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Abstract 
 
Comparisons have been made of VNEM prototype system to the measured data 
obtained from Ringhals unit 3 NPP at its beginning of life, hot-stand-by state. 
Three cases with difference control rod bank positions and Boron concentrations 
have been compared: 
 
Case 1: nearly all rod banks withdrawn, Boron = 1315 ppm 
Case 2: bank C = nearly half-inserted, bank D = fully inserted, Boron = 1131 ppm 
Case 3: banks C and D = fully inserted, Boron = 1060 ppm 
 
The results can be summarized as: 
 
            error: maximum detector reading (%)     error: keff (%) 
Case 1 -2.1                                       -0.175 
Case 2  1.5                  -0.022 
Case 3 -0.5                  -0.044 
 
Excellent agreement was observed in the comparison of the neutron detector 
readings and the core eigenvalues. 
 
The method of core modelling and parameters used in calculation of VNEM is 
completely the same as the "PWR standard option" determined from similar 
comparisons of VNEM and other PWRs. No empirical, or any sort of adjustment 
was done. 
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Comparison of VNEM to Measured Data from Ringhals Unit 3 

IACIP, NKS-R-2008-61 
 
  ------------------------------------------------------------------------------------------------------------------------ 

Purpose 

According to the agreement between NKS-R program management and Institutt for 
Energiteknikk (IFE), a verification study of the transport variational nodal expansion method 
(VNEM) has been performed based on the specification in the offer dated 28.11.2007 for 
NKS-R-2008-61 (IACIP). This report presents the results of the study in detail. 

Abstract 

Comparisons have been made of VNEM prototype system to the measured data obtained from 
Ringhals unit 3 NPP at its beginning of life, hot-stand-by state. Three cases with difference 
control rod bank positions and Boron concentrations have been compared: 
 
 Case 1: nearly all rod banks withdrawn, Boron = 1315 ppm 
 Case 2: bank C = nearly half-inserted, bank D = fully inserted, Boron = 1131 ppm 
 Case 3: banks C and D = fully inserted, Boron = 1060 ppm 
 
The results can be summarized as: 
 
  error: maximum detector reading (%) error: keff (%) 

 Case 1   −2.1       −0.175 
 Case 2     1.5       −0.022 
 Case 3   −0.5       −0.044 
 
 
Excellent agreement was observed in the comparison of the neutron detector readings and the 
core eigenvalues. 
 
The method of core modelling and parameters used in calculation of VNEM is completely the 
same as the "PWR standard option" determined from similar comparisons of VNEM and 
other PWRs. No empirical, or any sort of adjustment was done. 
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1.   Comparison of VNEM to Ringhals-3 Plant Data 

1.1 Introduction 
 
In this chapter the results of the verification of VNEM by comparing it to the plant data from 
Ringhals unit 3 are shown. The 3-dimensional (3D) version of VNEM (VNEM3D) is used for 
calculations. The VNEM solution method adopted in VNEM3D code is explained in the 
appendix A. Because VNEM3D code still does not include the feedback effects (thermal-
hydraulic, burnup, Xenon, etc.), the comparisons have been made for the hot-stand-by core 
condition at the beginning of its life, for the readings of the in-core neutron detectors and the 
effective multiplication factor (keff, or the core eigenvalue). The cases for the comparison 
will be specified in the next section in detail. 
 
The group cross sections of fuel pin-cells are calculated by a lattice code HELIOS [1.1]. 
 

1.2 Cases for Comparison 
 
Comparisons are made for the following 3 cases:  
 
 Case 1: BOC, 4% power, equilibrium Xenon, boron concentration = 1315 ppm, 
  fuel temp. = 559K, moderator temp. = 559K, 
  bank D = 212 - 228 steps (moving during measurement), 
  all othe banks = 228 steps 
 
 Case 2: BOC, 4% power, equilibrium Xenon, boron concentration = 1131 ppm, 
  fuel temp. = 559K, moderator temp. = 559K, 
  bank C = 110 - 112 steps (moving during measurement) 
  bank D = 0 steps, 
  all othe banks = 228 steps 
 
 Case 3: BOC, 4% power, equilibrium Xenon, boron concentration = 1060 ppm, 
  fuel temp. = 559K, moderator temp. = 559K, 
  bank B = 217 steps, 
  bank C = 0 steps, 
  bank D = 0 steps, 
  all othe banks = 228 steps 
 
The fuel types in the reactor core are given in Table 1.2.1. The core loading pattern is defined 
by the fuel types as shown in Fig.1.2.1. 
 

1.3 Comparison Procedure 
 
Figure 1.3.1 shows the flow diagram of the comparison work. 
 
The number of energy groups is assumed to be 7, based on the preliminary analysis. The 
group boundaries are: 
 
 group upper boundary  lower boundary 
 ------- -------------------  ------------------- 
    1 ∞   to  1 MeV  
    2 1 MeV   to  9.119 KeV 
    3 9.119 KeV  to  3.9279 eV 
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    4 3.9279 eV  to  0.625 eV 
    5 0.625 eV  to  0.27052 eV 
    6 0.27052 eV  to  0.11157 eV 
    7 0.11157 eV  to  0 eV  
 
The fuel-pin-cell-homogenized 7 group macroscopic cross sections are calculated by 
HELIOS[1.1] lattice code with ENDFB-6 library. The measured readings of the traversing 
neutron fission chambers are also sent from Ringhals NPP to IFE, Halden. The radial reflector 
is assumed to be the light water containing the same Boron as the coolant and including the 
baffle of 2.2 cm thickness surrounding completely the core. The bottom and the top reflectors 
are assumed to be a homogeneous mixture of: 
 
 bottom:  plugs, detector thimbles, and control rod guide tubes, 
 top:  claddings, springs, sealed gas, detector thimbles, control rod guide tubes,  
  and grid. 
 
The FCM2D code calculates a fuel-pin cell angular flux distribution for each of the fuel types, 
as well as the reflector nodes based on the single-assembly 2D characteristic transport method 
(CM). The code FCM2D is based on fuel-pin cell homogenized transport calculation. 
 
When VNEM is finally implemented into existing code system, FCM2D code calculations 
(as well as the fuel-pin cell homogenization) are not needed because the necessary data are 
provided from alttice codes directly to VCOEF3D. 
 
The parameters used in FCM2D calculations are: 
 
 No. of regions: 289 regions = 1 × 1 meshes / fuel cell 
 No. of azimuthal angles: 80 / 2π 
 No. of polar angles: 20 / π 
 Spacing of characteristics: < 1.9 mm 
 
The VCOEF3D code calculates the VNEM coefficients using the equations described in the 
appendix A. 
 
The VNEM coefficients prepared by using FCM2D and VCOEF3D are for the assemblies 
listed in Table 1.2.1 and the radial, bottom and top reflector nodes. For assembly type 1 and 6 
(see Table 1.2.1), FCM2D and VCOEF3D calculations are made also for the control rods 
inserted cases. 
 
The VNEM3D code solves the variational nodal transport equations described in the appendix 
A and calculates the core power distribution and the core eigenvalue (keff). 
 
Finally the code OTEDIT make the comparison between the measured (from Ringhals NPP), 
and the calculated (by VNEM3D) detector readings. The methods of the comparison are 
explained in Section 1.4. 
 

1.4 Method of Comparison 
 
In this section the methods of comparing the measured and the calculated detector readings 
are discussed. 

1.4.1 Core Model of VNEM Calculations 
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The geometrical core model used in VNEM is shown in Fig.1.4.1. In the radial direction, 1 
node / 1 assembly is taken. The radial reflector is treated as "reflector assemblies" that have 
the same size and shape as the fuel assemblies. The active fuel length is divided into 24 axial 
nodes of the same size and shape. Therefore a node is nearly a cube of the size: 21.42 cm × 
21.42 cm × 15.24 cm in x, y and z directions. It should be noted that the axial node boundary 
is not necessarily be the same position as the control rod head, therefore we need the 
homogenization procedure described in Section 1.4.5. The axial reflectors are assumed to be 
the same size and shape as the node for a fuel assembly, and 1 axial reflector node is set at the 
top and the bottom of the core. 
 
A quarter-core symmetry is assumed. So we have 8 by 8 assemblies as shown in Fig.1.4.1(a). 
A zero-flux boundary condition is posed at the outer boundary of the reflector both in the 
radial and the axial directions.   
 
The assembly loading pattern in the core is shown in Fig.1.2.1. The reference values for 
parameters in VNEM are listed in Table 1.4.1. 

1.4.2 VNEM-Calculated Readings 
 
The code VNEM3D calculates the detector readings in the same way as the normal fuel pin 
power by Eq.(A.7.7), except that at the thimble position there are infinitely-diluted U235 
atoms instead of a normal fuel rod. As we have 24 axial nodes (see Fig.1.4.1), we obtain 24 
nodal readings from VNEM3D: 
 
 RVn(k = 1:24, i = 8:15, j = 1:8)        
 
where indices k, i and j are: 
 
 k: axial node position index 
 i: node position index in x-(west to east) direction 
 j: node position index in y-(south to northe) direction 
 
Also refer to Figs.1.4.1 and 1.2.1 for these indices. 
 
By using a quadratic interpolation, we estimate the readings at 60 measuring positions for all 
the assemblies: 
 
 RVm(m = 1:60, i = 8:15, j = 1:8)        
 
The interpolation is defined by, for measuring point m between axially center points of nodes 
k and k + 1 (the indices i, j are omitted): 
 
        (1) Make a quadratic interpolation using RVn(k − 1), RVn(k), RVn(k +1) to obtain  
  RVLm. 
        (2) Make a quadratic interpolation using RVn(k), RVn(k + 1), RVn(k + 2) to obtain  
  RVUm. 
        (3) The average of (1) and (2) is taken as the reading at measuring point m, i.e. 
 
   RVm(m) = (RVLm + RVUm) /  2 
 
        (4) If k = 1 then only interpolation (2) is made, similarly, if k = 23 then only  
  interpolation (1) is made to estimate the reading at measuring point m, i.e. 
 
   RVm(m) = RVUm,  if k = 1 
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   RVm(m) = RVLm,  if k = 23 
  
        (5) If k = 0 then a quadratic extrapolation is made using RVn(1), RVn(2), RVn(3) to  
  obtain RVm(m), similarly, if k = 24 then a quadratic extrapolation is made using 
  RVn(22), RVn(23), RVn(24) to obtain RVm(m). 
 
We could have calculated RVm directly by using Eq.(A.7.2) in the appendix A. The reason 
we used the above interpolation formula is only because we have not implemented Eq.(A.7.2) 
into the prototype code VNEM3D. This will be performed in near future. 
 
The calculated detector readings RVm(m = 1:60, i = 8:15, j = 1:8) are corrected to include the 
dips at spacer grids, because the magnitude of these dips are not negligible at all and the dips 
are also needed to correct the misalignment of the axial position of the measurements. 
 
As no information is available about the exact position of the grids (they may move from their 
nominal positions), it is assumed that  
 
 Gp(mg) = Bg + (mg − 1) × Dg + Ag(mg) 
 
where mg = 1:8 is the grid number from the bottom of the fuel, Gp(mg) is the position (cm 
from the bottom of the fuel), Bg = Gp(1), Dg is the grid spacing (cm), and Ag is the fine 
adjustment of the grid position. The values of Bg, Dg, and Ag are determined to obtain the 
best fit of the spacer dips between the measured and the calculated readings, and are listed 
below: 
 
 Bg = 12.4 cm 
 Dg = 49.9 cm 
 Ag(1) = 0.0 cm 
 Ag(2) = 6.2 cm 
 Ag(3) = 6.2 cm 
 Ag(4) = 6.2 cm 
 Ag(5) = 9.3 cm 
 Ag(6) = 12.4 cm 
 Ag(7) = 12.4 cm 
 Ag(8) = 0.0 cm 
 
The magnitude of the dip is assumed to be: 
 
        (1) reading with grid (grid position) / reading without grid (grid position) = 0.900 
        (2) reading with grid (grid position ± dm) 
   / reading without grid (grid position ± dm) = 0.965 
        (3) reading with grid (grid position ± 2 × dm) 
   / reading without grid (grid position ± 2 × dm) = 0.990 
 
where dm is the distance (cm) between the measuring position, therefore 
 
 dm = active fuel length / 59 = 6.2 cm 
 
The dip of the readings due to the grid should be estimated in a more physical way. However, 
as there is no information on the grid material, or position etc, we made empirical fitting of 
the magnitude of the dip. The method is first we remove the cosine-component of the 
measured and the calculated readings. Then by a try-and-error process, we found nearly the 
best fit of the magnitude of the dip as given above. 
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The corrected readings are re-normalized so that the average over all the measuring points 
becomes 1.0. No other special normalization is performed. 
 
It should be noted that the grid correction described here is only made to the detector readings. 
No grid correction is done within VNEM3D. This is again because there is no information so 
far on the grid. 
  
The amount of dip at measuring position is calculated by linearly interpolating the dips 
determined by (1), (2), and (3) above. 

1.4.3 Normalization of Measured Readings 
 
The measured readings from 5 detectors A through E are normalized so that their average 
readings at "common thimble" J07 (assembly i = 7, j = 7, see Fig.1.2.1) are the same. They 
also are divided by the flux level at the measurement to remove its effect on the readings. 
Finally the measured readings are normalized so that their spatial average over all the 
measuring position becomes 1.0 (as in the case of the calculated readings), after misalignment 
correction described in 1.4.4.  

1.4.4 Misalignment Correction of Measured Readings 
 
The misalignment of measuring positions in the measured readings is clearly observed and is 
significant. The upper graph of Fig.1.4.1 shows the relative measured readings (normalized so 
that the average over all measuring points = 1.0) along assembly (i = 8, j = 4) together with 
the calculated in Case 2. The position of the dips of the measured readings caused by the grid 
spacers is obviously shifted to the left (upward).  
 
Such misalignment is corrected by the following way: 
 
 (1) In an assembly, normalize the measured and the calculated readings, RMm(m) 
  and RVm(m) so that 
   

   ∑ m = 1, 60 RV'm(m).w(m) / ∑ m = 1, 60 w(m) = 1 

   ∑ m = 1, 60 RM'm(m).w(m) / ∑ m = 1, 60 w(m) = 1 
 
  where RV'm(m) and RM'm(m) are the VNEM-calculated and the measured 
  readings at measuring position m normalized as above, w(m) is the weight of the 
  position m defined by: 
 
   w(1) = w(60) = 0.5 
   w(2:59) = 1.0 
 
 (2) Find a shifting distance Da which minimizes the root mean square deviation 
 

   RMS = SQRT[ ∑ m = 1, 60 {RM'm(m) − RV'm(m)} 2  / 60 ] 
 
  by shifting RM'm(m) along the axial direction by Da. 
 
 (3) Shift the measured readings RMm(m) of this assembly by Da. 
 
 (4) At the top or the bottom of the assembly, the measured data may not be available  
  because of the shift. For example, if we shift the measured readings to the right in  
  the case of Fig.1.4.1 by 3 measuring points, no data are available at position  



 8

  m = 1, 2, 3. In such a case the calculated readings are set to these positions as 
  "aligned measured readings", i.e. we set 
 
   RMm(m) = RVm(m), for m = 1, 2, 3  
 
The lower graph of Fig.1.4.1 shows the comparison of the aligned RMm(m) and RVm(m). As 
shown by this graph, the alignment of the measured readings is quite successful. 

1.4.5 Control Rod Effect 
 
The control insertion length (from the top of the active fuel) can be calculated as: 
 
 Control rod steps at the top of the active fuel = 225 steps 
 Control rod move / step = 1.5905 cm / step 
 
therefore, 
 
 Control rod insertion length (cm) = (225 − S) * 1.5905 
  
The heads of control rods are not always at the axial boundary of nodes (see Fig.1.4.1). When 
the control rods are partly inserted into a node, its VNEM coefficients are homogenized by: 
 
 C homogenized = VF rods not inserted C rods not inserted + VF rods inserted C rods inserted (1.4.1) 
 
where 
 
 C homogenized  : homogenized VNEM coefficient (defined in the appendix A) 
 C rods not inserted  : VNEM coefficient without control rods 
 C rods inserted  : VNEM coefficient with control rods inserted 
 VF rods not inserted  : Volume fraction of control rods inserted part of the node 
 VF rods inserted  : 1 − VF rods not inserted   
 

1.5 Results of Comparisons 
 
In this section the comparison results of the detector readings and the core eigenvalues 
between the measured and the calculated by VNEM are discussed. 
 
The results of the comparisons are summarized as, for 
 
 Case 1: 
 
 Fig.1.5.1: Core average relative axial readings 
 Fig.1.5.2: Assembly average relative radial readings 
 Fig.1.5.3: Readings in assembly H4 (i = 8, j = 4), where the maximum reading is  
  observed in Case 1.  
 
 Case 2: 
 
 Fig.1.5.4: Core average relative axial readings 
 Fig.1.5.5: Assembly average relative radial readings 
 Fig.1.5.6: Readings in assembly H4 (i = 8, j = 4), where the maximum reading is  
  observed in Case 1.  
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 Case 3: 
 
 Fig.1.5.7: Core average relative axial readings 
 Fig.1.5.8: Assembly average relative radial readings 
 Fig.1.5.9: Readings in assembly J3 (i = 7, j = 3, which is equivalent ot i = 9, j = 3  
  due to the symmetry of the core), where the maximum reading is  
  observed in Case 1.  
 
The core eigenvalue for each of the cases is shown in Table 1.5.1. The comparison of the 
maximum reading in the core is shown in Table 1.5.2.  
 
The results of comparisons at all the measuring points of cases 1 2, and 3 are shown in the 
figures in Appendices B1, B2 and B3, respectively. In these figures, the upper and the lower 
bounds of the emasured readings are taken from the maximum and the minimum readings of 
assemblies at octant-symmtric positions, as in Figures 1.5.2, 1.5.5 and 1.5.8. 
 

1.6 Computing Time and Convergence Acceleration 
 
In this section topics related to the computing time of VNEM3D are discussed. 

1.6.1 Computing Time 
 
The computing time is measured by using a PC: 
 
 PC: HP Compaq dx6100 
 OS: Windows XP professional 
 CPU: Pentium-4 (3GHz) 
 RAM: 2.99GHz / 1.49GB  
 
The computing time of VNEM3D is: 
 
 0.13 sec / group / inner iteration / outer iteration 
 
where the parameters are 
 
 No. of nodes:  26 (axial) × 64 (radial) = 1664 
 PL order:  P3 
 No. of axial meshes: 4 / node 
 
This means that the calculation of VNEM3D for a case of Ringhals Unit 3 quarter core 
requires about 25 minutes of computing time. 

1.6.2 Acceleration Technique 
 
We use the method of the usual source iterations [1.2] to calculate the core eigenvalue, and 
Gauss-Seidel method [1.3] to solve simultaneous linear equations required to perform the 
source iterations in the code VNEM3D. 
 
The source iteration is accelerated by using the method of coarse-mesh rebalancing [1.4]. 
  

1.7 References for Chapter 1 
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2.   Conclusions 

2.1 Comparison Results 
 
From the comparison of VNEM3D to the measured data from Ringhals unit 3, we conclude 
that: 
 
(1) The agreement of detector readings between VNEM3D and the measured data is very 
good, as shown by Table 1.5.2 and Figures 1.5.1 through 1.5.9, as well as the appendices B1 
through B3. 
 
In some cases the calculated assembly average readings have some errors to the measured, 
however, as shown in the appendices B1 through B3, the measured readings have (in some 
cases quite large) assymmetry even for the core with octant symmetry. Therefore we cannot 
conclude that the errors are caused by the calculation method, rather we need some more 
information to estimate accurate measured readings for these cases. 
 
(2) The core eigenvalues calculated by VNEM3D are also agree very well to the measured 
value (1.0) in cases 2 and 3 (see Table 1.5.1). The calculated value is slightly smaller than the 
measured in case 1. The reason for this may be because of the rapidly increasing fission 
products at the beginning of the life of the core, or the effect of the control rod banks that 
were moving even during the measurement.  
 

2.2 Future Works 
 
The required tasks to finalize the system are: 
 
1. Develop VNEM coefficient generator: VCOEF code. 
2. Develop VNEM coefficients tabulator: VTABLE code. 
3. Burnup-tilt model development. 
4. Make VNEM module faster. 
5. Built in VNEM module into CYGNUS code. 
6. QA of VNEM 
 
Each of the tasks will be described below. 

2.2.1 VCOEF3D Code 
 
VCOEF3D calculates the expansion functions of VNEM in a node by solving mono-energetic 
(for each of the energy groups) 2-dimensional (2D) neutron transport equations with the 
method of characteristics (CM) for a given state-point and the fuel type of the node. Here we 
assume that a node is homogeneous (spatially uniform) along axial direction, so a node is 

http://mathworld.wolfram.com/Gauss-SeidelMethod.html
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treated in 2D Cartesian geometry. As the boundary values for the expansion functions are 
known, this process can be performed analytically. The regions within a node are bounded by 
either straight lines or circular arcs. Each of the regions is assumed spatially homogeneous. 
 
For the given state-point, VCOEF3D also calculates VNEM coefficients, which are 
interpreted as macro neutron cross sections averaged (or "homogenized" in a sense) over 
whole nodal volume. The coefficients of equations solved by VNEM module in 3D core 
simulator are calculated from the VNEM coefficients.  
 
The present version of VCOEF3D can only accept rectangle regular mesh structure within a 
node, as a result the so-called "fuel cell homogenization" is necessary. This feature must be 
removed in the production version, and VCOEF3D should make the calculations based on the 
geometrical structures provided by lattice codes. With this new VCOEF3D the FCM2D 
calculations in Fig.1.3.1 can be removed because the solution of lattice codes can directily be 
used in VCOEF3D. 

2.2.2 VTABLE Code 
 
VTABLE compiles the VNEM coefficients calculated by VCOEF3D for a complete set of 
state-points and fuel types of nodes. VTABLE also tabulates the compiled VNEM 
coefficients so that VNEM module of 3D core simulator can reproduce them for all of the 
nodes in the reactor core in which the neutron transport equations are solved to obtain the in-
core power distribution. 

2.2.3 Burnup-Tilt Model 
 
The burnup (the net depletion of fissile isotopes and accumulation of fission products due to 
the exposure of fuel to the neutron flux) of a node is calculated by a lattice code, because the 
VNEM coefficients are very much dependent on it. 
 
One problem is that in a lattice code a reflective boundary condition is assumed at the outer 
boundary of a given node, because there is no way to know the actual boundary condition. 
This is equivalent to assuming that the given node is surrounded by itself. However, when a 
node is put in an actual reactor core, its surroundings are generally different from what is 
assumed in a lattice code. Then the spatial distribution of the neutron flux and the burnup 
within a node is different in an actual reactor core from that in a lattice code. As a result 
VNEM coefficients may be different for a node in an actual reactor core from those calculated 
by VCOEF3D code based on the burnup of a lattice code. 
 
The burnup-tilt model should be developed to correct this effect on VNEM coefficients 
caused by the difference of burnup distribution in a node. 
 
A model is proposed and verified for NEACRP MOX BENCHMARKING assemblies by W. 
H. Beere and we have to complete it to be materialized.   

2.2.4 Making VNEM Faster 
 
The neutron transport equation of the VNEM form is a set of simultaneous linear equations 
that can be written in the form of a matrix eigenvalue problem. The equations are solved in 
VNEM module by the usual method of inner-outer iteration scheme. Where the outer iteration 
is the power method to calculate the maximum (in modulus) eigenvalue of given reactor core. 
The inner iteration is to calculate neutron fluxes for given neutron sources to a given energy 
group. 
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From the practical viewpoint, the computing time of a 3D core simulator for one state-point 
of a reactor core should be less than 20 minutes, while present version of VNEM module 
takes more than one hour. 
 
To make the computing time shorter, we can: 
 
1. Accelerate the convergence of the iterative scheme. 
2. Tune the code. 
3. Use faster hardware. 

2.2.5 Built-in VNEM into 3D Core Simulator 
 
CYGNUS is IFE's 3D LWR core simulation code based on a very simplified neutronics 
method. We will make a bypass of alternative neutronics method of VNEM in this code. 

2.2.6 QA of VNEM 
 
Though VNEM is based on the solution of rigorous neutron transport equations, it must be 
verified that it agrees well with actual plant data. In 2007 and 2008 comparisons were made 
by using plant data obtained from 2 PWRs. As VNEM code was just a transport equation 
solver (not including the calculation routines to estimate the feedback effects of the power 
density), the comparisons were made for the hot-stand-by cores at their beginning of life 
(BOL) where the feed back had no significance. 
 
When we have finished implementing VNEM into CYGNUS, we can calculate the feedback 
effects and have to make comparisons for nearly all the static cases, including burnup.  
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Tables and Figures 

 
 
 

Table 1.2.1 Fuel types. 
 
 Fuel type no. Enrichment (%) BP-type  
 
           1        2.11         0   
           3        2.6       12   
           4        2.6       16   
           5        2.6       20   
           6        3.1         0   
           7        3.1       12   
           8        3.1       16   
 
 
 
 

 
Table 1.4.1 VNEM parameters. 

 
 
 Parameter Value  
 
 Number of energy groups (g max ) 7 *1  
 PL order ( l max ) 3 *1  
 Order of source expansion (nrmax ) *2 5 *1  
 Order of boundary value expansion (srmax ) 2 *1  
 Number of axial meshes / node (N) 4 *1  
 Axial mesh width in node z 1 − z 0 (cm) 0.272143 *1  
 Axial mesh width in node z 2 − z 1 (cm) 7.34786 *1  
 Axial mesh width in node z 3 − z 2 (cm) 7.34786 *1  
 Axial mesh width in node z 4 − z 3 (cm) 0.272143 *1  
 
 
*1: Refer to the appendix A for the definition of there parameters  
*2: The 2D Legendre polynomials used are 
 
  P 0 (x, y) = P 0 (x).P 0 (y) 
  P 1 (x, y) = P 1 (x).P 0 (y) 
  P 2 (x, y) = P 0 (x).P 1 (y) 
  P 3 (x, y) = P 1 (x).P 1 (y) 
  P 4 (x, y) = P 2 (x).P 0 (y) 
  P 5 (x, y) = P 0 (x).P 2 (y) 
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Table 1.5.1 Core eigenvalue (effective multiplication factor) 
 
 
 
      VNEM-calculated keff   error (deviation from 1.0) in % 

 Case 1  0.99825        −0.175 
 Case 2  0.99978        −0.022 
 Case 3  0.99956        −0.044 
 
 
 

 
 
 

Table 1.5.2 Maximum reading in core 
 
      Measured        VNEM-calculated   error in % 

 Case 1        2.163           2.117        −2.1 
 Case 2        2.682           2.723         1.5 
 Case 3        2.763           2.748       −0.5 
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 (j) 
  1    6  6 
  2    1  8  6  6 
  3    3  1  4  7  6 
  4    1  4  1  4  1  6 
  5    5  1  4  1  4  7  6 
  6    1  4  1  4  1  4  6 
  7    5  1  4  1  4  1  8  6 

8    1  5  1  5  1  3  1  6 
  
       8  9 10 11 12 13 14 15 (i) 

 

Fig.1.2.1 Loading pattern of fuel assemblies in the reactor  
 core. The core is octant-symmetric.  
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Ringhals NPP  
 
 
 
 

HELIOS (IFE, Halden) 
7-group macro cross sections 

FCM2D 
2D CM assembly transport calculation 

VCOEF3D 
VNEM coefficients calculation 

VNEM3D 
VNEM nodal transport calculation 

OTEDIT 
   - Detector signal calculation  
   - Comparison 

Measured detector readings Fuel geometry, composition  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig.1.3.1 Flow diagram of comparison procedure of VNEM to Ringhals-3  
 plant data. 
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: Fuel assembly 

: Radial reflector assembly 

Symmetry line 

Symmetry line 

- 1 node / assembly in radial direction 
- The size of radial reflector assembly = the size of fuel assembly 
- zero flux boundary condition at the outer boundary of radial reflectors 
 

(a) Radial view 

 ( j ) 

   0 
   1 

k = 0 
k = 1 
k = 2 

k = 23 
k = 24 
k = 25 

Core bottom 

Core top 

Active fuel

Bottom reflector

Top reflector
- 24 nodes / active fuel in axial direction 
- The size of axial reflector node = the size of  
 fuel-assembly node 
- zero flux boundary condition at the outer  
 boundary of axial reflectors 
- Active fuel is replaced by radial reflector for  
 the radial reflector assembly 
 

(b) Axial view 

Fig.1.4.1   Core geometry modelling  

Height of active fuel = 365.76 cm 
Width of fuel assembly = width of node = 21.42 cm 
Height of node = 365.76 / 24 = 15.24 cm 

8    9    10   11  12   13  14   15  16   ( i ) 

 
 
 
 
    2 

   3 
   4 

 
 
 
    5 

   6 
   7 

 
 
 
 

   8  
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Core top Core bottom 

Core top Core bottom 

  : VNEM-Calculated 
  : Measured ( Axial allinment corrected ) 

Relative detector reading (arbitrary unit) 

Relative detector reading (arbitrary unit) 

  : VNEM-Calculated 
  : Measured 

Fig.1.4.1   Misalignment correction of the measured readings. 
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 Fig.1.5.1    Comparison of core average axial detector readings, Case 1. 

 The readings are relative to their average. 
 
  

 
 
 



 20

 
 
 
        j/i    8       9      10      11      12      13      14 
 
        1    0.730   0.554 
            -3.412  -2.417 
            -0.435   1.111 
 
        2    1.312   0.862   0.806   0.519 
             5.124   1.982  -0.702  -2.174 
             5.124   7.255   4.796  -0.037 
 
        3    1.092   1.358   0.948   0.749   0.528 
             1.510  -1.541   2.285   3.451  -3.958 
             6.578   4.905   5.765   3.451  -1.081 
 
        4    1.368   1.029   1.279   0.893   0.978 
            -3.071  -2.969   1.821   2.022   0.214 
            -3.071  -0.442   4.757   4.063   0.214 
 
        5    0.966   1.317   0.999   1.247 
            -5.631  -4.462   0.343  -4.414 
            -1.289   0.842   2.436   1.447 
 
        6    1.271   0.993   1.318 
            -2.873  -3.091  -2.072 
            -1.364  -1.427  -2.072 
 
        7            1.252 
                    -7.178 
                    -2.139 
 
        8 
 
 
 

Octant symmetry lines  
 
 
 
 Fig.1.5.2    Comparison of assembly average radial detector readings,  

 Case 1. The readings are relative to their average. 
 
 Line 1: Calculated reading by VNEM 
 Line 2: VNEM − Upper bound of measured in % 
 Line 3: VNEM − Lower bound of measured in % 
 
 The upper and the lower bounds are taken from the maximum  
 and the minimum readings of assemblies at octant-symmtric  
 positions. 
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 Fig.1.5.3    Comparison of detector readings in assembly H4  

 (i = 8, j = 4, see Fig.1.5.2 for the assembly position in 
 the core), where the maximum reading is observed in Case 1. 
 
 The readings are relative to their average over all the  
 measured positions in the core. 
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 Fig.1.5.4    Comparison of core average axial detector readings, Case 2. 

 The readings are relative to their average. 
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        j/i    8       9      10      11      12      13      14  
 
        1    0.465                                                         
            -4.596                                                         
            -4.596                                                         
  
        2    0.478   0.732   0.901   0.642                                    
            -0.821  -2.409   1.765  -3.088                                    
            -0.821   2.439   1.765   0.771                                    
  
        3    1.013   1.413   1.105   0.913   0.633                             
            -0.069   0.793   5.881   4.640  -2.633                             
             7.115   8.338   7.689   4.640   0.196                             
  
        4    1.481   1.128   1.463   1.034   1.015                             
             0.566  -3.511   2.701   3.793   2.754                             
             0.566   2.985   6.355   3.793   2.754                             
  
        5    0.955   1.285   0.929   1.323                                    
            -4.767  -4.252  -2.732  -2.991                                    
             0.680  -1.260  -0.152   2.737                                    
  
        6    0.989   0.780   0.502                                           
            -5.540  -5.736  -2.752                                           
            -1.104  -1.466  -2.752                                           
  
        7            1.046                                                  
                    -6.312                                                  
                    -3.122                                                  
  
        8                                           
 
 
 

Octant symmetry lines  
 
 
 
 Fig.1.5.5    Comparison of assembly average radial detector readings,  

 Case 2. The readings are relative to their average. 
 
 Line 1: Calculated reading by VNEM 
 Line 2: VNEM − Upper bound of measured in % 
 Line 3: VNEM − Lower bound of measured in % 
 
 The upper and the lower bounds are taken from the maximum  
 and the minimum readings of assemblies at octant-symmtric  
 positions. 
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Fig.1.5.6    Comparison of detector readings in assembly H4  
 (i = 8, j = 4, see Fig.1.5.5 for the assembly position in 
 the core), where the maximum reading is observed in Case 2. 
 
 The readings are relative to their average over all the  
 measured positions in the core. 
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 Fig.1.5.7    Comparison of core average axial detector readings, Case 3. 

 The readings are relative to their average. 
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        j/i    8       9      10      11      12      13      14 
 
        1    0.627   0.561                                                  
            -5.302  -8.142                                                  
            -3.362  -0.934                                                  
  
        2    0.624   0.945   1.118   0.747                                    
             0.852  -2.310   1.510  -2.398                                    
             0.852   4.407   6.215   3.712                                    
  
        3    1.278   1.771   1.318   0.970   0.539                             
            -4.235   1.917   3.553   5.254  -4.592                             
            10.846  13.545   6.960   5.254  -0.416                             
  
        4    1.754   1.325   1.657   1.011   0.477                             
            -1.030   0.537  -0.378   1.732  -2.880                             
            -1.030   7.069   6.680   4.594  -2.880                             
  
        5    0.932   1.331   0.997   1.365                                    
            -5.514  -2.613  -5.064  -2.737                                    
            -0.087   2.841   1.042   4.561                                    
  
        6    0.401   0.627   0.484                                           
            -6.062  -4.625  -3.773                                           
            -4.220  -2.350  -3.773                                           
  
        7            0.743                                                  
                    -6.856                                                  
                    -4.203                                                  
  
        8                              
 
 
 Octant symmetry lines 
 
 
 
 

Fig.1.5.8    Comparison of assembly average radial detector readings,  
 Case 3. The readings are relative to their average. 
 
 Line 1: Calculated reading by VNEM 
 Line 2: VNEM − Upper bound of measured in % 
 Line 3: VNEM − Lower bound of measured in % 
 
 The upper and the lower bounds are taken from the maximum  
 and the minimum readings of assemblies at octant-symmtric  
 positions. 
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Fig.1.5.9    Comparison of detector readings in assembly J3  
 (i = 7, j = 3, which is equivalent to i = 9, j = 3, see Fig.1.5.8 
 for the assembly position in the core), where the maximum 
 reading is observed in Case 3. 
 
 The readings are relative to their average over all the  
 measured positions in the core. 
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Appendix A:   Mathematical Method of VNEM3D 

A.1 Synthetic Flux Moment Expansion 
 
We first assume that we can expand the g-th group neutron flux moment φl, m, g (r) for the 
angular index (l, m) at spatial position r = (x, y, z) as: 
 

φl, m, g (r) = Σ nr, nz FS
nr, nz, g ϕS

nr, l, m, g (x, y) Rz nz (z) 

       + Σ pp Σ il, im, sr, nz FCB
pp, il, im, sr, nz, g ϕCB

pp, il, im, sr, l, m, g (x, y) Rz nz (z) 

         + Σ pp Σ il, im, sr, nz FSB
pp, il, im, sr, nz, g ϕSB

pp, il, im, sr, l, m, g (x, y) Rz nz (z) 
          (A.1.1) 
 
where  
 
 FS

nr, nz, g  : source expansion coefficient (SEC) 
 FCB

pp, il, im, sr, nz, g  : real boundary value expansion coefficient (BVEC) 
 FSB

pp, il, im, sr, nz, g  : imaginary BVEC 
 
are the expansion coefficients to be calculated by global core calculation of VNEM3D. The 
functions  
 
 ϕS

nr, l, m, g (x, y) : source expansion function (SEF)  
 ϕCB

pp, il, im, sr, l, m, g (x, y) : real boundary value expansion function (BVEF) 
 ϕSB

pp, il, im, sr, l, m, g (x, y) : imaginary BVEF  
  
are the expansion functions obtained by 2-dimensional (2D) single assembly calculations. 
Their detailed definitions will be given later.  
 
The subscripts are: 
 
 nr : degree of 2-dimensional Legendre polynomial for radial source expansion 
 nz : axial mesh index to define 1-dimensional (1D) tent functions for axial moment  
    expansion 
 pp : indexing of the 4 radial interfaces of the node, pp = XL (west),  
          XR (east), YL (south), and YR (north) interfaces, respectively 

il : the angular l-index of the boundary value 
im : the angular m-index of the boundary value 

 sr : degree of 1D Legendre polynomial for radial boundary value expansion along 
    x- or y-direction 
 
and the superscripts mean: 
 
 S : source expansion coefficient, or function 
 CB : radial boundary value expansion coefficient, or function, real part 
 SB : radial boundary value expansion coefficient, or function, imaginary part 
 
and the spatial position r = (x, y, z), the angular indices l and il = 0, 2, ..., m and im = 0, 2, ..., 
l. Note that we neglected moments with odd m indices because it has been observed that the 
contributions of them are several orders smaller than the even components. 
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The height of a node z ∈ [ z 0 , z N ] is divided by mesh points z nz (nz = 0, 1, 2, ..., N), and the 
tent function Rz nz (z) is defined by 
 
 Rz nz (z) = 1 at z = z nz

 Rz nz (z) = 1.0 − ( z nz − z ) / ( z nz − z nz − 1 ) for z = [ z nz − 1 , z nz ] and nz ≥ 1 
 Rz nz (z) = 1.0 − ( z − z nz ) / ( z nz + 1 − z nz ) for z = [ z nz , z nz + 1 ] and nz ≤ N 
      (A.1.2) 
 
In this expansion the axial shape of the flux moments are approximated by a piecewise linear 
function.  

A.2 Variational Derivation of Equations for Source Expansion 
Coefficients 
 
The source expansion coefficient FS

nr, nz, g is determined from a variational principle (the Ritz 
method). The real part of the functional to be minimized is, for r = (x, y, z): 
 
 Fc

 l, m, g [φc
 l, m, g ] 

           ≡ ∫core dr{ aabb1 l, m, g (r) [ ∂/∂x φc
l, m, g (r) ] 2  

                    + aabb1 l, m, g (r) [ ∂/∂y φc
l, m, g (r) ] 2

                    + egge l, m, g (r) [ ∂/∂z φc
l, m, g (r) ] 2

                    + Σ g (r) φc
l, m, g (r) 2 − 2 Qc

 l, m, g (r) φc
l, m, g (r) } (A.2.1) 

 
The imaginary part is: 
 
 Fs

 l, m, g [φs
 l, m, g ]  

           ≡ ∫core dr{ aabb1 l, m, g (r) [ ∂/∂x φs
l, m, g (r) ] 2  

                    + aabb1 l, m, g (r) [ ∂/∂y φs
l, m, g (r) ] 2

                    + egge l, m, g (r) [ ∂/∂z φs
l, m, g (r) ] 2

                    + Σ g (r) φs
l, m, g (r) 2 − 2 Qs

 l, m, g (r) φs
l, m, g (r) } (A.2.2) 

 
The overall functional is defined by: 
 

 F[φ] ≡ Σ g Σ l = 0, L, even Σ m = 0, l Fc
 l, m, g [φc

 l, m, g ] 

         + Σ g Σ l = 2, L, even Σ m = 1, l Fs
 l, m, g [φs

 l, m, g ]    (A.2.3) 
 
where φc

 l, m, g  and φs
 l, m, g  are the real and the imaginary parts of φ l, m, g, and 

 
 φ = { [φc

 l, m, g ; l = 0, L, even, m = 0, l ], [φs
 l, m, g ; l = 2, L, even, m = 1, l ] } 

          (A.2.4) 
 egge l, m, g (r) ≡ eg l, m; l + 1, m, g (r) + ge l, m; l − 1, m, g (r)   (A.2.5) 

eg l, m; l', m', g (r)  =  Tg (r)  η l, m  γ l', m'    (A.2.6) 
ge l, m; l', m', g (r)  =  Tg (r)  γ l, m  η l', m'       (A.2.7) 
η l, m = [ (l + m + 1) (l − m + 1) ] 1/2 / (2 l + 1)    (A.2.8) 
γ l, m = [ (l + m) (l − m) ] 1/2 / (2 l + 1)     (A.2.9) 
Tg (r) = 1 / Σ g (r)       (A.2.10) 

 aabb1 l, m, g (r) = Tg (r) ( α l, m + 1 α l + 1, m + β l, m − 1 β l + 1, m  



 30

                    + β l, m + 1 β l − 1, m + α l, m − 1 α l − 1, m )  (A.2.11)  
α l, m = [ (l + m) (l + m + 1) ] 1/2 / 2 / (2 l + 1)    (A.2.12) 
β l, m = α l, −m          (A.2.13) 

  
Σ g (r) is the g-th group total cross section. 
 
By variational method, if one substitute the expansion (A.1.1) into the overall functional 
(A.2.3), and differentiate the result with respect to the source expansion coefficient FS

nr, nz, g, 
one obtains, for each of all the parameters g, nr, and for nz = 1, 2, ..., N − 1. 
 

      Σ nr',nz'  FS
nr', nz', g ( ANN nr, nr'; g RzRz nz, nz' + ANN20 nr, nr'; g RzzRzz nz, nz'  

         + ANN00 nr, nr'; g RzzRzz nz, nz' )   

          + Σ pp, lmcq, nz'  FCB
pp, lmcq, nz', g ( ANC20 nr, pp, lmcq; g RzzRzz nz, nz'

               + ANC00 nr, pp, lmcq; g RzzRzz nz, nz' ) 

          + Σ pp, lmsq, nz'  FSB
pp, lmsq, nz', g  ( ANS20 nr, pp, lmsq; g RzzRzz nz,nz'

                + ANS00 nr, pp, lmsq; g  RzzRzz nz,nz' ) 
        = 

      Σ g' ( Σ nr', nz' FS
nr', nz', g' ANNS nr, nr'; g, g' RzRz nz,nz' 

          + Σ pp, lmcq, nz' FCB
pp, lmcq, nz', g' ANCS nr, pp, lmcq; g, g' RzRz nz, nz' 

          + Σ pp, lmsq, nz'  FSB
pp, lmsq, nz', g' ANSS nr, pp, lmsq; g, g' RzRz nz, nz' ) 

          + ( 1 / λ ) χ g  Σ g' ( Σ nr', nz' FS
nr', nz', g' ANNF nr, nr'; g, g' RzRz nz,nz' 

                             + Σ pp, lmcq, nz' FCB
pp, lmcq, nz', g' ANCF nr, pp, lmcq; g, g' RzRz nz, nz' 

              + Σ pp, lmsq, nz'  FSB
pp, lmsq, nz', g' ANSF nr, pp, lmsq; g, g' RzRz nz, nz' ) 

          (A.2.14) 
 
for each of the combination of indices (nr, nz, g). The index lmcq = (il, im, sr) for the real 
boundary expansion function: ϕCB

pp, il, im, sr, l, m, g (x, y), and lmsq = (il, im, sr) for the imaginary 
boundary expansion function: ϕSB

pp, il, im, sr, l, m, g (x, y), respectively, λ is the core eigenvalue, 
and χ g is the fission neutron spectrum. 
 
The coefficients of Eq.(A.2.14) are defined by: 
  

 ANN nr, nr'; g  = ∫node dr ϕS
nr, l = 0, m = 0, g (r) S∞

g (r) Pnr' (r)    (A.2.15) 

 ANN20 nr, nr'; g  = −2/3 ∫node dr ϕS
nr, l = 0, m = 0, g (r) Tg (r) ϕS

nr', l = 2, m = 0, g (r) (A.2.16) 

 ANN00 nr, nr'; g  = −1/3 ∫node dr ϕS
nr, l = 0, m = 0, g (r) Tg (r) ϕS

nr', l = 0, m = 0, g (r) (A.2.17) 

 ANC20 nr, pp, lmcq; g   = −2/3 ∫node dr ϕS
nr, l = 0, m = 0, g (r) Tg (r) ϕCB

pp, lmcq, l = 2, m = 0, g (r) 
          (A.2.18) 

 ANC00 nr, pp, lmcq; g   = −1/3 ∫node dr ϕS
nr, l = 0, m = 0, g (r) Tg (r) ϕCB

pp, lmcq, l = 0, m = 0, g (r) 
         (A.2.19) 

 ANS20 nr, pp, lmsq; g   = −2/3 ∫node dr ϕS
nr, l = 0, m = 0, g (r) Tg (r) ϕSB

pp, lmsq, l = 2, m = 0, g (r)  
         (A.2.20) 

 ANS00 nr, pp, lmsq; g   = −1/3 ∫node dr ϕS
nr, l = 0, m = 0, g (r) Tg (r) ϕSB

pp, lmsq, l = 0, m = 0, g (r) 
          (A.2.21) 

 ANNS nr, nr'; g, g'   =  ∫node dr ϕS
nr, l = 0, m = 0, g (r) Σ g, g ' (r) ϕS

nr', l = 0, m = 0, g' (r)  
         (A.2.22) 
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 ANCS nr, pp, lmcq; g, g'   =  ∫node dr ϕS
nr, l = 0, m = 0, g (r) Σ g, g ' (r) ϕCB

pp, lmcq, l = 0, m = 0, g' (r) 
          (A.2.23) 

 ANSS nr, pp, lmsq; g, g'   =  ∫node dr ϕS
nr, l = 0, m = 0, g (r) Σ g, g ' (r) ϕSB

pp, lmsq, l = 0, m = 0, g' (r) 
         (A.2.24) 

 ANNF nr, nr'; g, g'   =  ∫node dr ϕS
nr, l = 0, m = 0, g (r) νΣf g ' (r) ϕS

nr', l = 0, m = 0, g' (r)  
         (A.2.25) 

 ANCF nr, pp, lmcq; g, g '   =  ∫node dr ϕS
nr, l = 0, m = 0, g (r) νΣf g ' (r) ϕCB

pp, lmcq, l = 0, m = 0, g ' (r) 
          (A.2.26) 

 ANSF nr, pp, lmsq; g, g '   =  ∫node dr ϕS
nr, l = 0, m = 0, g (r) νΣf g ' (r) ϕSB

pp, lmsq, l = 0, m = 0, g ' (r) 
         (A.2.27) 
 
 RzRz nz, nz' = 1/6 ( z nz − z nz − 1 ),   if nz' = nz − 1 
       = 1/3 ( z nz + 1 − z nz − 1 ),  if nz' = nz 
      = 1/6 ( z nz + 1 − z nz ),   if nz' = nz + 1 
      = 0     otherwise   (A.2.28) 
 RzzRzz nz, nz' = 1 / ( z nz − z nz − 1 ),    if nz' = nz − 1 
         = − 1 / ( z nz − z nz − 1 ) − 1 / ( z nz + 1 − z nz ),  if nz' = nz 
         = 1 / ( z nz + 1 − z nz ),    if nz' = nz + 1 
         = 0      otherweise (A.2.29) 
 

where in these definitions r = (x, y), ∫node dr is the integration over radial volume of a node, Pnr 

(r) is the 2D Legendre polynomial of order nr, S∞
g (r) is the infinite-lattice source for g-th 

group, Σ g, g' (r) is group transfer (from g' to g by scattering) cross section, and νΣf g (r) is the 
fission cross section multiplied by the number of neutrons generated in a fission. 
 
From Eqs.(A.2.28 - 29) it can be seen that Eq.(A.2.14) is of the same form as the 3-point 
finite-difference equation in axial (z) direction. The top and bottom coefficients (FS

nr', nz', g'  for 
nz = 0 and nz = N) are not included in Eq.(A.2.14) and are determined by the continuity 
condition in the axial direction (see Section A.4). 

A.3 Continuity Condition at Radial Node Interface 
 
The boundary value expansion coefficients FCB

pp, lmcq, nz, g and FSB
pp, lmsq, nz, g are determined by 

the continuity condition of the neutron angular current moments (this is equivalent to the 
current continuity in the case of the diffusion theory approximation) at the radial node 
interface. The flux continuity condition is satisfied by using the same boundary value 
coefficients at the common interface of radially neighboring nodes. 
 
According to PL-transport theory, the even l component of the angular current in x and y 
directions can be written as: 
 
 J x 

l, m, g (r) = − α l, m + 1 φ l + 1, m + 1, g (r) + β l, m − 1 φ l + 1, m − 1, g (r) 
       + β l, m + 1 φ l − 1, m + 1, g (r) − α l, m − 1 φ l − 1, m − 1, g (r)    

 J y 
l, m, g (r) = i {− α l, m + 1 φ l + 1, m + 1, g (r) − β l, m − 1 φ l + 1, m − 1, g (r) 

           + β l, m + 1 φ l − 1, m + 1, g (r) + α l, m − 1 φ l − 1, m − 1, g (r) }  (A.3.1) 
 

where α l, m and β l, m are defined by Eqs.(A.2.12) and (A.2.13). 
 
The right side of Eqs.(A.3.1) include odd ( l ± 1 ) components for even l. By using the even-
odd formulation of Spherical harmonics expantion of angular functions, the right side can also 
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be represented only by even l components. For the x-direction, from the continuity condition 
of the angular current, we request the continuity of: 
 
          J x 

l, m, g (r) = Tg (r) { 
 − α l, m + 1 α l + 1, m + 2 (∂/∂x)  φ l + 2, m + 2,  g (r) 
 + α l, m + 1 β l + 1, m  (∂/∂x)  φ l + 2, m ,       g (r) 
 + β l, m − 1 α l + 1, m  (∂/∂x)  φ l + 2, m ,      g (r)  
 − β l, m − 1 β l + 1, m − 2 (∂/∂x)  φ l + 2, m − 2,  g (r)   
 + α l, m + 1 β l + 1, m + 2  (∂/∂x)  φ l, m + 2,  g (r) 
 + β l, m + 1 α l − 1, m + 2 (∂/∂x)  φ l, m + 2,  g (r) 
 − α l, m + 1 α l + 1, m  (∂/∂x)  φ l, m,  g (r) 
 − β l, m − 1 β l + 1, m  (∂/∂x)  φ l, m,  g (r)   
 − β l, m + 1 β l − 1, m  (∂/∂x)  φ l, m,  g (r)   
 − α l, m − 1 α l − 1, m  (∂/∂x)  φ l, m,  g (r) 
 + β l, m − 1 α l + 1, m − 2  (∂/∂x)  φ l, m − 2,  g (r) 
 + α l, m − 1 β l − 1, m − 2  (∂/∂x)  φ l, m − 2,  g (r) 
 − β l, m + 1 β l − 1, m + 2 (∂/∂x)  φ l − 2, m + 2,  g (r)  
 + β l, m + 1 α l − 1, m  (∂/∂x)  φ l − 2, m ,      g (r)  
 + α l, m − 1 β l − 1, m  (∂/∂x)  φ l − 2, m ,       g (r) 
 − α l, m − 1 α l − 1, m − 2  (∂/∂x)  φ l − 2, m − 2,  g (r) } 
 
                                  = − aap l, m, g (r) (∂/∂x)  φ l + 2, m + 2, g (r) 
 + abbap1 l, m, g (r) (∂/∂x)  φ l + 2, m , g (r) 
 − bbp l, m, g (r)  (∂/∂x)  φ l + 2, m − 2,  g (r)   
 + abba01 l, m, g (r) (∂/∂x)  φ l, m + 2,  g (r) 
 − aabb1 l, m, g (r) (∂/∂x)  φ l, m,  g (r) 
 + abba02 l, m, g (r) (∂/∂x)  φ l, m − 2,  g (r) 
 − bbm l, m, g (r) (∂/∂x)  φ l − 2, m + 2,  g (r)  
 + abbam1 l, m, g (r) (∂/∂x)  φ l − 2, m , g (r)  
 − aam l, m, g (r) (∂/∂x)  φ l − 2, m − 2,  g (r)  (A.3.2) 
 
at node interfaces that are perpendicular to the x-axis. Here, 
  
 aap l, m, g (r) = Tg (r) α l, m + 1 α l + 1, m + 2     (A.3.3) 
 abbap1 l, m, g (r) = Tg (r) ( α l, m + 1 β l + 1, m + β l, m − 1 α l + 1, m )   (A.3.4) 
 bbp l, m, g (r) =  Tg (r) β l, m − 1 β l + 1, m − 2    (A.3.5) 
 abba01 l, m, g (r) = Tg (r) ( α l, m + 1 β l + 1, m + 2 + β l, m + 1 α l − 1, m + 2 ) (A.3.6)  
 abba02 l, m, g (r) = Tg (r) ( β l, m − 1 α l + 1, m − 2  + α l, m − 1 β l − 1, m − 2 )  (A.3.7) 
 bbm l, m, g (r) = Tg (r) β l, m + 1 β l − 1, m + 2    (A.3.8) 
 abbaml l, m, g (r) = Tg (r) ( β l, m + 1 α l − 1, m + α l, m − 1 β l − 1, m )  (A.3.9)  
 aam l, m, g (r) = Tg (r) α l, m − 1 α l − 1, m − 2     (A.3.10) 
 
and aabb1 is defined by Eq.(A.2.11). 
 
Substitute the expansion (A.1.1) into (A.3.2), and define: 
 
 J Sx

nr, l, m, g (r) = − aap l, m, g (r) (∂/∂x) ϕS
nr, l + 2, m + 2, g (r) 

 + abbap1 l, m, g (r) (∂/∂x) ϕS
nr, l + 2, m , g (r) 

 − bbp l, m, g (r)  (∂/∂x) ϕS
nr, l + 2, m − 2, g (r)   

 + abba01 l, m, g (r) (∂/∂x) ϕS
nr, l, m + 2,  g (r) 

 − aabb1 l, m, g (r) (∂/∂x) ϕS
nr, l, m,  g (r) 

 + abba02 l, m, g (r) (∂/∂x) ϕS
nr, l, m − 2,  g (r) 
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 − bbm l, m, g (r) (∂/∂x) ϕS
nr, l − 2, m + 2, g (r)  

 + abbam1 l, m, g (r) (∂/∂x) ϕS
nr, l − 2, m , g (r)  

 − aam l, m, g (r) (∂/∂x) ϕS
nr, l − 2, m − 2, g (r)   (A.3.11) 

 
 J CBx

pp, lmcq, l, m, g (r) = − aap l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l + 2, m + 2, g (r) 

 + abbap1 l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l + 2, m , g (r) 

 − bbp l, m, g (r)  (∂/∂x) ϕCB
pp, lmcq, l + 2, m − 2, g (r)   

 + abba01 l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l, m + 2,  g (r) 

 − aabb1 l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l, m,  g (r) 

 + abba02 l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l, m − 2,  g (r) 

 − bbm l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l − 2, m + 2, g (r)  

 + abbam1 l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l − 2, m , g (r)  

 − aam l, m, g (r) (∂/∂x) ϕCB
pp, lmcq, l − 2, m − 2, g (r) (A.3.12) 

 
 J SBx

pp, lmsq, l, m, g (r) = − aap l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l + 2, m + 2, g (r) 

 + abbap1 l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l + 2, m , g (r) 

 − bbp l, m, g (r)  (∂/∂x) ϕSB
pp, lmsq, l + 2, m − 2, g (r)   

 + abba01 l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l, m + 2,  g (r) 

 − aabb1 l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l, m,  g (r) 

 + abba02 l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l, m − 2,  g (r) 

 − bbm l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l − 2, m + 2, g (r)  

 + abbam1 l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l − 2, m , g (r)  

 − aam l, m, g (r) (∂/∂x) ϕSB
pp, lmsq, l − 2, m − 2, g (r) (A.3.13) 

 
where r = (x, y) in Eqs.(A.3.11 through 13). One obtains: 
 

 J x 
l, m, g (x, y, z) = Σ nr, nz FS

nr, nz, g J Sx
nr, l, m, g (x, y) Rz nz (z) 

                         + Σ pp Σ lmcq, nz FCB
pp, lmcq, nz, g J CBx

pp, lmcq, l, m, g (x, y) Rz nz (z) 

                                      + Σ pp Σ lmsq, nz FSB
pp, lmsq, nz, g J SBx

pp, lmsq, l, m, g (x, y) Rz nz (z) 
        (A.3.14) 
 
To determine the boundary value coefficients, we request the continuity of the spatial 
moments of J x 

l, m, g (x, y, z) over a surface (perpendicular to the x-axis) of a node, which is 
defined by: 
 

 J x 
l, m, sr', nz', g (xs) = ∫pp dy dz Psr' (y) Rz nz' (z) J x 

l, m, g (xs, y, z)  (A.3.15) 
 

for all the combination of indices lmcq' (= l, m, sr') and nz' = 1, 2, ..., N − 1, where ∫pp dy dz is 
the integration over the node surface which is perpendicular to the x-axis, Psr' (y) is 1D 
Legendre function along y-axis, and xs is the x-coordinate of the node surface.  
 
From the real part of Eq.(A.3.15), we obtain a set of linear equations for FCB

pp, lmcq, nz, g along 
x-direction: 
 

          − Σ nr, nz' FS
nr, nz', g JCN pp, lmcq, nr, g RzRz nz, nz' 

          − Σ pp' Σ lmcq', nz' FCB
pp', lmcq', nz', g JCC pp, lmcq, pp', lmcq', g RzRz nz, nz' 

          − Σ pp' Σ lmsq, nz' FSB
pp', lmsq, nz', g JCS pp, lmcq, pp', lmsq, g RzRz nz, nz'   for the left node  

         = Σ nr, nz' FS
nr, nz', g JCN pp, lmcq, nr, g RzRz nz, nz' 
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          + Σ pp' Σ lmcq', nz' FCB
pp', lmcq', nz', g JCC pp, lmcq, pp', lmcq', g RzRz nz, nz' 

          + Σ pp' Σ lmsq, nz' FSB
pp', lmsq, nz', g JCS pp, lmcq, pp', lmsq, g RzRz nz, nz'   for the right node 

          (A.3.16) 
 
where 
 

 JCN pp, lmcq, nr, g =  ∫pp dy Psr (y) Re[J Sx
nr, l, m, g (xs, y)]   (A.3.17) 

 JCC pp, lmcq, pp', lmcq', g =  ∫pp dy Psr (y) Re[J CBx
pp', lmcq', l, m, g (xs, y)]   (A.3.18) 

 JCS pp, lmcq, pp', lmsq, g =  ∫pp dy Psr (y) Re[J SBx
pp', lmsq, l, m, g (xs, y)]   (A.3.19) 

 
where Re[] means the real part. 
 
Similarly, from the imaginary part of Eq.(A.3.15), we obtain: 
 

          − Σ nr, nz' FS
nr, nz', g JSN pp, lmsq, nr, g RzRz nz, nz' 

          − Σ pp' Σ lmcq, nz' FCB
pp', lmcq, nz', g JSC pp, lmsq, pp', lmcq, g RzRz nz, nz' 

          − Σ pp' Σ lmsq', nz' FSB
pp', lmsq', nz', g JSS pp, lmsq, pp', lmsq', g RzRz nz, nz'   for the left node  

         = Σ nr, nz' FS
nr, nz', g JSN pp, lmsq, nr, g RzRz nz, nz' 

          + Σ pp' Σ lmcq, nz' FCB
pp', lmcq, nz', g JSC pp, lmsq, pp', lmcq, g RzRz nz, nz' 

          + Σ pp' Σ lmsq', nz' FSB
pp', lmsq', nz', g JSS pp, lmsq, pp', lmsq', g RzRz nz, nz'   for the right node 

          (A.3.20) 
 
where 
 

 JSN pp, lmsq, nr, g =  ∫pp dy Psr (y) Im[J Sx
nr, l, m, g (xs, y)]   (A.3.21) 

 JSC pp, lmsq, pp', lmcq, g =  ∫pp dy Psr (y) Im[J CBx
pp', lmcq, l, m, g (xs, y)]   (A.3.22) 

 JSS pp, lmsq, pp', lmsq', g =  ∫pp dy Psr (y) Im[J SBx
pp', lmsq', l, m, g (xs, y)]   (A.3.23) 

 
Similar equations are obtained along the y-direction in the same way. 

A.4 Continuity Condition at Axial Node Interface 
 
At the axial node interfaces (which are perpendicular to the z-axis) the expansion coefficients 
FS

nr, nz, g, FCB
pp, lmcq, nz, g and FSB

pp, lmsq, nz, g for nz = 0 (of the upper node of the axial interface) 
and nz = N (of the lower node of the axial interface) are determined by requesting the 
continuity of the flux moments and the angular current densities across the axial interfaces. 
 
As we expand the flux moment by Eq.(A.1.1), it is obvious that if we request the continuity of 
each term in the expansion: 
 
 FS

nr, nz = N, g Re[ϕS
nr, l, m, g (x, y)] | lower node =  FS

nr, nz = 0, g Re[ϕS
nr, l, m, g (x, y)] | upper node 

          (A.4.1) 
 FS

nr, nz = N, g Im[ϕS
nr, l, m, g (x, y)] | lower node =  FS

nr, nz = 0, g Im[ϕS
nr, l, m, g (x, y)] | upper node 

          (A.4.2) 
FCB

pp, lmcq, nz = N, g Re[ϕCB
pp, lmcq, l, m, g (x, y)] | lower node  

 = FCB
pp, lmcq, nz = 0, g Re[ϕCB

pp, lmcq, l, m, g (x, y)] | upper node   (A.4.3) 
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FCB
pp, lmcq, nz = N, g Im[ϕCB

pp, lmcq, l, m, g (x, y)] | lower node  

 = FCB
pp, lmcq, nz = 0, g Im[ϕCB

pp, lmcq, l, m, g (x, y)] | upper node   (A.4.4) 

     FSB
pp, lmsq, nz = N, g Re[ϕSB

pp, lmsq, l, m, g (x, y) | lower node   
      = FSB

pp, lmsq, nz = 0, g Re[ϕSB
pp, lmsq, l, m, g (x, y) | upper node  (A.4.5) 

     FSB
pp, lmsq, nz = N, g Im[ϕSB

pp, lmsq, l, m, g (x, y) | lower node   
      = FSB

pp, lmsq, nz = 0, g Im[ϕSB
pp, lmsq, l, m, g (x, y) | upper node  (A.4.6) 

 
then, by using the fact that Rz nz (z) = 1 at the top and the bottom of a node, the expanded flux 
moments become continuous across the axial interfaces between nodes. 
 
Because the number of expansion coefficients is not enough to hold the precise continuity as 
requested by Eqs.(A.4.1 through 6), we have to relax the requested continuity by [as we did in 
deriving Eq.(A.3.15)] making weighted average of the continuity as: 
 

 FS
nr, nz = N, g  ∫node dr Σ l, m { WC S

nr, l, m, g (x, y) Re[ϕS
nr, l, m, g (x, y)]  

                              + WS S
nr, l, m, g (x, y) Im[ϕS

nr, l, m, g (x, y)] } | lower node  

         = FS
nr, nz = 0, g  ∫node dr Σ l, m { WC S

nr, l, m, g (x, y) Re[ϕS
nr, l, m, g (x, y)]   

                              + WS S
nr, l, m, g (x, y) Im[ϕS

nr, l, m, g (x, y)] } | upper node 
         (A.4.7) 
 FCB

pp, lmcq, nz = N, g  

     . ∫node dr Σ l, m { WC CB
pp, lmcq, l, m, g (x, y) Re[ϕCB

pp, lmcq, l, m, g (x, y)]  
                                    + WS CB

pp, lmcq, l, m, g (x, y) Im[ϕCB
pp, lmcq, l, m, g (x, y)] } | lower node  

         = FCB
pp, lmcq, nz = 0, g  

     . ∫node dr Σ l, m { WC CB
pp, lmcq, l, m, g (x, y) Re[ϕCB

pp, lmcq, l, m, g (x, y)]  
                                    + WS CB

pp, lmcq, l, m, g (x, y) Im[ϕCB
pp, lmcq, l, m, g (x, y)] } | upper node 

         (A.4.8) 
 FSB

pp, lmsq, nz = N, g  

     . ∫node dr Σ l, m { WC SB
pp, lmsq, l, m, g (x, y) Re[ϕSB

pp, lmsq, l, m, g (x, y)]  
                                    + WS SB

pp, lmsq, l, m, g (x, y) Im[ϕSB
pp, lmsq, l, m, g (x, y)] } | lower node  

         = FSB
pp, lmsq, nz = 0, g  

     . ∫node dr Σ l, m { WC SB
pp, lmsq, l, m, g (x, y) Re[ϕSB

pp, lmsq, l, m, g (x, y)]  
                                    + WS SB

pp, lmsq, l, m, g (x, y) Im[ϕSB
pp, lmsq, l, m, g (x, y)] } | upper node 

         (A.4.9) 
 

where ∫node dr is the integration with respect to the radial coordinate x, y over the axial node 
surface. The weights WCS, WSS, WCCB, WSCB, WCSB, WSSB will be discussed later. 
 
Similar continuity conditions are derived for the angular current. From PL-transport theory, 
the axial angular current is defined by: 
 
 J z 

l, m, g (r) = η l, m φ l + 1, m, g (r) + γ l, m φ l − 1, m, g (r)    (A.4.10) 
 
where 
 

η l, m = [ (l + m + 1) (l − m + 1) ] 1/2 / (2 l + 1)    (A.4.11) 
γ l, m = [ (l + m) (l − m) ] 1/2 / (2 l + 1)     (A.4.12) 

 
As in the case of the radial direction, by using the even-odd formulation of Spherical 
harmonics expantion of angular functions, the right side of Eq.(A.4.10) can also be 
represented only by even l components, as 
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 J z 

l, m, g (r) =   − eep l, m, g (r)  (∂/∂z) φl + 2, m, g (r) 
                                   − egge l, m, g (r)  (∂/∂z) φl, m, g (r) 
                                   − ggm l, m, g (r)  (∂/∂z) φl − 2, m, g (r)    (A.4.13) 
 
where 
 
 egge l, m, g (r)  = (η l, m  γ l + 1, m  + γ l, m  η l − 1, m, g) T g (r)   (A.4.14) 
 eep l, m, g (r)  = η l, m  η l + 1, m T g (r)     (A.4.15) 
 ggm l, m, g (r)  = γ l, m  γ l − 1, m T g (r)     (A.4.16) 
 
From the assumption that a node is homogeneous along the axial direction, the spatial 
position r can be replaced by (x, y) in Eqs.(A.4.14 through 16). By substituting (A.1.1) into 
the right side of (A.4.13), and defining: 
 
 J Sz

nr, l, m, g (x, y) = − eep l, m, g (x, y)  ϕS
nr, l + 2, m, g (x, y) 

                                        − egge l, m, g (x, y)  ϕS
nr, l, m, g (x, y) 

                                        − ggm l, m, g (x, y)  ϕS
nr, l − 2, m, g (x, y)   (A.4.17) 

 
 J CBz

pp, lmcq, l, m, g (x, y) = − eep l, m, g (x, y)  ϕCB
pp, lmcq, l + 2, m, g (x, y) 

                                      − egge l, m, g (x, y)  ϕCB
pp, lmcq, l, m, g (x, y) 

                                                  − ggm l, m, g (x, y)  ϕCB
pp, lmcq, l − 2, m, g (x, y)  (A.4.18) 

 
 J SBz

pp, lmsq, l, m, g (x, y) = − eep l, m, g (x, y)  ϕSB
pp, lmsq, l + 2, m, g (x, y) 

                                                  − egge l, m, g (x, y)  ϕSB
pp, lmsq, l, m, g (x, y) 

                                                  − ggm l, m, g (x, y)  ϕSB
pp, lmsq, l − 2, m, g (x, y)  (A.4.19) 

 
we obtain 
 

J z 
l, m, g (r) = Σ nr, nz FS

nr, nz, g J Sz
nr, l, m, g (x, y) (∂/∂z) Rz nz (z) 

       + Σ pp Σ lmcq, nz FCB
pp, lmcq, nz, g J CBz

pp, lmcq, l, m, g (x, y) (∂/∂z) Rz nz (z) 

         + Σ pp Σ lmsq, nz FSB
pp, lmsq, nz, g J SBz

pp, lmsq, l, m, g (x, y) (∂/∂z) Rz nz (z) 
          (A.4.20) 
 
The current defined by Eq.(A.4.20) must be continuous across the axial interface between 
nodes. This can be achieved by requesting continuity of each of the terms as follows [similar 
to Eqs.(A.4.1 through 6) for the case of the flux moment continuity] 
 
 FS

nr, nz = N, g Re[J Sz
nr, l, m, g (x, y)] (∂/∂z) Rz nz (z) | lower node  

              = FS
nr, nz = 0, g Re[J Sz

nr, l, m, g (x, y)] (∂/∂z) Rz nz (z) | upper node (A.4.21) 
 FS

nr, nz = N, g Im[J Sz
nr, l, m, g (x, y)] (∂/∂z) Rz nz (z) | lower node  

              = FS
nr, nz = 0, g Im[J Sz

nr, l, m, g (x, y)] (∂/∂z) Rz nz (z) | upper node (A.4.22) 
FCB

pp, lmcq, nz = N, g Re[JCBz
pp, lmcq, l, m, g (x, y)] (∂/∂z) Rz nz (z) | lower node  

      = FCB
pp, lmcq, nz = 0, g Re[JCBz

pp, lmcq, l, m, g (x, y)] (∂/∂z) Rz nz (z) | upper node  (A.4.23) 
FCB

pp, lmcq, nz = N, g Im[JCBz
pp, lmcq, l, m, g (x, y)] (∂/∂z) Rz nz (z) | lower node  

      = FCB
pp, lmcq, nz = 0, g Im[JCBz

pp, lmcq, l, m, g (x, y)] (∂/∂z) Rz nz (z) | upper node  (A.4.24) 
 FSB

pp, lmsq, nz = N, g Re[J SBz
pp, lmsq, l, m, g (x, y) (∂/∂z) Rz nz (z) | lower node   

           = FSB
pp, lmsq, nz = 0, g Re[J SBz

pp, lmsq, l, m, g (x, y) (∂/∂z) Rz nz (z) | upper node (A.4.25) 
 FSB

pp, lmsq, nz = N, g Im[J SBz
pp, lmsq, l, m, g (x, y) (∂/∂z) Rz nz (z) | lower node   

           = FSB
pp, lmsq, nz = 0, g Im[J SBz

pp, lmsq, l, m, g (x, y) (∂/∂z) Rz nz (z) | upper node (A.4.26) 
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Also similar to the case of the flux moment continuity, the number of expansion coefficients 
is not enough to hold the precise continuity as requested by Eqs.(A.4.21 through 26), we have 
to relax the requested continuity by making weighted average of the continuity as: 
 
 FS

nr, nz = N, g   

      . ∫node dr Σ l, m { WC S
nr, l, m, g (x, y) Re[J Sz

nr, l, m, g (x, y)]  
                                    + WS S

nr, l, m, g (x, y) Im[J Sz
nr, l, m, g (x, y)] } (∂/∂z) Rz nz (z) | lower node  

         = FS
nr, nz = 0, g   

      . ∫node dr Σ l, m { WC S
nr, l, m, g (x, y) Re[J Sz

nr, l, m, g (x, y)]   
                                    + WS S

nr, l, m, g (x, y) Im[J Sz
nr, l, m, g (x, y)] } (∂/∂z) Rz nz (z) | upper node 

         (A.4.27) 
 
 FCB

pp, lmcq, nz = N, g  

      . ∫node dr Σ l, m { WC CB
pp, lmcq, l, m, g (x, y) Re[J CBz

pp, lmcq, l, m, g (x, y)]  
                                     + WS CB

pp, lmcq, l, m, g (x, y) Im[J CBz
pp, lmcq, l, m, g (x, y)] } 

   . (∂/∂z) Rz nz (z) | lower node  
         = FCB

pp, lmcq, nz = 0, g  

     . ∫node dr Σ l, m { WC CB
pp, lmcq, l, m, g (x, y) Re[J CBz

pp, lmcq, l, m, g (x, y)]  
                                    + WS CB

pp, lmcq, l, m, g (x, y) Im[J CBz
pp, lmcq, l, m, g (x, y)] } 

            . (∂/∂z) Rz nz (z) | upper node    (A.4.28) 
 
 FSB

pp, lmsq, nz = N, g  

      . ∫node dr Σ l, m { WC SB
pp, lmsq, l, m, g (x, y) Re[J SBz

pp, lmsq, l, m, g (x, y)]  
                                     + WS SB

pp, lmsq, l, m, g (x, y) Im[J SBz
pp, lmsq, l, m, g (x, y)] } 

   . (∂/∂z) Rz nz (z) | lower node  
         = FSB

pp, lmsq, nz = 0, g  

     . ∫node dr Σ l, m { WC SB
pp, lmsq, l, m, g (x, y) Re[J SBz

pp, lmsq, l, m, g (x, y)]  
                                    + WS SB

pp, lmsq, l, m, g (x, y) Im[J SBz
pp, lmsq, l, m, g (x, y)] }  

            . (∂/∂z) Rz nz (z) | upper node    (A.4.29) 
 

where ∫node dr is the integration with respect to the radial coordinate x, y over the axial node 
surface. 
 
The weights in Eqs.(A.4.7 through 9) and Eqs.(A.4.27 through 29) are defined by: 
 
 WC S

nr, l, m, g (x, y) = Pnr (x, y) Re[φ∞ l, m, g (x, y)]     (A.4.30) 
 WS S

nr, l, m, g (x, y) = Pnr (x, y) Im[φ∞ l, m, g (x, y)]   (A.4.31) 
 
where φ∞ l, m, g (x, y) is the infinite-lattice flux moment. 
 
  WC CB

pp, lmcq, l, m, g (x, y) = Psr (y)  for pp = XL, XR 
                                        = Psr (x)   for pp = YL, YR  (A.4.32) 
          WS CB

pp, lmcq, l, m, g (x, y) =  Psr (y)  for pp = XL, XR 
                                        = Psr (x)   for pp = YL, YR   (A.4.33) 
  WC SB

pp, lmsq, l, m, g (x, y) =  Psr (y)  for pp = XL, XR 
                                      = Psr (x)  for pp = YL, YR  (A.4.34) 
  WS SB

pp, lmsq, l, m, g (x, y)  =  Psr (y)  for pp = XL, XR 
                                      = Psr (x)  for pp = YL, YR    (A.4.35) 
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A.5 Calculation of Source Expansion Function 
 
The source expansion function is calculated in the same way as the 2D case by solving: 
 

Σ m' = m − 2, m + 2: even D l, m; l + 2, m', g (x, y)  ϕS
nr, l + 2, m', g (x, y) 

          + Σ m' = m − 2, m + 2: even D l, m; l, m', g (x, y) ϕS
nr, l, m', g (x, y) 

          + Σ m' = m − 2, m + 2: even D l, m; l − 2, m', g (x, y) ϕS
nr, l − 2, m', g (x, y)  + Σr

 l, m, g (x, y) ϕS
nr, l, m, g (x, y) 

          = S∞
 l, m, g (x, y) Pnr (x, y) for l ∈ [0, L; even], m ∈ [0, l ; even]  (A.5.1) 

 
within a node, with the boundary condition: 
 
 ϕS

nr, l, m, g (x, y) = 0       (A.5.2) 
 
at the node interface. Equation (A.5.1) is the same as the 2D transport equation except that the 
source term is replaced by S∞

 l, m, g (x, y) Pnr (x, y). Here  
 
 S∞

 l, m, g (x, y):  group-g neutron source term obtained by the single assembly,  
             infinite-lattice case 
 Pnr (x, y) :  2D Legendre polynomial of degree nr, defined within a node 
 
As we assume that the source term is isotropic, 
 
 S∞

 l, m, g (x, y) =  S∞
0, 0, g (x, y) δ l, 0 δ m, 0     (A.5.3) 

A.6 Calculation of Boundary Value Expansion Function 
 
The real boundary value expansion function can be calculated in the same way as the 2D case 
by solving the equation: 
 

Σ m' = m − 2, m + 2: even D l, m; l + 2, m', g (x, y) ϕCB
pp, lmcq, l + 2, m', g (x, y) 

          + Σ m' = m − 2, m + 2: even D l, m; l, m', g (x, y) ϕCB
pp, lmcq, l, m', g (x, y) 

          + Σ m' = m − 2, m + 2: even D l, m; l − 2, m', g (x, y) ϕCB
pp, lmcq, l − 2, m', g (x, y) 

          + Σr
 l, m, g (x, y) ϕCB

pp, lmcq, l, m, g (x, y) 
          = 0   for l ∈ [0, L; even], m ∈ [0, l ; even]  (A.6.1) 
 
within a node, with the boundary condition: 
 
 ϕCB

pp, lmcq, l, m, g (x, y) = δpp, qq δil, l δim, m Psr (spp)    (A.6.2) 
      or ϕCB

pp, lmcq, l, m, g (x, y) = δpp, qq δil, l δim, m Psr (spp) φc,inf
l, m, g (spp)    for il = im = 0  

          (A.6.3) 
 
on the node interfaces qq = XL, XR, YL, YR, where 
 
 Psr (spp):  1D Legendre polynomial of degree sr ∈ [0, Sr], defined on node  
   interface pp 
 spp:   1D (x or y) coordinate taken along node interface pp 
 φc,inf

l, m, g (spp):  g-th group neutron flux moment of angular indices (l, m) 
    obtained by the single assembly, infinite-lattice case 
 
Here pp = XL, XR, YL, YR, lmcq = (il, im, sr) and il ∈ [0, L; even], im ∈ [0, il ; even]. 



 39

 
The imaginary boundary value expansion function ϕSB

pp, lmsq, l, m, g (r) is defined by the solution 
of  
 

Σ m' = m − 2, m + 2: even D l, m; l + 2, m', g (x, y) ϕSB
pp, lmsq, l + 2, m', g (x, y) 

          + Σ m' = m − 2, m + 2: even D l, m; l, m', g (x, y) ϕSB
pp, lmsq, l, m', g (x, y) 

          + Σ m' = m − 2, m + 2: even D l, m; l − 2, m', g (x, y) ϕSB
pp, lmsq, l − 2, m', g (x, y) 

          + Σr
 l, m, g (x, y) ϕSB

pp, lmsq, l, m, g (x, y) 
          = 0   for l ∈ [0, L; even], m ∈ [0, l ; even]  (A.6.4) 
 
within a node, with the boundary condition: 
 
 ϕSB

pp, lmsq, l, m, g (x, y) = − i δpp, qq δil, l δim, m Psr (spp)    (A.6.5) 
      or ϕSB

pp, lmsq, l, m, g (x, y) = − i δpp, qq δil, l δim, m Psr (spp) φs,inf
l, m, g (spp)  (A.6.6) 

 
on the node interfaces qq = XL, XR, YL, YR, lmsq = (il, im, sr) where 
 
 φs,inf

l, m, g (spp): φs
l, m, g (spp) obtained by the single assembly, infinite-lattice case 

A.7 Power density Calculation 
 
By solving Equations (A.2.14), (A.3.16), (A.3.20), (A.4.7 through 9), (A.4.27 through 29) and 
similar equations of (A.3.16) and (A.3.20) for y-direction, we obtain the expansion 
coefficients of Eq.(A.1.1). From these coefficients (and expansion functions defined in 
Sections A.5 and A.6), we can calculate the flux moment φl, m, g (r) and associated quantities. 
From a practical viewpoint, the power density and the scalar flux are most important of them. 
 
From Eq.(A.1.1), the scalar flux φ g (r) is obtained by: 
 

φ g (r)  =  Σ nr, nz FS
nr, nz, g ϕS

nr, 0, 0, g (x, y) Rz nz (z) 

             + Σ pp Σ lmcq, nz FCB
pp, lmcq, nz, g ϕCB

pp, lmcq, 0, 0, g (x, y) Rz nz (z) 

                  + Σ pp Σ lmsq, nz FSB
pp, lmsq,  nz, g ϕSB

pp, lmsq, 0, 0, g (x, y) Rz nz (z)  (A.7.1) 
 
The fission power density P(r) is obtained by: 
 

P (r)   =  Σ nr, nz, g FS
nr, nz, g Σf g (r) ϕS

nr, 0, 0, g (x, y) Rz nz (z) 

             + Σ pp Σ lmcq, nz, g FCB
pp, lmcq, nz, g Σf g (r) ϕCB

pp, lmcq, 0, 0, g (x, y) Rz nz (z) 

                  + Σ pp Σ lmsq, nz, g FSB
pp, lmsq,  nz, g Σf g (r) ϕSB

pp, lmsq, 0, 0, g (x, y) Rz nz (z) 
          (A.7.2) 
 
where Σf g (r) is the macro-cross section of the fission power generation. 
 
If we define an operator of spatial averaging: 
 

 < f(r) > nreg = ∫nreg f(r) dx dy dz / ∫nreg dx dy dz    (A.7.3) 
 
where nreg means any spatial region in a node, the spatial average of the scalar flux φ nreg, g  
and the power density P nreg, g in nreg are obtained by 
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 φ nreg, g  = < φ g (r) > nreg   

       =  Σ nr, nz FS
nr, nz, g < ϕS

nr, 0, 0, g (x, y) Rz nz (z) > nreg

       + Σ pp Σ lmcq, nz FCB
pp, lmcq, nz, g < ϕCB

pp, lmcq, 0, 0, g (x, y) Rz nz (z) > nreg

       + Σ pp Σ lmsq, nz FSB
pp, lmsq,  nz, g < ϕSB

pp, lmsq, 0, 0, g (x, y) Rz nz (z) > nreg (A.7.4) 
 

P nreg, g  = < P (r) > nreg    

      =  Σ nr, nz, g FS
nr, nz, g < Σf g (r) ϕS

nr, 0, 0, g (x, y) Rz nz (z) > nreg

      + Σ pp Σ lmcq, nz, g FCB
pp, lmcq, nz, g < Σf g (r) ϕCB

pp, lmcq, 0, 0, g (x, y) Rz nz (z) > nreg

           + Σ pp Σ lmsq, nz, g FSB
pp, lmsq,  nz, g < Σf g (r) ϕSB

pp, lmsq, 0, 0, g (x, y) Rz nz (z) > nreg  
           (A.7.5) 
 
When we need to calculate the axial distribution of the fuel-rod powers within a node, we 
define 
 

 < f(r) > nrod = ∫nrod f(r) dx dy / ∫nreg dx dy     (A.7.6) 
 
where nrod is the radial cross sectional area of a fuel rod. Operating this to Eq.(A.7.2), we 
obtain 
 

P nrod, nz, g (z) = < P (r) > nrod    

      =  Σ nr, nz, g FS
nr, nz, g < Σf g (r) ϕS

nr, 0, 0, g (x, y) > nrod Rz nz (z) 

      + Σ pp Σ lmcq, nz, g FCB
pp, lmcq, nz, g < Σf g (r) ϕCB

pp, lmcq, 0, 0, g (x, y) > nrod Rz nz (z) 

           + Σ pp Σ lmsq, nz, g FSB
pp, lmsq,  nz, g < Σf g (r) ϕSB

pp, lmsq, 0, 0, g (x, y) > nrod Rz nz (z)  
           (A.7.7) 
 
As Rz nz (z) is a simple known function, we cal easily calculate axial distribution (z-
dependence) of the power density within a node. From this we can obtain information on the 
power peaking etc.  
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Appendix B:   Comparison for All Thimbles 

B.1 Case 1 
 
The following figures show the comparison of the measured and VNEM-calculated relative 
detector readings. Both are independently normalized so that the spatial average of the 
readings over all the measuring points becomes 1.0. Here in the figures: 
 
 : VNEM-calculated relative readings 
 : Upper bound to the measured readings 
 : Lower bound to the measured readings 
 
The upper / lower bounds of the measured readings are defined by the maximum / minimum 
of the readings of the assemblies at the octant-symmetric positions in the core. The 
representative of the octant-symmetric positions (i, j) in the core is taken from the north-
north-east portion (shown in Fig.1.5.2). 
 
As in Fig.1.5.1, the horizontal axis indicates the axial measuring positions along a thimble 
that are numbered 1 through 60 from the top to the bottom of the core. The vertical axis 
indicates the relative detector readings in an arbitrary unit.
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B.2 Case 2 
 
The following figures show the comparison of the measured and VNEM-calculated relative 
detector readings. Both are independently normalized so that the spatial average of the 
readings over all the measuring points becomes 1.0. Here in the figures: 
 
 : VNEM-calculated relative readings 
 : Upper bound to the measured readings 
 : Lower bound to the measured readings 
 
The upper / lower bounds of the measured readings are defined by the maximum / minimum 
of the readings of the assemblies at the octant-symmetric positions in the core. The 
representative of the octant-symmetric positions (i, j) in the core is taken from the north-
north-east portion (shown in Fig.1.5.5). 
 
As in Fig.1.5.4, the horizontal axis indicates the axial measuring positions along a thimble 
that are numbered 1 through 60 from the top to the bottom of the core. The vertical axis 
indicates the relative detector readings in an arbitrary unit.
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B.3 Case 3 
 
The following figures show the comparison of the measured and VNEM-calculated relative 
detector readings. Both are independently normalized so that the spatial average of the 
readings over all the measuring points becomes 1.0. Here in the figures: 
 
 : VNEM-calculated relative readings 
 : Upper bound to the measured readings 
 : Lower bound to the measured readings 
 
The upper / lower bounds of the measured readings are defined by the maximum / minimum 
of the readings of the assemblies at the octant-symmetric positions in the core. The 
representative of the octant-symmetric positions (i, j) in the core is taken from the north-
north-east portion (shown in Fig.1.5.8). 
 
As in Fig.1.5.7, the horizontal axis indicates the axial measuring positions along a thimble 
that are numbered 1 through 60 from the top to the bottom of the core. The vertical axis 
indicates the relative detector readings in an arbitrary unit.
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