elements in 
Matlab (which is the software used to implement the response matrix method in this work) is 
carried out in the same order and hence the cells can be accessed using one index only. The 
surfaces are numbered successively in order of each cell and going clockwise from the west 
surfaces in each cell. For the test system considered in this work, each cell has four surfaces 
belonging and in total there will be four times the number of cells surfaces, i.e. for a 2x2 
system there will be 16 surfaces, as illustrated in Fig.  5. 
 

 
Fig.  5 Illustration of the labelling of surfaces. 

 
Finally, in each cell, there are a given number of regions comprised of fuel or moderator, 
respectively. The regions are numbered successively following the numbering of each cell 
and going from the central region to the peripheral one. In the simplest case where there is 
only one fuel region and one moderator region and as illustrated in Fig.  6, the total number of 
regions is determined as the number of cells times the number of regions, i.e. for a 2x2 system 
there will be 8 regions. 
 

 
Fig.  6 Illustration of the labelling of regions. 
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5.3 Structure of the computational framework 
 
The determination of the probabilities was carried out in advance using Serpent2. Such 
probabilities were thereafter used in a computational framework in Matlab using a response 
matrix formulation combined with a power iteration technique. The structure of the Matlab 
code is given in Fig.  7. 
 

 
Fig.  7 Structure of the Matlab computational framework. 

 
The building of the response matrix (R ), topological matrix (P ), local response matrix (S ) 
and fission matrix (F ) is first required to apply the proposed framework. The matrices only 
need to be determined once for the system used and can be computed in separate functions. 
The second step is to make an initial guess for the multiplication factor k  and the scalar 
neutron flux. This allows calculating an initial neutron emission density Q . Using the neutron 
emission density, the source terms can be calculated as well as the source current and the 
source flux, which are used in the global and local problems, respectively. 
 
The first step in the iteration is to solve the global problem to determine the currents into the 
system, 

in
J  according to Eq. (11) which is recalled hereafter: 

 
in in source
= ´ ´ + ´J P R J P J   (21) 

Next, the local problem is solved for f  using 
in
J  according to Eq. (12) also recalled hereafter 

and dropping the subsystem superscript I  for the sake of clarity: 
 

in source
f f= ´ +S J   (22) 

Using the scalar neutron flux, a new multiplication factor k  may be calculated using the 
power iteration method and the fission matrix F . After a new k  has been determined, the 
convergence can be checked with respect to both the scalar neutron flux and the effective 
multiplication factor. In both cases, the relative maximum difference between two iterations is 
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used to check convergence. If the iteration has not converged, the emission density is updated, 
leading to new source terms and the calculations will proceed in the same manner as earlier 
explained. 
 
5.3.1 Building of the matrix R  
 
The response matrix R  relates the outgoing neutron currents to the ingoing neutron currents. 
The response matrix is a square matrix of size n n´ , where n  represents the total number of 
ingoing currents. Since the calculations are done with 2 energy groups there will be a 
response matrix related to each energy group. The structure of the response matrix can be 
determined from Eq. (7). The elements of the response matrix correspond to the ratios 
between the surface areas 

b
S   and 

a
S   times the probability to go from surface 

b
S  to 

a
S . 

 
Looking at one single subsystem I  and the contribution to one surface, the terms contributing 
to the response matrix will be determined by: 
 

1 1 1 2 2 2 3 3 3 4 4 4, , , , , , , , , , , , , ,
I

a out g a b in g b g b a b in g b g b a b in g b g b a b in g b g b a
S J S J P S J P S J P S J P   = + + +   (23) 

In the case where the surface areas are equal (as in the present application of the framework), 
the equation above becomes: 
 

1 1 2 2 3 3 4 4, , , , , , , , , , , , , ,
I
out g a in g b g b a in g b g b a in g b g b a in g b g b a
J J P J P J P J P   = + + +   (24) 

Casting this equation into a matrix equation shows the structure of the response matrix for a 
subsystem I : 

 

1 1 2 1 3 1 4 1

1 2 2 2 3 2 4 2

1 3 2 3 3 3 4 3

1 4 2 4 3 4 4 4

, , , ,, ,1

, , , ,, ,2

, ,3 , , , ,

, ,4 , , , ,

g a a g a a g a a g a aout g i

g a a g a a g a a g a aout g

out g g a a g a a g a a g a a

out g g a a g a a g a a g a a

P P P PJ J

P P P PJ

J P P P P

J P P P P

   

   

   

   

é ùé ù
ê úê ú
ê úê ú
ê úê ú = ´ê úê ú
ê úê ú
ê úê ú
ê úê úë û ë û

, ,1

, ,2

, ,3

, ,4

n g

in g

in g

in g

J

J

J

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

  (25) 

A 4x4 response matrix IR  can thus be written for any subsystem I  as: 

 

1 1 2 1 3 1 4 1

1 2 2 2 3 2 4 2

1 3 2 3 3 3 4 3

1 4 2 4 3 4 4 4

, , , ,

, , , ,

, , , ,

, , , ,

I I I I
g a a g a a g a a g a a

I I I I
g a a g a a g a a g a aI
I I I I

g a a g a a g a a g a a

I I I I

g a a g a a g a a g a a

P P P P

P P P P

P P P P

P P P P

   

   

   

   

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

R   (26) 

Since the probability to go from a surface back to the same surface is zero, the diagonal of 
each IR matrix will be 0 and we finally get: 

 

2 1 3 1 4 1

1 2 3 2 4 2

1 3 2 3 4 3

1 4 2 4 3 4

, , ,

, , ,

, , ,

, , ,

0

0

0

0

I I I
g a a g a a g a a

I I I
g a a g a a g a aI
I I I

g a a g a a g a a

I I I

g a a g a a g a a

P P P

P P P

P P P

P P P

  

  

  

  

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

R   (27) 

The response matrix for the entire system made of N  subsystems is then constructed as 
follows: 
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1 0 0

0 0

0 0 N

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

R
R

R

   (28) 

 
5.3.2 Building of the matrix P  
 
In order to relate the incoming neutron currents to the outgoing currents, a topological matrix 
P  is used, as generically expressed by Eq. (10). This matrix is square with the same number 
of rows and columns as there are surface currents. Building the P  matrix is heavily 
dependent on the labelling of the system since a different labelling procedure results in a 
different P   matrix. The P  matrix also considers the boundary condition applied (i.e. 
reflective boundary condition in the present case). Using the labelling of the system as earlier 
detailed and the illustrative example of a 2x2 system, the P  matrix is given by, dropping the 
energy group labelling: 
 

 

,1

,2

,3

,4

,5

,6

,7

,8

,9

,10

,11

,12

,13

,14

,15

,16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
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  (29) 

where at the boundaries of the system 1
in out
J J= ´ . For the other inner continuity 

conditions, one also has 1
in out
J J= ´ . As seen above, the P  matrix is sparse and its 

determination is relatively simple once the labelling of the system has been chosen. 
 
5.3.3 Building of the matrix S  
 
For the local problem generically expressed by Eq. (6), the structure of the S  matrix, for the 
system considered in this work and made of two regions, can be determined from the 
following expression giving the neutron flux in region 1: 
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 1 2 3 41 , 1 2 , 1 , 1 , 1

1, , ,1 , ,2 , ,3 , ,4
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3 4
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V V V V
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S S S S
  (30) 

and from a similar expression for the neutron flux in region 2. One thus obtains: 

 

1 2 3 4

1 2 3 4

1 , 1 2 , 1 3 , 1 4 , 1 , ,1

1, , ,2, ,1 1 , ,1 1 , ,1 1 , ,1 1
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  (31) 

with the IS  matrix for the subsystem I  having for dimensions 2x4 and expressed as: 
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S   (32) 

For the entire system, the S  matrix then consists on the diagonal of blocks of IS  submatrices 
for each of the N  subsystems and zeros otherwise: 

 

1 0 0

0 0

0 0 N
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S
S

S

   (33) 

 
5.3.4 Building of the matrix F  
 
The matrix F  can be built from examining Eq. (14), which can, for illustration purposes, be 
explicitly written in the case of the fuel region being considered and in the energy group 1 as: 

 1, 1, 1, ,1, 1, 1, 1, ,2, 2,

1, 1, ,1, 1, 1, 1, ,2, 2,

( ) ( )

( ) ( )
fuel fuel fuel fuel fuel f fuel fuel fuel fuel fuel fuel f fuel fuel

mod mod fuel mod f mod mod mod mod fuel mod f mod mod

x V P V P

V P V P

c n f c n f
c n f c n f

 

 

= S ´ + S ´

+ S ´ + S ´
  (34) 

Doing the same for any region and any energy group, and writing the expressions in a matrix 
form, the following equation is obtained: 
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The matrix IF  for the subsystem is thus given by: 
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For the entire system, the F  matrix then consists on the diagonal of blocks of IS  submatrices 
for each of the N  subsystems and zeros otherwise: 
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0 0 N
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F
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   (37) 

It should be mentioned that half of elements of the IF  matrices for the system investigated in 
this work are zeros, since there is no fission occurring in the moderator region. 
 
5.3.5 Estimation of the emission density Q  
 
In each region, the emission density Q  can be calculated according to Eq. (4). In a two-
energy group format, the emission density for energy group g  and region i  can be formally 
expressed as: 

 1, ,1, 2, ,2,
, 0,1 , 1, 1, 0,2 , 2, 2,

1
4

[ ]i f i i f i

g i s g i i i s g i i i
eff eff

Q
k k

c n c n
f f f f

p  

S S
= S + +S +   (38) 

In the moderator region, Eq. (38) will simplify since there is no fission and hence the second 
and fourth term will disappear. 
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5.3.6 Estimation of the source terms 
source

f  and 
source
J   

 
In the global problem given by Eq. (11), the contribution from the source currents needs to be 
calculated. Looking at the explicit version of the equation representing the global problem 
and given by Eq. (7), the contribution from the emission densities to outgoing currents on 
each surface can be determined, in a two-region formulation, as: 
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  (39) 

Likewise, in the local problem given by Eq. (12), the contribution from the source fluxes 
needs to be determined. Looking at the explicit version of the equation representing the local 
problem and given by Eq. (6), the source flux contribution will be given, in a two-region 
formulation, by: 
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  (40) 

 
6. Results 
 
In the proposed hybrid method, which relies on the response matrix formulation, two sets of 
results/data are calculated: the neutron flux in each region of the system together with the 
corresponding dominant eigenvalue (using the deterministic framework) and the collision 
probabilities (using the probabilistic framework). 
 
6.1 Results from the probabilistic framework 
 
Based on the methodology described in this work, the Serpent2 code is used to estimate 
various probabilities: region-to-region first collision probabilities, region-to-surface escape 
probabilities, surface-to-region first collision probabilities, and surface-to-surface escape 
probabilities. In the case investigated in this work, such probabilities are estimated in a two-
energy group structure and for elementary cells made of 2 regions (fuel and moderator, 
respectively) and having 4 outer surfaces (see Fig.  2). In addition, since the modelled fuel 
assembly contains 6 different fuel pin types (each with its own enrichment), these sets of 
probabilities need to be determined for each of the 6 fuel pin types. The complete sets of 
probabilities estimated from Serpent2 are given in Table 1 for neutrons emitted from the fuel 
region, in Table 2 for neutrons emitted from the moderator region and in Table 3 for neutrons 
emitted from an outer surface. The fact that the sum of the probabilities in Table 2 does not 
add up to exactly unity might be due to (n,2n) reactions not properly accounted for in the 
present methodology. 
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Table 1 Sets of probabilities for neutrons emitted from the fuel region. The results for the fast energy group are 
given in the upper half of the table, whereas the results for the thermal energy group are given in the lower half 

of the table. 

Pin fuel fuel
P


 
fuel mod
P


 

1fuel a
P


 

2fuel a
P

 3fuel a
P


 

4fuel a
P

 Sum 

1 0.2148 0.1380 0.1618 0.1618 0.1618 0.1618 1.0000 
2 0.2140 0.1384 0.1619 0.1619 0.1619 0.1619 1.0000 
3 0.2147 0.1379 0.1619 0.1619 0.1619 0.1619 1.0000 
4 0.2140 0.1383 0.1619 0.1619 0.1619 0.1619 1.0000 
5 0.2154 0.1381 0.1616 0.1616 0.1616 0.1616 1.0000 
6 0.2137 0.1381 0.1620 0.1620 0.1620 0.1620 1.0000 

1 0.2453 0.2874 0.1168 0.1168 0.1168 0.1168 1.0000 
2 0.2523 0.2846 0.1158 0.1158 0.1158 0.1158 1.0000 
3 0.2615 0.2785 0.1150 0.1150 0.1150 0.1150 1.0000 
4 0.2710 0.2742 0.1137 0.1137 0.1137 0.1137 1.0000 
5 0.2755 0.2709 0.1134 0.1134 0.1134 0.1134 1.0000 
6 0.2801 0.2686 0.1128 0.1128 0.1128 0.1128 1.0000 

 
 

Table 2 Sets of probabilities for neutrons emitted from the moderator region. The results for the fast energy 
group are given in the upper half of the table, whereas the results for the thermal energy group are given in the 

lower half of the table. 

Pin mod mod
P

 mod fuel
P   

1mod a
P  2mod a

P  3mod a
P   

4mod a
P  Sum 

1 0.2582 0.0779 0.1652 0.1652 0.1656 0.1652 0.9973 
2 0.2668 0.0784 0.1654 0.1652 0.1654 0.1656 1.0067 
3 0.2780 0.0785 0.1654 0.1657 0.1657 0.1657 1.0188 
4 0.2853 0.0790 0.1655 0.1656 0.1658 0.1658 1.0269 
5 0.2912 0.0792 0.1658 0.1656 0.1659 0.1657 1.0334 
6 0.2951 0.0794 0.1658 0.1659 0.1661 0.1658 1.0381 

1 0.4168 0.0801 0.1320 0.1317 0.1319 0.1318 1.0243 
2 0.4170 0.0827 0.1318 0.1318 0.1320 0.1316 1.0268 
3 0.4173 0.0862 0.1318 0.1318 0.1320 0.1317 1.0309 
4 0.4182 0.0890 0.1319 0.1316 0.1314 0.1319 1.0340 
5 0.4193 0.0918 0.1315 0.1314 0.1315 0.1315 1.0370 
6 0.4193 0.0939 0.1316 0.1314 0.1315 0.1317 1.0393 
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Table 3 Sets of probabilities for neutrons emitted from a surface. The results for the fast energy group are given 
in the upper half of the table, whereas the results for the thermal energy group are given in the lower half of the 

table. 

Pin 
1 1a a
P


 

1 2a a
P


 

1 3a a
P


 

1 4a a
P


 

1a fuel
P


 

1a mod
P

 Sum 

1 0 0.2170 0.2101 0.2097 0.1247 0.2385 1.0000 
2 0 0.2172 0.2100 0.2100 0.1250 0.2378 1.0000 
3 0 0.2173 0.2101 0.2101 0.1252 0.2373 1.0000 
4 0 0.2174 0.2102 0.2104 0.1254 0.2366 1.0000 
5 0 0.2176 0.2103 0.2105 0.1254 0.2362 1.0000 
6 0 0.2173 0.2105 0.2104 0.1258 0.2360 1.0000 

1 0 0.1078 0.1334 0.1336 0.1221 0.5031 1.0000 
2 0 0.1081 0.1344 0.1338 0.1251 0.4987 1.0000 
3 0 0.1061 0.1349 0.1344 0.1309 0.4938 1.0000 
4 0 0.1048 0.1347 0.1352 0.1345 0.4908 1.0000 
5 0 0.1037 0.1346 0.1347 0.1390 0.4880 1.0000 
6 0 0.1034 0.1349 0.1346 0.1418 0.4853 1.0000 

 
For the sake of completeness, the energy- and volume-averaged macroscopic cross-sections 
determined by Serpent 2 are also given in Table 4 for the fuel region and in Table 5 for the 
moderator region. 
 

Table 4 Macroscopic cross-section data for the fuel region. The data for the fast energy group are given in the 
upper half of the table, whereas the data for the thermal energy group are given in the lower half of the table. 

 

Pin 1 [cm ]
f

-S  
1 [cm ]

tot

-S  

1 0.0156 0.4229 
2 0.0170 0.4236 
3 0.0191 0.4243 
4 0.0208 0.4249 
5 0.0224 0.4257 
6 0.0236 0.4260 

1 0.2853 0.5732 
2 0.3264 0.5926 
3 0.3931 0.6243 
4 0.4447 0.6489 
5 0.4940 0.6724 
6 0.5301 0.6897 
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Table 5 Macroscopic cross-section data for the moderator region. The data for the fast energy group are given in 
the upper half of the table, whereas the data for the thermal energy group are given in the lower half of the table.  

Pin 1 [cm ]
tot

-S

1 0.4065 
2 0.4058 
3 0.4045 
4 0.4036 
5 0.4029 
6 0.4020 

1 1.1163 
2 1.1072 
3 1.0941 
4 1.0851 
5 1.0766 
6 1.0709 

 
6.2 Results from the deterministic framework 
 
With the probabilities and macroscopic data determined from Serpent2, the neutron currents, 
neutron fluxes, and the corresponding dominant eigenvalue can be determined using the 
response matrix method implemented in Matlab. Fig.  8 gives the spatial distribution of the 
converged scalar neutron fluxes for the fast and thermal energy groups, respectively, along a 
diagonal across the fuel assembly modelled in 2 dimensions. 
 

 
Fig.  8 Spatial distribution of the scalar neutron flux along a diagonal across the modelled fuel assembly. 
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The symmetrical spatial distribution of the scalar neutron flux is explained by the symmetrical 
fuel assembly pattern used in the present demonstration, as can be seen in Fig.  1. It is worth 
mentioning that no assumption of symmetry was made in the deterministic framework. The 
computed scalar neutron is though symmetrical, as it should be because of the symmetrical 
nature of the arrangement of the fuel pins. It is also observed that the neutron fluxes are 
highest in the fuel regions (peaks) and lowest in the moderator regions (dips), for both the fast 
and thermal energy groups. A finer spatial mesh in the moderator and fuel regions would 
result in a more faithful representation of the neutron flux gradients. 
 
It can also be noticed that the fast neutron flux is highest in the middle of the fuel assembly 
and the thermal neutron flux is lowest at that location. This is explained by the fact that the 
central part of the fuel assembly contains the fuel pins having the highest enrichment. This 
will lead to a neutron flux depression at that location at thermal energies (due to increased 
thermal absorptions) and to an increased neutron flux level at fast energies (due to higher 
release of fission neutrons). 
 
Finally, one notices that the neutron flux flattens out towards the edges of the system. This is 
the result of the reflective boundary condition used: the net neutron currents across the 
boundary is zero, resulting in a flat flux distribution. 
 
In terms of multiplication factor, the solver converges to 13.8k

¥
= . Although the system 

modelled in Serpent2 differs from the one modelled in the present hybrid framework (coarse 
spatial mesh used and assumption of isotropic emissions in the hybrid framework), the 
Serpent2 multiplication factor is found to be 1.15k

¥
= . The dominant eigenvalue estimated 

by the hybrid solver significantly differs from Serpent2 and is unphysical. The reason for this 
discrepancy has not yet been found at the time of the writing of this report. 
 
It is also interesting to look at the convergence in neutron flux and in the dominant 
eigenvalue. Fig.  9 gives the evolution of the relative difference between two successive 
iterations in neutron flux and in eigenvalue. The deterministic solver converges in 658 
iterations for convergence criteria on neutron flux and eigenvalue both set to 10-6. 
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Fig.  9 Evolution of the absolute value of the relative difference in neutron flux (top figure) and in eigenvalue 

(bottom figure) as functions of the iteration number. 
 
 
7. Conclusions and outlook 
 
In this work, a new hybrid neutron transport method was proposed, developed and 
implemented. The framework makes use of a deterministic approach relying on the response 
matrix method for which the required probabilities are estimated from a probabilistic 
approach. For the probabilistic calculations, the Serpent2 Monte Carlo code was used and 
modified when necessary in order to make the calculations of the necessary probabilities 
possible. For the deterministic calculations, a response matrix formulation combined with a 
power iteration technique was implemented in Matlab. 
 
The feasibility of such a hybrid route was successfully demonstrated in this project. 
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Nevertheless, it was demonstrated that the implementation carried out for a simplified two-
dimensional model of a BWR fuel assembly did not lead to physically-sound results for the 
infinite multiplication factor of the system. The reason of this unexpected behaviour has not 
yet been found at the time of the writing of this report. 
 
In addition to possible errors in coding, several other factors could contribute to a 
multiplication factor deviating from a reasonable value. First, the response matrix formulation 
assumes isotropic and homogeneous volumetric emissions and surface emissions. For light 
water reactors, scattering is known to be strongly anisotropic. Even if a transport correction of 
the macroscopic cross-sections is used, the assumption of isotropy might be questionable 
when the meshing of each cell is coarse (i.e. one fuel region only and one moderator region 
only). With the present meshing, the emission densities are thus assumed to be spatially 
homogeneous and isotropic on the entire fuel and moderator, respectively, regions. Likewise, 
neutrons entering through surfaces are assumed to have a homogeneous and isotropic 
distribution on each of the surfaces. A finer meshing of each region and each region might 
lead to an improved modelling of the spatial heterogeneities of the volumetric and surface 
emissions. Concerning the assumption of isotropy, the development of a response matrix 
formulation for higher orders of the angular neutron flux than its first moments (scalar 
neutron flux and neutron currents) might be necessary. Finally, a better understanding of the 
handling of source neutrons for scattering within a region in Serpent2 is required to ensure 
that the estimation of the corresponding probabilities, as described in this report, was properly 
carried out. 
 
In the continuation of this project, further tests of the framework in its present form will be 
undertaken to understand the root cause of the unexpected behaviour in the computed 
dominant eigenvalue. Thereafter, a benchmark between the developed method and a reference 
solution obtained entirely from Monte Carlo on a two-dimensional test case will be 
performed. If successful, extension of the method to three dimensions will be investigated 
and, as for the two-dimensional case, a benchmark between the developed method and a 
reference solution obtained entirely from Monte Carlo will be set up. 
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