

Nordisk kernesikkerhedsforskning
Norrænar kjarnöryggisrannsóknir

Pohjoismainen ydinturvallisuustutkimus
Nordisk kjernesikkerhetsforskning

Nordisk kärnsäkerhetsforskning
Nordic nuclear safety research

NKS-133
ISBN 87-7893-195-9

MORE
Management of Requirements
in NPP Modernisation Projects

- Project Report 2005

Atoosa P-J Thunem, Rune Fredriksen and Harald P-J Thunem
Institute for Energy Technology, IFE, Norway

Olli Ventä, Janne Valkonen and Jan-Erik Holmberg

VTT Technical Research Centre of Finland

April 2006

Abstract

The overall objective of the project MORE is to improve the means for managing
the large amounts of evolving requirements in Nordic NPP modernisation
projects. In accordance to this objective, the activity will facilitate the industrial
utilisation of the research results from the project TACO. On the basis of
experiences in the Nordic countries, the overall aim of the TACO project has
been to identify the best practices and most important criteria for ensuring
effective communication in relation to requirements elicitation and analysis,
understandability of requirements to all parties, and traceability of requirements.
The project resulted in the development of a traceability model for handling
requirements from their origins and through their final shapes. Particular
emphasis for the MORE project in 2005 was put on utilising a prototype of a tool
(TRACE) intended to support an adopted approach to dependable requirements
engineering, suitable for modelling and handling large amounts of requirements
related to all stages of the systems development process and not only those
traditionally including requirements at high-level stages.

Key words

MORE, tracability of requirements, dependable requirements engineering,
TRACE

NKS-133
ISBN 87-7893-195-9

Electronic report, April 2006

The report can be obtained from
NKS Secretariat
NKS-775
P.O. Box 49
DK - 4000 Roskilde, Denmark

Phone +45 4677 4045
Fax +45 4677 4046
www.nks.org
e-mail nks@nks.org

AUTOMATION

MORE
Management of Requirements in NPP

Modernisation Projects
- Project Report 2005 -

Atoosa P-J Thunem, Rune Fredriksen, Harald P-J Thunem
IFE

Olli Ventä, Janne Valkonen, Jan-Erik Holmberg

VTT

 1

Foreword
This document constitutes the 2005 report for the project MORE: Management of Require-
ments in NPP Modernisation Projects (NKS-R project number NKS_R_2005_47, started on
July 1, 2005). The project aims at the industrial utilisation of the results from the project
TACO: Traceability and Communication of Requirements in Digital I&C Systems Develop-
ment (NKS-R project number NKS_R_2002_16, completed in June 30, 2005).

The purpose of the report is to document the research work and related activities in the period
July 1 – December 31 in 2005, including dissemination activities. The work has been concen-
trated on adopting a new approach for requirements engineering and its supporting tool. This
tool makes use of the main elements of the traceability model proposed in the project TACO.
Furthermore, efforts have been put on very active dissemination of the background and objec-
tives of the project MORE within the nuclear community and towards NPPs that do carry out
modernisation projects. Together with the dissemination materials in terms of papers and
presentations, this report provides a sound basis for the work in 2006.

Halden, January 2006

Atoosa P-J Thunem

 2

Table of contents

1. INTRODUCTION ... 5

2. THE TACO TRACEABILITY MODEL .. 6
2.1 THE MOTIVATION AND RATIONALE.. 6
2.2 THE ELEMENTS OF THE MODEL .. 7

3. AN APPROACH FOR DEPENDABLE REQUIREMENTS ENGINEERING................................... 10
3.1 THE BACKGROUND ... 10
3.2 THE FOUR PILLARS OF THE APPROACH... 11

4. TRACE: A TOOL FOR TRACEABILITY OF REQUIREMENTS FOR ANALYSABLE
COMPUTERISED ENVIRONMENTS .. 12

4.1 THE MAIN ELEMENTS OF TRACE .. 13
4.1.1 Paragraphs.. 13
4.1.2 Changes... 14
4.1.3 Change Types .. 15
4.1.4 Links .. 16
4.1.5 History Trees... 16
4.1.6 Sets .. 17

4.2 BASIC ANALYSES .. 18
5. REFERENCES .. 20

6. APPENDIX A: PROJECT ORGANISATION AND ACTIVITIES ... 21
6.1 PROJECT ORGANISATION .. 21
6.2 PROJECT ACTIVITIES... 22

7. APPENDIX B: THE COMPLETE DOCUMENTATION FOR TRACE .. 24
7.1 REQUIREMENTS SPECIFICATIONS.. 24

7.1.1 Paragraph specifications .. 25
7.1.2 Change Types specifications ... 25
7.1.3 Set specifications... 29
7.1.4 Display specifications ... 29
7.1.5 Analysis specifications .. 30
7.1.6 Documentation specifications ... 31
7.1.7 Authentication specifications .. 31
7.1.8 Project specifications .. 31
7.1.9 History Tree specifications.. 32

7.2 DESIGN SPECIFICATIONS... 32
7.2.1 Class specifications... 32
7.2.2 Analysis specifications .. 39

7.3 IMPLEMENTATION SPECIFICATIONS .. 46
7.3.1 Language specifications.. 46
7.3.2 Class specifications... 46
7.3.3 Menu specifications... 55
7.3.4 Display specifications ... 57
7.3.5 DTD/XML Specifications .. 62

8. APPENDIX C: THE DISSEMINATION ACTIVITIES.. 71
8.1 NKS INITIATED SEMINAR ON DECOMMISSIONING .. 71
8.2 SAFECOMP 2005.. 71
8.3 EHPG 2005 .. 71
8.4 PROJECT MEETING (MINUTES) ... 72
8.5 IAEA MEETING .. 72

 3

Abbreviations

IFE Institute for energy technology
MORE Management of Requirements in NPP Modernisation Projects
NKS Nordic nuclear safety research
NPP Nuclear power plant
SKI Swedish Nuclear Power Inspectorate
STUK Radiation and Nuclear Safety Authority of Finland
TACO Traceability and Communication of Requirements in Digital I&C Sys-

tems Development (NKS project number NKS_R_2002_16)
VTT Technical Research Centre of Finland

 4

Summary
This document constitutes the 2005 report for the project MORE: Management of Require-
ments in NPP Modernisation Projects (NKS-R project number NKS_R_2005_47, started on
July 1, 2005). The project aims at the industrial utilisation of the results from the project
TACO: Traceability and Communication of Requirements in Digital I&C Systems Develop-
ment (NKS-R project number NKS_R_2002_16, completed in June 30, 2005).

The overall objective of the project MORE is to improve the means for managing the large
amounts of evolving requirements in Nordic NPP modernisation projects. In accordance to
this objective, the activity will facilitate the industrial utilisation of the research results from
the project TACO. On the basis of experiences in the Nordic countries, the overall aim of the
TACO project has been to identify the best practices and most important criteria for ensuring
effective communication in relation to requirements elicitation and analysis, understandability
of requirements to all parties, and traceability of requirements. The project resulted in the de-
velopment of a traceability model for handling requirements from their origins and through
their final shapes. The traceability model is in terms of a requirement change history tree built
up by linking the different requirements together through the definition of a simplest syntacti-
cal form for a requirement being a paragraph, through a complementary set of basic require-
ment change types, and through mechanisms for requirement categorisation.

On the basis of compiled experiences on the problem of handling large amounts of informa-
tion in relation to Nordic modernisation projects, the project MORE will investigate how to
handle large amounts of evolving requirements in modernisation projects, where the original
requirements and their patterns of development are subject to change. Developing pragmatic
mechanisms for change management is therefore an important prerequisite for the success of
the project MORE.

As the aim is to improve and maturate the results from the project TACO, the efforts during
the period July 1 – December 31 in 2005 have therefore been put on the following:

• Adopting an approach for dependable requirements engineering and its supporting
tool. The tool makes use of the main concepts of the traceability model proposed in
the project TACO, but also responds to other aspects and includes other features.

• Disseminating the background and objectives of the project MORE, in order to estab-
lish collaboration with NPPs involving in modernisation activities. Such collaboration
is a prerequisite for the success of the project.

The activities related to the project MORE included a presentation in an NKS initiated semi-
nar on decommissioning projects in Nordic countries (Roskilde, Denmark, September 13-15,
2005), a paper presentation and demonstration of the prototype during SAFECOMP 2005
conference (Fredrikstad, Norway, September 28-30, 2005), a paper presentation and demon-
stration during the EHPG 2005 (Lillehammer, Norway, October 17-21, 2005), a project meet-
ing (October 18, 2005), and a paper presentation and demonstration during an IAEA special
meeting (Espoo, Finland, November 22-24, 2005). The participation during the two latter
events also included meetings and discussions with the staff members of FORTUM who are
involved in modernisation projects at Loviisa NPP.

 5

1. Introduction
Experiences from modernisation projects at NPPs, particularly in Sweden and Finland, indi-
cate the importance of adequate structure and modularisation of the requirements. It is impor-
tant to handle the evolution of the requirements and the completeness with respect to the re-
quirement sources, supported by some formalism for structuring the requirements. A particu-
lar issue is how to make an evolutionary, iterative systems engineering process that reflects
the evolving nature of the requirements and their understanding, and at the same time meets
the requirements set by the licensing authorities (e.g., with respect to quality assurance and
documentation). An important part of such a process is traceability features making it possible
to trace the requirements back to their origins and forward to their final (actual) specifications.

The overall objective of the project MORE is to improve the means for managing the large
amounts of evolving requirements in Nordic NPP modernisation projects. In accordance to
this objective, the activity will facilitate the industrial utilisation of the research results from
the project TACO. On the basis of experiences in the Nordic countries, the overall aim of the
TACO project has been to identify the best practices and most important criteria for ensuring
effective communication in relation to requirements elicitation and analysis, understandability
of requirements to all parties, and traceability of requirements. The project resulted in the de-
velopment of a traceability model for handling requirements from their origins and through
their final shapes. The traceability model is in terms of a requirement change history tree built
up by linking the different requirements together through the definition of a simplest syntacti-
cal form for a requirement being a paragraph, through a complementary set of basic require-
ment change types, and through mechanisms for requirement categorisation [1][2][3][4].

The purpose of the present report is to document the research work and related activities to
the project MORE: Management of Requirements in NPP Modernisation Projects (NKS-R
project number NKS_R_2005_47, started on July 1, 2005), and carried out in the period July
1 – December 31, 2005. Particular emphasis in 2005 was put on utilising a prototype of a tool
intended to support a more broad perception of requirements engineering, hence suitable for
modelling and handling large amounts of requirements related to all stages of the systems
development process and not only those traditionally including requirements at high-level
stages. Relying on more clear and sound traceability mechanisms is one important feature
amongst the intended properties of the tool. Providing tool support for the main elements of
the traceability model suggested in the project TACO was also among the important issues
raised by the advisory group behind the project TACO (formed through the industrial semi-
nars arranged by the project).

Chapter 2 features a brief description of the traceability model, covering the main elements of
the model. Chapter 3 describes an approach for dependable requirements engineering adopted
in the project MORE. Chapter 4 covers the most important components of the prototype of a
tool for supporting the approach and equally adopted in the project. Chapter 5 presents the
references used to compose the report.

Appendix A features the project activity plan and organisation. Appendix B describes the
main elements of the prototype, in terms of requirements, design and implementation specifi-
cations. Appendix C describes the dissemination activities in 2005.

 6

2. The TACO Traceability Model
As stated previously, the overall aim of the TACO project has been to identify the best prac-
tices and most important criteria for ensuring effective communication in relation to require-
ments elicitation and analysis, understandability of requirements to all parties, and traceability
of requirements. The project resulted in the development of a traceability model for handling
requirements from their origins and through their final shapes. The traceability model is in
terms of a requirement change history tree built up by linking the different requirements to-
gether through the definition of a simplest syntactical form for a requirement being a para-
graph, through a complementary set of basic requirement change types, and through mecha-
nisms for requirement categorisation.

2.1 The Motivation and Rationale
The three main aspects in the objectives of the project TACO were:

• Communication in relation to requirements elicitation and analysis
• Understandability of requirements to all parties
• Traceability of requirements from origin to final stages

Communication: Effective communication in relation to requirements elicitation and analysis
relates to the common understanding of the requirements, which again requires adequate
communication. The traceability model developed in the project TACO supports communica-
tion by providing a common basis, in terms of the requirements change history tree built up
by linking the different requirements together through the definition of a simplest syntactical
form for a requirement being a paragraph, through a complementary set of basic requirement
change types, and through mechanisms for requirement categorisation. Thus, the model can
be used for generating subsets of the change history showing the backwards or forwards
traceability of given requirements. The project TACO provided guidelines for how to utilise
these possibilities in practical work.

Understandability: In almost all cases of systems development, understanding the require-
ments continues to evolve as the development proceeds. For many large systems, the re-
quirements are never perfectly understood or perfectly specified. By relating the development
of the requirements through the traceability model, the different agents involved in the devel-
opment can at any time relate a given version of a requirement to its origins, its different de-
velopment stages, and its relationship to other requirements. Understandability can be further
improved by providing traceability between different perspectives and forms of a require-
ment.

Traceability: It is implied by the foregoing discussion that traceability plays a central role in
the field of requirements engineering, which aims at developing standard and systematic ways
to elicit, document, classify, and analyse requirements. Since these are among the most criti-
cal activities in an engineering process, the effectiveness of traceability management may
have a significant effect on the quality of this process, and thereby on the success of the appli-
cation. In turn, traceability management depends on manners in managing requirement
changes. Management of changes is closely related to the maintainability of a system. Typi-
cally, the requirements for a given system undergo many changes before the development is
completed. These changes may be due to changes in the prospected operation environment,

 7

but may also happen simply as a result of improved insight during the development. Work on
requirements traceability can to a certain extent be seen as a response to the need for keeping
track of these changes. One benefit of traceability is the identification and localisation of the
side effects of a modification, and of the relationships that must be reconfirmed, thereby in-
creasing the assurance that when changes are necessary they will be complete and consistent.

The traceability model adopted aims at forming the logic needed for formalising the activities
related to change management and hence their further automation. By complementing the
model with appropriate terminology, data structures and guidelines for use, the model can be
adapted to different needs related to management of changes in computer-based systems, in-
cluding safety-critical and security-critical systems.

2.2 The Elements of the Model
The traceability model proposed by the project TACO is in terms of a requirement change
history tree built up by linking the different requirements together through the definition of a
simplest syntactical form for a requirement being a paragraph, through a complementary set
of basic requirement change types, and through mechanisms for requirement categorisation.

The change history tree is syntactically built up by composition of instances of eight different
change types. The change types correspond to the following generic actions performed on
requirements, or more generally, paragraphs [1][2]:

• Creating a new paragraph with no prior history
• Deleting an existing paragraph
• Un-deleting a deleted paragraph
• Splitting an existing paragraph, thereby creating a number of new paragraphs
• Combining existing paragraphs by a new paragraph
• Replacing existing paragraphs by a new paragraph
• Deriving a new paragraph from existing paragraphs
• Modifying a paragraph without changing its meaning

The paragraphs constitute the nodes of the tree, whereas the changes constitute the links be-
tween the nodes. On this merely syntactical basis, one can extract various kinds of informa-
tion, including the following:

• All initial paragraphs
• All deleted paragraphs
• All applicable paragraphs
• The complete history of a paragraph
• The complete backwards traceability from a set of paragraphs
• The complete forwards traceability from a set of paragraphs
• The legality of a proposed requirements change

The possibility to find the backwards or forwards traceability from a set of requirements fa-
cilitates backwards and forwards branch isolation and analysis of the change history. The ver-
satility of the representation can be further improved by extending the representation of the
paragraphs to include different parameters that classify the requirements and provide addi-
tional information about the requirement.

 8

When it comes to the representation of the actual parameters, it is important to distinguish
between (1) the information that is essential to identify the paragraph, and (2) the various in-
formation associated to this parameter. Conceptually, and from a perspective of modularity, it
is useful to let the nodes in the change history tree represent the necessary and sufficient in-
formation related to the identity of a paragraph. In the TACO Traceability Model, a paragraph
is represented by the combination of a unique identifier for this paragraph and a version num-
ber to distinguish several versions of the same paragraph. The tree and the paragraphs can
then be used and interpreted depending on the application in focus. For example, in one appli-
cation, only the latest version of a paragraph can be an applicable paragraph (that is, a new
version of a paragraph is introduced only if this replaces old versions.), whereas in another
application, several versions of a paragraph can be applicable. In any case, it is possible to
make duplicates of a paragraph when these are treated as different paragraphs that in reality
are different only with regard to a certain parameter. This can be, e.g., the “application condi-
tions” attached as guidelines to every single variant of the paragraph. Each variant will, how-
ever, be represented with a separate paragraph having its own identifier and version number.

It is important to note that concepts similar to those described above for the traceability model
proposed in the project TACO can be found in commercial tools for version control and con-
figuration management. Although the change types might have other names, they typically
resemble those defined here. In general, however, these tools do not offer an identifiable, for-
mally defined traceability model at the paragraph level, as almost all of these tools are file-
based and not paragraph-based. Also, as the traceability model is fully generic, it can be
formed according to the approach chosen for requirements engineering. Thus, an advanced
approach can basically be mapped into the model.

Figure 1 shows a change history tree that is consisting of nodes represented by a pair of a
paragraph identifier and a version number.

The development of the requirements in Figure 1 starts with the introduction of the para-
graphs p1, p2, and p3. At later stages, another two new paragraphs are introduced; p5 and
p11. All the other paragraphs are developed on the basis of these five paragraphs. Paragraphs
p1 and p2 are first modified and then combined into a new paragraph p4. After a modifica-
tion, this paragraph is split into four separate paragraphs p7 through p10. The latter of these
paragraphs is modified and then combined with p6, originally derived from paragraphs p3 and
p5, giving paragraph p12. It is certainly possible to represent the change history tree textually
in such a way that the temporal relationships between the different changes are maintained.

Let us now consider other kinds of information attached to a paragraph, in terms of parame-
ters (or attributes). The purpose of the tree is to give a complete representation of the changes
and how they are related to each other. As has been argued in the foregoing, it is not neces-
sary to represent all other types of information explicitly in the change history tree. For an
implicit modelling, we can think of these relations in terms of some basic mathematical con-
cepts:

• Sets: These are finite collections of objects of some type, and can be used for repre-
senting subsets of the paragraphs. By way of example, the classification of paragraphs
with respect to Business plan, Requirements document, Design specification, etc, can
be represented by means of separate, maybe overlapping sets corresponding to the dif-
ferent classification terms. Finding, say, all Business plan related requirements is then

 9

trivial, since they are given by the corresponding set (of course, the actual identifica-
tion and specification of these requirements, resulting in the establishment of the cor-
responding set is another matter). Checking whether a requirement belongs to the
Business plan can equally be done by checking whether the given paragraph is a
member of the corresponding set. On the other hand, finding the class of a given para-
graph cannot be done by simple look-up but involves checking all the different sets for
membership.

add add add

(p1,v0) (p2,v0) (p3,v0)

modify modify modify

(p1,v1) (p2,v1) (p3,v1)

combine modify add

(p4,v0) (p3,v2) (p5,v0)

modify derive

(p4,v1) (p6,v0)

split modify

(p7,v0) (p8,v0) (p9,v0) (p10,v0) (p6,v1)

modify delete modify modify

(p7,v1) (p10,v1) (p6,v2)

modify modify add combine

(p7,v2) (p8,v1) (p11,v0) (p12,v0)

replace modify modify

(p13,v0) (p11,v1) (p12,v1)

add add add

(p1,v0) (p2,v0) (p3,v0)

modify modify modify

(p1,v1) (p2,v1) (p3,v1)

combine modify add

(p4,v0) (p3,v2) (p5,v0)

modify derive

(p4,v1) (p6,v0)

split modify

(p7,v0) (p8,v0) (p9,v0) (p10,v0) (p6,v1)

modify delete modify modify

(p7,v1) (p10,v1) (p6,v2)

modify modify add combine

(p7,v2) (p8,v1) (p11,v0) (p12,v0)

replace modify modify

(p13,v0) (p11,v1) (p12,v1)
Figure 1. The example of a change history tree.

• Mappings: These are functions from a source set to a target set, and can be used for

assigning information to the paragraphs in a simple look-up fashion. With this solu-
tion, e.g. the classification of paragraphs can be represented by mappings from the
paragraphs to their classification. Finding the classification of a requirement is then
simple, since it reduces to looking up the classification of that requirement. Finding all
requirements is possible, but less trivial than for sets, as it involves selecting all re-
quirements that are mapped to a certain term. On the other hand, the concept of rela-
tion is more convenient if there may be more than one class for a requirement.

• Relations: These are more general than mappings, since they allow an element in the

source set to be associated to more than one element in the target set. With this solu-
tion, finding the classification of a requirement involves finding all elements in the
target set (the classes) that are related to the given requirement. Finding all require-
ments related to a certain class can alternatively be understood as the inverse relation.

Sets can be considered as being implemented as simple lists. Mappings and relations can be
considered as being implemented as tables. These representation concepts will suffice for rep-

 10

resenting all information associated to the requirements. It is, however, possible to represent
the same information in other ways as well, as long as consistency is maintained.

A basic piece of information related to a requirement is certainly the statement (phrasing) of
the requirement. Assuming that (at most) one statement is associated to each requirement, we
may think of this information as being available by means of a mapping from versioned re-
quirements to their statements, see Table 1.

Requirement Statement
(p1,v0) <Statement of version v0 of paragraph p1>
(p1,v1) <Statement of version v1 of paragraph p1>
(p2,v0) <Statement of version v0 of paragraph p2>

... ...
(p13,v0) <Statement of version v0 of paragraph p13>

Table 1. Mapping from requirements to their statements.

As is evident from Table 1 that the statement of a given requirement can be found by simple
look-up in the table implementing the mapping. The table can be utilised in different ways.
By way of example, finding all applicable requirements can be found by filtering the mapping
to find the subset of the mapping that relates to applicable paragraphs only. Filling in the rele-
vant information is an obvious task of an information system designed to support the use of
the model.

3. An Approach for Dependable Require-
ments Engineering
This chapter describes a practical approach for dependable requirements engineering of com-
puterised systems. The approach is the joint result of research within requirements engineer-
ing, systems modelling (mainly based on object-oriented, semi-formal and agent-oriented
modelling methodologies), and model-based risk analysis and assessment [5][6][7]. The fol-
lowing provides some background and covers the main aspects of the approach.

3.1 The Background
Especially within information and communication technologies (ICT) and their applications
in different branches, several approaches have been proposed towards a better system devel-
opment process. Among the most applied is the Rational Unified Process (RUP) that provides
a matrix-oriented lifecycle model highly supporting the time aspect of the lifecycle. Here, the
road map is formed by two main activity categories: disciplines followed to develop the sys-
tem and phases related to its life-path. The workload in each phase is decided by the actual
discipline in focus: More elaboration phase is required during the design discipline, whereas
more construction is needed during the implementation. Figure 2 illustrates another extended
version of the RUP model, called the Enterprise Unified Process (EUP).

 11

Figure 2. The Enterprise Unified Process (EUP).

Nevertheless, despite the availability of detailed guidelines for sub-activities in each disci-
pline and for the number of iterations in each phase, neither RUP nor any other lifecycle mod-
els provide guidelines on how to achieve traceability among phases and disciplines. Also, if
system properties are addressed at all, the implied concern is almost entirely on functional and
operational factors, and not other dependability factors such as safety, security, reliability,
flexibility and maintainability. To exemplify, there exist no instructions on how the security
issues associated with the specific system architecture or application domain can influence the
length of a certain phase, or the amount of certain sub-activities during the iterations [6]. The
lack of addressing dependability factors in available life cycle models explains also why the
concept of risk and risk analysis has not been an issue to take into account for these models.

As already mentioned, change management is closely related to the maintainability of the
system development process and the result (product) of this process, the operational and ap-
plied system itself. In reality, clear and sound change management mechanisms are necessary
to ensure the dependability of the task of requirements engineering. Typically, the require-
ments at each stage of the development process of a system undergo many changes before the
development is completed. These changes may be due to changes in the prospected operation
environment, but may also happen simply as a result of improved insight during the develop-
ment or a desire to incorporate technological advances into the development stages (use of
new methods, procedures, tools, etc.). Thus, it appears that change management mechanisms
themselves depend highly on whether they utilise requirements traceability mechanisms.

3.2 The Four Pillars of the Approach
The approach for dependable requirements engineering is different from the traditional man-
ner of understanding requirements engineering, as the approach advocates a perception of a
requirement to be applicable for all stages of the system development process (or system life-
cycle) and not only the high-level stages. Based on this perception, the requirements should

 12

be identified, specified, validated and verified, and finally implemented for all stages of the
system development process. Referring to the disciplines in the RUP/EUP model shown in
Figure 2, this means that requirements should be defined and specified in an inter-disciplinary
fashion.

Furthermore, the approach aims at making a computerised system and its lifecycle analysable
with regard to several dependability factors such as safety, security, reliability, flexibility and
maintainability [5]. This means that dependability factors are integrated into the lifecycle,
thus also integrated into the very definition of dependability-critical requirements. Addition-
ally, the approach recognises the relationship between how a requirement can be met and how
it can be opposed to, due to unexpected or unwanted events. Thus, the requirements expressed
in this approach are also risk-informed [5][7]. Finally, the approach acknowledges the impor-
tance of well-defined traceability mechanisms to provide links between the requirements be-
longing to a particular stage or different stages of the lifecycle.

In order to validate and verify the requirements and their changes in a dependable manner,
different analyses are needed as an integrated part of carrying out each stage of the develop-
ment process. The most important analysis is that of thorough risk analysis with focus on one
or several dependability factors that need to be analysed and assessed, before introducing any
progress or any change. There is a need for traceability of the requirements related to a spe-
cific risk analysis method or process, in accordance with the requirements of system devel-
opment process and its product a risk analyst is supposed to analyse.

From the above, the four main aspects of the approach are:

1. Requirements engineering for all stages of the system development process
2. Integrating dependability factors into the system development process, hence into very

definition of the requirements
3. Integrating risk analysis and assessment into the system development process and thus

requirements engineering, so that risks are associated with the dependability-critical
requirements

4. Utilising traceability mechanisms for providing well-defined links amongst the re-
quirements within a stage and across the stages

The next chapter explains the main elements of a tool that aims to support the above approach
by also utilising the core elements of the traceability model developed in the project TACO.
This tool is called TRACE: Traceability of Requirements for Analysable Computerised Envi-
ronments [8].

4. TRACE: A Tool for Traceability of Require-
ments for Analysable Computerised Environ-
ments
As explained earlier, providing tool support for the main elements of the traceability model
suggested in the project TACO was also among the important issues raised by the advisory
group behind the project TACO (formed through the industrial seminars arranged by the pro-

 13

ject). To provide tool support for not only the traceability model but in higher degrees for the
approach described in Chapter 3, the first prototype of the tool TRACE was developed. The
work started in the beginning of 2005 and in parallel with the finalisation activities related to
the project TACO.

The ideas behind the features of the tool were all concentrated on the four main components
of the approach for dependable requirements engineering. Furthermore, it has been considered
as a very important feature that the tool can be expanded as well as tailor-made (specialised),
as response to different needs and applications.

This chapter describes the basic elements of TRACE that in combination can be used to
achieve the objectives behind the approach proposed in an efficient and practical manner. The
following summarises therefore the main possibilities in TRACE:

• Traceability between the requirements at a particular stage of the system lifecycle

• Traceability between the requirements defined for different stages of the system life-
cycle

• Traceability of changing or changed requirements throughout the system lifecycle for
better change management

• Traceability of dependability-related requirements throughout the system lifecycle for
better dependability analysis

• Traceability of risk factors with respect to a certain dependability factors, and thus
traceability of all risk-informed requirements related to these risk factors

The basic elements of TRACE are Paragraphs, Changes, Change Types, Links, History
Trees, and Sets. The following focuses on their description and their applications.

4.1 The Main Elements of TRACE

4.1.1 Paragraphs

The traceability approach and associated tool focuses on the concept of Paragraphs, which
are objects containing the text describing a specific requirement. Paragraphs are associated
with the following list of attributes:

id Automatically generated unique identifier.

label Textual short label.

version Version number. A Paragraph can be subject to a number of different
Changes, where some will cause the creation of Paragraphs with a new label,
and other the creation of Paragraphs with the same label but incremented
version number (see description of Change class below).

time Time of creation.

status Status attribute (see table below for possible values).

 14

description Paragraph content, which for e.g. software development will be the textual
description of a requirement. The purpose of the traceability approach is to
keep a track of all changes to this attribute across different Paragraph ver-
sions and across all development phases.

change_in The change that caused the creation of the Paragraph.

changes_out List of changes performed on the Paragraph causing the creation of other
Paragraphs.

origins List of paragraph origins. See description of Link (which is the class imple-
menting the concept of origin) below.

The status attribute of a Paragraph or a Change can take the following values:

None Default Paragraph/Change status.

Created Indicates that the Paragraph is the first in a list of Paragraphs with the same
label, but different version numbers. The Paragraph is the result of either a
create Change or a Change performed on another Paragraph which creates one
or more new Paragraph(s) (derive, split, combine...).

Trace The Paragraph/Change is part of a trace result, e.g. a backward trace. The
Paragraph/Change will be highlighted in the history tree display.

Highlight The Paragraph/Change is highlighted in the history tree display.

Deleted The Paragraph has been explicitly deleted (having been subject to the delete
Change).

4.1.2 Changes

The Change class contains the properties of a single Change from one or more Paragraphs
into one or more Paragraphs. Changes are associated with the following list of attributes:

id Automatically generated unique identifier.

type Type of Change (see description of ChangeType class below).

sources List of input Paragraphs to this Change.

targets List of output Paragraphs from this Change.

status Status attribute (see table above).

user_id The identifier of the user responsible for introducing the Change.

time Time of Change introduction.

reason Textual description of the reason for introducing the Change.

basis The basis for introducing the Change (see table below).

The basis parameter is used to provide some description of the basis for applying the Change
to one or more Paragraphs:

Method The Change has been introduced due to the outcome of some analysis method,

e.g. a HazOp analysis, which has suggested that the Paragraph(s) must be up-

 15

dated due to some shortcoming.

Expert The Change has been introduced due to input from some expert (expert judge-
ment).

None No special basis is given for the Change.

4.1.3 Change Types

The ChangeType class is used to define different types of Changes. The ChangeType class is
associated with the following list of attributes:

label Unique label.

para_in The number of input Paragraphs (possible values are “0”, “1”, “1 or more”
and “2 or more”).

para_out The number of output Paragraphs (same as above).

description Textual description of change type.

result_status Status of output Paragraph(s) (see table above).

update How to update the output Paragraphs label and version (see below).

The update value defines how the Paragraph label and version number are determined for a
Paragraph resulting from a Change:

No update The output Paragraph has the same label and version number as the

input Paragraph.

New label The output Paragraph is given a new label.

Increment version
number

The version number of the output Paragraph is incremented relative to
the input Paragraph.

For use in software development, the default Change types include:

• create
• modify
• combine
• replace

• split
• derive
• delete
• un-delete

An example of a change type is “modify”, where the attribute values are given in the follow-
ing table:

label “modify”

para_in 1

para_out 1

description “This change denotes a modification of the paragraph”

result_status None

update Increment version number

 16

Only one Paragraph at a time can be subject to a modify Change, and the result is a single
Paragraph where the label remains the same, while the version number is incremented.

4.1.4 Links

In many cases it can be useful to include information regarding the reason for introducing a
Paragraph. Examples of this information can be:

• a textual reference from a brainstorming meeting

• an IAEA safety standard, suggesting the introduction of a specific safety function

• a web-page with statistical data showing the potential improvements in system reli-
ability by developing in accordance with certain object-oriented metrics

• a link between a Paragraph in the implementation phase and a Paragraph in the design
phase, indicating that the former fulfils the requirements of the latter

The origin attribute of a Paragraph is used to provide information regarding where the idea of
the Paragraph originated, and it can be a combination of textual descriptions, files, hypertext
links, and other Paragraphs. The Link type implements the concept of the origin attribute, and
the attributes associated with the Link type are:

type Type of link

string Textual information

Examples of Links are given in the following table:

A textual link
object Link
 type: TEXT
 string: “This Paragraph was included due to a discussion at project meeting
 in Halden on 2005-04-08”
end
A file link
object Link
 type: FILE
 string: “c:\projects\more\p08-basis.doc”
end
A hypertext link
object Link
 type: HYPERTEXT
 string: “http://standards.ieee.org/catalog/olis/index.html”
end
A Paragraph link
object Link
 type: PARAGRAPH
 string: “PA_002389” (the ID of a particular Paragraph)
end

4.1.5 History Trees

The HistoryTree class is used to hold all required information about one history tree, includ-
ing all Paragraphs and Changes. An example of a history tree is shown in Figure 3. History
trees will show the development of a number of Paragraphs as they are subject to Changes,
and for software development projects a typical use is to create one history tree for each de-
velopment phase.

 17

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

Figure 3. Example history tree.

The list of attributes associated with a HistoryTree is:

id Automatically generated unique identifier.

label Textual label provided by user.

paragraphs List of Paragraphs.

changes List of Changes.

create_time Creation time.

last_change_time Last time history tree was changed.

4.1.6 Sets

The Set class extends the HistoryTree class to include a list of subsets, links to parent and
child sets, and information about opening and closing times and status. This allows a Set to
contain any number of Paragraph objects, as well as any number of Set objects, and to main-
tain a derivative relationship between Sets.

The list of attributes associated with a Set (in addition to those inherited from the HistoryTree
class) is:

sets List of subsets.

parent Parent set.

 18

child Child set.

open Indicates whether Set is open or closed.

close_time Time the Set was closed.

One typical use of the Set could e.g. be to group all security-related requirements into a sepa-
rate Set, facilitating a subsequent security analysis and its associated risk analysis.

A Set will be able to compare its content (specifically its list of Paragraphs) to the content of
another Set, i.e. which Paragraphs are common to both Sets, and which Paragraphs are
unique. This ability is particularly relevant in change management, where the difference be-
tween two versions of the same software with regard to which Paragraph versions they im-
plement is readily apparent.

An open Set can have its content (i.e. list of paragraphs, history trees and subsets) changed,
while a closed set is not editable. In software development this will typically correspond to a
version of the software where the feature set has been frozen.

4.2 Basic analyses
Using the features of the classes described in Section 4.1, the tool can perform a number of
analyses relevant to software development and change management:

Created Paragraphs Whenever a new Paragraph is created, either “from scratch” or by certain

Changes to other Paragraphs (e.g. derive, split, combine...), the Paragraph is
marked as “Created”.

Current Paragraphs The current or most recently updated version of a Paragraph is found by
iterating through the list of Paragraphs and for each Paragraph label find the
Paragraph with the highest version number. (Paragraphs that have been
explicitly deleted are not included in this search)

Deleted Paragraphs Whenever a Paragraph is deleted, it is marked as “Deleted”.

Paragraph History
(forward/ backward)

The Paragraph history for any Paragraph can be determined by finding all
versions of the selected Paragraph, all Changes affecting these versions, as
well as the relevant version of all Paragraphs included in these Changes.
This is straightforward, as all Paragraph objects contain lists of “incoming”
and “outgoing” Changes, and all Change objects contain lists of “input” and
“output” Paragraphs.

Paragraph Trace
(forward/ backward)

Forward: Forward traceability relates to the development of Paragraphs
starting with a selected Paragraph. The result will include all Paragraphs
affected by the selected Paragraph (see Figure 4).

The trace is performed by a recursive search through all output Changes
starting with the selected Paragraph. The search through a sub-tree is halted
once a Paragraph without any output Changes is reached.

Backward: Given a Paragraph, we want to find the development of Para-
graphs that leads to this Paragraph, i.e. the minimum fragment of the
Change history that has influenced the development of the given Paragraph

 19

(see Figure 5).

The trace is performed by a recursive search through all input Changes
starting with the selected Paragraph. The search through a sub-tree is halted
once a Paragraph whose input is a “create” Change is reached.

Origin Trace The origin parameter in the Paragraph class provides links to information
used when creating a Paragraph. This information could e.g. be a textual
description of why the Paragraph should be included, a shortcut to a file, a
hypertext link to an IEEE standard used as basis for the Paragraph, or a link
to another Paragraph in a different history tree. A typical use of the origin
parameter could be during a software development project, where a separate
history tree is created for each development phase (requirement, design,
implementation, test...). Here, each Paragraph would represent a specific
version of a specification, and often a specification in the design phase
would be based on a specification in the requirement phase (see Figure 6).

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

Figure 4. Forward trace from (p3, v0).

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

Figure 5. Backward trace from (p12, v1).

p1, v0 p2, v0 p1, v0

p1, v1

modify

p2, v1

modify

p3, v0

combine

p3, v1

modify

p3, v1

p3, v2

modify

p3, v0

modify

p1, v2 p2, v0

derive

p1, v1

modify

modify

create create create

create

p1, v0

p2, v1

p2, v2

modify

p2, v0

modify

p1, v2

split

p1, v1

modify

modify

create

p3, v0

p3, v1

modify

modify

p3, v2

History Tree 1
“Requirements Spec”

History Tree 2
“Design Spec”

History Tree 3
“Implementation Spec”

p1, v0 p2, v0 p1, v0

p1, v1

modify

p2, v1

modify

p3, v0

combine

p3, v1

modify

p3, v1

p3, v2

modify

p3, v0

modify

p1, v2 p2, v0

derive

p1, v1

modify

modify

create create create

create

p1, v0

p2, v1

p2, v2

modify

p2, v0

modify

p1, v2

split

p1, v1

modify

modify

create

p3, v0

p3, v1

modify

modify

p3, v2

History Tree 1
“Requirements Spec”

History Tree 2
“Design Spec”

History Tree 3
“Implementation Spec”

Figure 6. Origin trace. The dotted lines are links from Paragraphs in one development phase

to a previous phase.

 20

5. References
[1] T. Sivertsen et. al., “Traceability and communication of requirements in digital I&C systems de-

velopment” – Project report 2004, NKS-103, April 2005.

[2] T. Sivertsen et. al., “Traceability and communication of requirements in digital I&C systems de-
velopment” – Final report 2005, NKS-115, October 2005.

[3] T. Sivertsen et. al., “The TACO approach for traceability and communication of requirements”,
Proceedings of SAFECOMP 2005, September 2005.

[4] T. Sivertsen et. al., “Traceability and communication of requirements in digital I&C systems de-
velopment” – The TACO project, in: Proceedings of the Man-Technology-Organisation Sessions,
Enlarged Halden Programme Group Meeting, Lillehammer, Norway, October 2005.

[5] A. P-J Thunem, “Modelling of Knowledge Intensive Computerised Systems Based on Capability-
Oriented Agent Theory (COAT)”, International IEEE Conference on Integration of Knowledge In-
tensive Multi-Agent Systems, IEEE-KIMAS’03 (58-63), September 2003, Cambridge (MA),
USA.

[6] A. P-J Thunem, “A Framework for Dependable Development Process of Complex Computerised
Systems”, the joint European Safety and Reliability 2004 (ESREL04) and the 7th International
Probabilistic Safety Assessment and Management (PSAM7) conference (902-907), June 2004,
Berlin, Germany.

[7] A. P-J Thunem, “An Approach for Dependable Requirements Engineering and Change Manage-
ment of Dependability-Critical Computerised Systems”, To be published and presented in the 8th
International Probabilistic Safety Assessment and Management (PSAM8) conference, May 2006,
New Orleans (LA), USA.

[8] A. P-J, Thunem, H. P-J Thunem, “TRACE: Traceability of Requirements for Analysable Comput-
erised Environments”, IAEA Technical Meeting on Implementing and Licensing Digital I&C Sys-
tems and Equipment in Nuclear Power Plants, November 2005, Espoo, Finland.

 21

6. Appendix A: Project Organisation and Ac-
tivities

6.1 Project Organisation
The project is led by Atoosa P-J Thunem (IFE), and comprises the following organisations
and persons:

Organization Address Project participants
IFE Institute for energy technology

P.O. Box 173
NO-1751 Halden
Norway

Atoosa P-J Thunem
+47 69 212322
(atoosa.p-j.thunem@hrp.no)

Rune Fredriksen
+47 69 212430
(rune.fredriksen@hrp.no)

Harald P-J Thunem
+47 69 212278
(harald.p-j.thunem@hrp.no)

VTT VTT Industrial Systems
P.O. Box 1000
FIN-02044 VTT
Finland

Olli Ventä
+358 20 722 456 6556
(Olli.Venta@vtt.fi)

Janne Valkonen
+358 20 722 6469
(Janne.Valkonen@vtt.fi)

Jan-Erik Holmberg
+358 20 722 6450
(Jan-Erik.Holmberg@vtt.fi)

The activity organisation is subject for extension by involvement of additional industrial part-
ners. In addition, the network represented by the activity organisation is extended though the
arrangement of the industrial seminars.

The project leader is responsible for organising the work within the project and for directing it
towards its objectives. This includes:

• Project planning and tracking
• Establishment and maintenance of the project archive
• Establishment of good communication and cooperation within the project
• Reporting to NKS
• Coordination of activities, in particular the production of the project deliverables
• Follow up of meetings and decisions

mailto:atoosa.p-j.thunem@hrp.no
mailto:rune.fredriksen@hrp.no
mailto:harald.p-j.thunem@hrp.no
mailto:Olli.Venta@vtt.fi
mailto:Janne.V.Valkonen@vtt.fi
mailto:Jan-Erik.Holmberg@vtt.fi

 22

• Securing of proper quality control, including review and approval of documents in-
cluded in the project archive

• Reporting of deviations and implementation of agreed corrections

All the individual participants represent important parts of the technical competence within
the project, and are responsible for contributing to the activities in such a way that the project
can meet its objectives.

The funds received from NKS for the work in 2006 are estimated to cover 50% of the overall
costs. The remaining 50% will be covered through the individual costs and efforts of each
participating organisation. Each organisation will be responsible for ensuring that their contri-
bution is sufficient to satisfy their fraction of the overall budget. In order to facilitate roughly
the same amount of effort from IFE and VTT to the technical part of the project, an estimated
20% of the funds will be allocated for project coordination (IFE). The remaining 80% will be
split equally between IFE and VTT. This gives the following split of funds:

IFE 60% (= 20% + 40%)
VTT 40%

Possible common costs related to the arrangement of project meetings and seminars will be
split equally between IFE and VTT. The approximate division of costs between work, travel,
and equipment is given in the Proposal Summary 2006 submitted to NKS in September 2005.

6.2 Project Activities
The activity will be carried out through a three-year period, as a strategic follow-up activity to
the project TACO. The activity started on July 1, 2005 and will terminate on June 30, 2008.
The project is planned to deliver two industrial seminars or international workshops closely
related to the background, objectives and activities of the project, at least two organised visits
to selected NPPs undertaking modernisation activities, three annual project reports, and one
final report.

The activities in 2005 have been with focus on the following:

• Establishing a strategy and implementation plan for the improvement and industrial
take-up and utilisation of the research results from the project TACO. This was done,
amongst others, through adopting an approach for dependable requirement engineer-
ing and its supporting tool into the project MORE, as described in this report.

• Compiling experiences on the problem of handling large amounts of information in re-
lation to Nordic modernisation projects. This has been an ongoing activity, amongst
others, through communication with Nordic NPPs and in particular Loviisa NPP
(FORTUM), and through dissemination and representation activities.

• Extending the industrial network from the project TACO. This has been an ongoing
and very successful activity.

• Preparing and arranging the first organised visit to an NPP that currently undertakes or
plans to undertake one or several modernisation activities. Through several contacts
with several staff members at FORTUM involved in modernisation projects at Loviisa
NPP, the project anticipates a visit to Loviisa NPP during Spring 2006.

 23

The activities in 2006 and 2007 will carry out the implementation plan in cooperation with an
extended network of industrial partners. The network established through the activity organi-
sation and the TACO industrial seminars will be further extended and consolidated through
the arrangement of industrial seminars or international workshops.

The experiences and lessons learned from the research will be reported in the annual project
reports, and summarised in a final report to be produced in the first half of 2008.

The activities in 2006 will include the following:

• Establishing a strategy for continuous improvements of the results from the project, on
the basis of the received feedback and gained knowledge

• Carrying out the implementation plan for the industrial take-up and utilisation of the
research results

• Continuing to compile experiences on the problem of handling large amounts of in-
formation in relation to Nordic modernisation projects, amongst others, through organ-
ised visits to selected plants

• Extending the industrial network, also through disseminations and presentation of the
results in Nordic and NKS related events such as seminars and workshops

• Preparing and arranging an international workshop on dependable requirements engi-
neering (November - December 2006)

Reporting plan
The overall documentation schedule is as follows:

• January 2006: Activity report for 2005
• Spring 2006: Presentations, materials and results from an organised visit to Loviisa

NPP with the aim of being granted access to documentation available on some mod-
ernisation activities

• December 2006: Presentations and materials from the international workshop
• January 2007: Activity report for 2006
• December 2007: Presentations and materials from the industrial seminar or interna-

tional workshop planned for 2007
• January 2008: Activity report for 2007
• June 30, 2008: Final report

The discussions from the project meetings and industrial seminars / international workshops,
and the progress of the project will be reported by means of detailed minutes.

 24

7. Appendix B: The Complete Documentation
for TRACE
The following covers the documentation for TRACE, in terms of requirements specifications,
design specifications and implementation specifications.

7.1 Requirements Specifications
This section describes the requirements specification for the prototype of the tool TRACE.
The requirements for the tool reflect the purposes of the tool, which are to support the ap-
proach adopted for dependable requirements engineering. The tool utilises the main elements
of the traceability model proposed in the project TACO, and further development and en-
hancement of the model, also formed during internal meeting discussions. The following cov-
ers the overall requirements for the tool:

• The tool must be able to visualise history trees and sub-trees.
• The tool must support both graphical and textual presentation of history trees, both for

whole trees and sub-trees.
• The tool should support traceability of requirements related to e.g. a given standard. Sev-

eral versions of the tool may be developed, depending on customer needs.
• Data input: primary concern is to avoid duplication of work. Today, requirements are

mostly written as pure text in Word.
• The tool must be able to create sets to hold paragraphs, history trees and other sets. Each

set is defined by the user and labelled either as closed or opened. A closed set is never to
be opened again (remain unchangeable for all future). An open set may be changed by the
users.

• The sets may be related to each other by a ‘derivation’ relationship meaning that one set is
used to derive the other one. These two sets are called subsequent sets.

• The sets must have information on the opening and closing dates.
• The tool must keep all historic changes to a set in an incremental manner, i.e. one needs to

know the differences between any two subsequent versions. Nice to have: To know the
differences between any two versions of sets.

• The tool must be able to associate explanations for all changes between subsequent set.
These changes must have the possibility to associate to any number of element (e.g. pro-
cedure element, such as instructions, steps, component manipulations etc.), not only two
of them. The changes thus associated can be several, referring to information elements
both inside and outside the tool (e.g. minutes from revision meetings).

• The tool must support both generic and specific change types. The latter will belong to
one or several groups of change types, e.g., gathered towards specific “projects”.

• The tool must provide both static and dynamic information about any change in the his-
tory tree, including the basis for a change (methodical, expert judgement or logical) and
the arguments for applying the change on a paragraph.

• The tool must support distinct textual description of any change in the history tree.

 25

7.1.1 Paragraph specifications

01-01: Paragraph attributes

The tool must associate each paragraph with (at least) these attributes:

Attribute Description

Label String

Version Integer number

Time Creation time

Open True, False

Status Created, Deleted, Other

Description Format: rich text, html, separate XML standard, etc.

Origin(s) Can be document references and/or other paragraphs in other phases

OriginOf (**) Other paragraph(s) for which this paragraph is an origin

ChangeIn Change performed on other paragraph(s) to produce this paragraph.

ChangeOut Change performed on this paragraph to produce other paragraph(s).

01-02: Paragraph rules

1. A paragraph within a single history tree can be subject to several changes, unless the
paragraph has already been deleted as a result of a change.

2. A deleted paragraph can be un-deleted using the Un-delete change type.
3. A paragraph should initially be Open, but should be set to Closed after a change.
4. It should not be possible to create a new Paragraph with the same label as an existing

Paragraph in the same history tree.

7.1.2 Change Types specifications

The tool must support a number of change types, and not allow illegal paragraph changes. A
change type should include at least the following attributes:

Attribute Description

Label String

ParagraphsIn Integer number, determining allowed number of input paragraphs
(typically either “0”, “1”, “1 or more” or “2 or more”)

ParagraphsOut Integer number, determining allowed number of output paragraphs
(typically either“0”, “1”, “1 or more” or “2 or more”)

Description Textual description of change type

ResultStatus Status of resulting paragraph(s) after change

 26

Identification Update Result paragraph should have either new label or incremented ver-
sion number

To satisfy the requirements, a group of change types could include e.g.:

• Creation
• Modification
• Combination
• Replacing
• Splitting
• Derivation
• Deletion
• Un-deletion

02-01: Paragraph creation

The tool must support paragraph creation, and ensure legality of creation. The change type
definition for “create” is:

Attribute Description

Label “create”

ParagraphsIn 0

ParagraphsOut 1

Description “This change denotes the creation of a paragraph”

ResultStatus Created

Identification Update New label

02-02: Paragraph modification

The tool must support paragraph modification, and ensure legality of modification. The
change type definition for “modify” is:

Attribute Description

Label “modify”

ParagraphsIn 1

ParagraphsOut 1

Description “This change denotes a modification of the paragraph”

ResultStatus Other

Identification Update Increment version number

02-03: Paragraph combination

 27

The tool must support paragraph combination, and ensure legality of combination. The
change type definition for “combine” is:

Attribute Description

Label “combine”

ParagraphsIn 2 or more

ParagraphsOut 1

Description “This change denotes a combination of 2 or more paragraphs”

ResultStatus Created

Identification Update New label

02-04: Paragraph replacing

The tool must support paragraph replacing, and ensure legality of replacing. The change type
definition for “replace” is:

Attribute Description

Label “replace”

ParagraphsIn 1 or more

ParagraphsOut 1

Description “This change denotes a replacement of one or more paragraphs”

ResultStatus Created

Identification Update New label

02-05: Paragraph splitting

The tool must support paragraph splitting, and ensure legality of splitting. The change type
definition for “split” is:

Attribute Description

Label “split”

ParagraphsIn 1

ParagraphsOut 2 or more

Description “This change denotes a split of one paragraph into 2 or more para-
graphs”

ResultStatus Created

Identification Update New labels

02-06: Paragraph derivation

 28

The tool must support paragraph derivation, and ensure legality of derivation. The change
type definition for “derive” is:

Attribute Description

Label “derive”

ParagraphsIn 1 or more

ParagraphsOut 1

Description “This change denotes a derivation of 1 or more paragraphs into 1
paragraph”

ResultStatus Created

Identification Update New label

02-07: Paragraph deletion

The tool must support paragraph deletion, and ensure legality of deletion. The change type
definition for “delete” is:

Attribute Description

Label “delete”

ParagraphsIn 1

ParagraphsOut 0

Description “This change denotes a deletion of 1 paragraph”

ResultStatus Deleted

Identification Update None

02-08: Paragraph un-deletion

The tool must support paragraph un-deletion, and ensure legality of un-deletion. The change
type definition for “undelete” is:

Attribute Description

Label “undelete”

ParagraphsIn 1

ParagraphsOut 1

Description “This change denotes an un-deletion of a paragraph”

ResultStatus Other

Identification Update None

 29

7.1.3 Set specifications

03-01: Set creation

The tool must support the creation of different sets, such as e.g. phase sets and dependability
factor sets. Each set may contain any number of paragraphs, history trees or other sets (sub-
sets), e.g.:

Set: PHASE
Subsets: REQUIREMENTS, DESIGN, IMPLEMENTATION, TEST

Set: DEPENDABILITY
Subsets: RELIABILITY, SECURITY, SAFETY, ROBUSTNESS, MAINTAINABILITY,

USABILITY, REUSABILITY, FLEXIBILITY, EFFICIENCY, PORTABILITY
03-02: Set support

The tool must support associating a paragraph, a history tree or another set to one or more
sets, so that a paragraph may belong to e.g. the [PHASE] DESIGN and [DEPENDABILITY]
USABILITY/FLEXIBILITY sets.

03-03: Set comparisons

The tool must be able to display differences between sets, i.e. which paragraphs, history trees
and other sets are members of the selected sets and which are unique to each set.

03-04: Set status

A set can be either open (editable) or closed (non-editable). When a set is created it is initially
open, and the tool shall record the time it was created. The set can be closed by the user, and
the tool shall record the time it was closed. When the set is closed it cannot be altered (ed-
ited), and it cannot be re-opened.

03-05: Set relation

A set can be derived from another set, i.e. there can be a parent/child relationship. A set can
have only one parent set and one child set.

03-05: Set rules

1. It should not be possible to create a new Set with the same name as an existing Set.
2. A Set should not be allowed to contain itself. This also means that a Set A should not

be allowed to contain Set B, if Set B already contains Set A at some place in its Set hi-
erarchy.

7.1.4 Display specifications

04-01: Change history list

The tool must be able to generate a textual list of the change history.

 30

04-02: History tree

The tool must be able to display a history tree for all paragraphs within a selected phase. The
tree should include all paragraphs with associated labels and versions, and all paragraph
changes.

04-03: Set display in history tree

The tool must be able to highlight all paragraphs (in the history tree containing the para-
graphs) belonging to a selected set, and to display this list textually.

04-04: Related sets display

The tool must be able to display all related sets graphically, i.e. visualise the parent/child rela-
tionships.

04-05: Tree animation

The tool should be able to animate a history tree, i.e. graphically and textually show the tem-
poral development of the tree.

7.1.5 Analysis specifications

05-01: Created paragraphs list

The tool must be able to identify all created paragraphs within a selected phase or within a
selected project, and display these paragraphs, both in textual form and as high-light in a his-
tory tree.

05-02: Current paragraphs list

The tool must be able to identify all current paragraphs within a selected phase or within a
selected project, and display these paragraphs, both in textual form and as high-light in a his-
tory tree.

05-03: Deleted paragraphs list

The tool must be able to identify all deleted paragraphs within a selected phase or within a
selected project, and display these paragraphs, both in textual form and as high-light in a his-
tory tree.

05-04: Paragraph history

The tool must provide the complete history of a paragraph in textual form, as high-light in a
history tree, and as a separate history subtree. The history of a paragraph includes all versions
of the paragraph, the paragraph(s) used to create it, and the paragraph(s) created by using it.

05-05: Paragraph backwards traceability

 31

The tool must provide the complete backwards traceability from a set of paragraphs in textual
form, as high-light in a history tree, and as a separate history subtree. Two modes of traceabil-
ity should be supported:

• backward traceability through the same history tree as the selected paragraph
• backward traceability through all history trees in the current project by using the “ori-

gin” parameter

05-06: Paragraph forwards traceability

The tool must provide the complete forwards traceability from a set of paragraphs in textual
form, as high-light in a history tree, and as a separate history subtree. Two modes of traceabil-
ity should be supported:

• forward traceability through the same history tree as the selected paragraph
• forward traceability through all history trees in the current project by using the “ori-

gin” parameter

7.1.6 Documentation specifications

06-01: Document generation

The tool shall provide functionality to generate documents based on current paragraphs.

06-02: Traceability table and list generation

The tool shall provide functionality to generate standard traceability tables and lists showing
relationships between paragraphs.

7.1.7 Authentication specifications

07-01: Tool access

Initially, the tool will provide some security in the form of a password login procedure. The
tool will be a stand-alone application with direct access to project files.

In the future, a server / client architecture should be implemented where the client can have
limited access to project data after completing a login procedure.

7.1.8 Project specifications

08-01: Templates

The tool shall provide different templates for different project types, e.g. for software devel-
opment a template should include development phase sets and dependability factor sets, while
for procedure maintenance it should include procedure sets.

 32

08-02: Project rules

1. It should not be possible to create a new Project with the same name as an existing
Project.

7.1.9 History Tree specifications

09-01: History Tree creation

The tool must support the creation of different history trees. Each history tree may contain
any number of paragraphs and their associated changes.

09-02: History Tree rules

1. It should not be possible to create a new History Tree with the same name as an exist-
ing History Tree.

7.2 Design Specifications
This section describes the design specification for the prototype of the tool TRACE.

7.2.1 Class specifications

01-01: Paragraph class

The Paragraph class contains the definition of a paragraph, and is uniquely identified by a
label and version number (internally an ID may be used). The Paragraph may be the result of
one Change, and may be subject to one or more Changes.

Paragraph

Parameter Type
ID String
label String
version int
time long
status int
open boolean
description String
changeIn Change
changesOut array of Change
origin array of Link
originOf array of Paragraph

The status variable is used to set various status values for a Paragraph:

None Default Paragraph status.

 33

Created Indicates that the Paragraph is the first in a list of Paragraphs with the same
label, but different version numbers. The Paragraph is the result of either a
create change or a change performed on another Paragraph which creates
one or more new Paragraph(s) (derive, split, combine...).

Trace The Paragraph is part of a trace result, e.g. a backward trace. The Paragraph
will be highlighted in the history tree display.

Highlight The Paragraph is highlighted in the history tree display.

Deleted The Paragraph has been explicitly deleted (having been subject to the delete
change).

A newly created Paragraph could be displayed like this (with label and version):

R05, v0R05, v0

A Paragraph that has been subject to some change could be displayed like this:

R05, v1R05, v1

A Paragraph that has been subject to a “delete” change could be displayed like this:

R12, v2R12, v2

Right-clicking on a Paragraph should display a context-sensitive menu with options, e.g.
which change types are available, properties dialog...

After being subject to a Change, a Paragraph should be locked, i.e. no more changes should be
made to it (the open attribute is set to false). It should be possible to introduce minor changes
to the description text of a Paragraph without introducing a new paragraph (by using a
Change). In this case, a user should be able to manually un-lock a Paragraph, make the neces-
sary changes, and then lock the Paragraph. Any outgoing Changes from the Paragraph should
be marked as not validated (see description of Changes below).

01-02: ChangeType class

The ChangeType class is used to define different types of Changes. Each ChangeType is iden-
tified by a unique label.

ChangeType

Parameter Type
label String
paragraphsIn int
paragraphsOut int

 34

description String
resultStatus int
update int

The paragraphsIn and paragraphsOut parameters limits the number of Paragraphs used as
input and output to the Change, and each should have one of the following values:

• 0
• 1
• 1 or more
• 2 or more

The resultStatus determines the status of the Paragraph resulting from the Change, and should
have one of the following values:

None This applies to most Changes.
Created For the create Change, when a Paragraph is created from scratch, or for

Changes performed on other Paragraph(s) which creates one or more new
Paragraph(s) (derive, split, combine...).

Deleted For the delete Change.

The update values defines how the Paragraph label and version number are determined for a
Paragraph resulting from a Change:

No update The output Paragraph has the same label and version number

as the input Paragraph.

New label The output Paragraph is given a new label.

Increment version num-
ber

The version number of the output Paragraph is incremented
relative to the input Paragraph.

For use in software development, the Change types may include, but not be limited to:

• create
• modify
• combine
• replace
• split
• derive
• delete
• un-delete

A separate menu item will allow the user to introduce new Change types.

01-03: Change class

The Change class contains the properties of a single Change from one or more Paragraphs
into one or more Paragraphs.

 35

Change

Parameter Type
ID String
type ChangeType
sources array of Paragraph
targets array of Paragraph
status int
userID String
time long
reason String
basis int
validated boolean
validateUserID String

The status parameter is used to mark the Change as a result from various analyses, e.g. a
backward trace.

Trace The Change is part of a trace result, e.g. a backward trace. The Change will

be highlighted in the history tree display.

Highlight The Change is highlighted in the history tree display.

The basis parameter is used to provide some description of the basis for applying the Change
to one or more Paragraphs.

None No special basis is given for the Change.
Method The Change has been applied due to the outcome of some analysis method,

e.g. a HazOp analysis, which has suggested that the Paragraph(s) must be
updated due to some shortcoming.

Expert The Change has been applied due to input from some expert (expert judge-
ment).

A Change (e.g.”modify”) of a single Paragraph into another Paragraph could be displayed like
this:

R08, v2R08, v2

R08, v3R08, v3

modify

modify

R08, v2R08, v2

R08, v3R08, v3

modify

modify

 36

A Change (e.g.”combine”) of two Paragraphs into another Paragraph could be displayed like
this:

R08, v2R08, v2

R10, v0R10, v0

combine

R09, v1R09, v1R08, v2R08, v2

R10, v0R10, v0

combine

R09, v1R09, v1

A Change (e.g.”split”) of a single Paragraph into two other Paragraphs could be displayed like
this:

R08, v2R08, v2

R10, v0R10, v0

split

R09, v0R09, v0

R08, v2R08, v2

R10, v0R10, v0

split

R09, v0R09, v0

A list of all Changes in a history tree should be displayed next to the history tree, so the user
can choose and edit the Change properties.

A Change can be manually validated by a user, whereupon the validate attribute is set to true,
and the validateUserID holds the ID of the user. A Change should be automatically marked as
not validated when minor changes are made to the source Paragraph(s) (see above).

01-04: HistoryTree class

The HistoryTree class is used to hold all required information about one history tree, includ-
ing all Paragraphs and Changes. An example of a history tree is shown in Figure 7.

HistoryTree

Parameter Type
ID String
label String
paragraphs array of Paragraph
changes array of Change
createTime long
lastChangeTime long

01-05: Set class

The Set class extends the HistoryTree class to include a list of Sets, links to parent and child
sets, and information about opening and closing times and status. This allows a Set to contain

 37

any number of Paragraph objects, as well as any number of Set objects, and to maintain a de-
rivative relationship between Sets.

A Set will be able to compare its content (list of Paragraphs) to the content of another Set, i.e.
which Paragraphs are common to both Sets, and which Paragraphs are unique. This will be
achieved by an iteration through the list of Paragraphs in each Set and compare Paragraph
IDs.

Set extends HistoryTree

Parameter Type
trees array of HistoryTree
sets array of Set
parentSet Set
childSet Set
open boolean
closeTime long

A closed Set and its open derivatives could be displayed like this:

s1s1

s2s2

s3s3

s1s1

s2s2

s3s3

01-06: Link class

A Link is used to provide different sources of information to the origin parameter of a Para-
graph (there may be other uses as well). The origin of a Paragraph could be a combination of
textual descriptions, files, hypertext links, other Paragraphs or Sets.

Link

Parameter Type

 38

id String
type int
string String

The type values may include:

• TEXT = 0
• FILE = 1
• HYPERTEXT = 2
• PARAGRAPH = 3
• SET = 4

Examples of link types:

A textual link
object Link
 type: TEXT
 string: “This Paragraph was included due to a discussion at project meeting
 2005-04-08”
end
A file link
object Link
 type: FILE
 string: “p08-basis.doc”
end
A hypertext link
object Link
 type: HYPERTEXT
 string: “http://standards.ieee.org/catalog/olis/index.html”
end
A Paragraph link
object Link
 type: PARAGRAPH
 string: “P738961763” (the ID of a particular Paragraph)
end
A Set link
object Link
 type: SET
 string: “S168826738” (the ID of a particular Set)
end

01-07: TimeStamp class

The TimeStamp class is a helper class to store the time of various events with an accuracy of
one second.

TimeStamp

Parameter Type
year integer
month integer
day integer
hour integer
minute integer
second integer

 39

PS! This class will probably not be needed, as all time stamps (with an accuracy of 1 milli-
second) can be stored a long integers, and dedicated routines are available to extract year,
month, day, hour, minute and second values.

01-08: Project class

The project class extends the Set class and contains information for an entire project, i.e. a list
of history trees and sets.

Project

Parameter Type
name String
description String
links array of Link

7.2.2 Analysis specifications

This chapter will describe the analyses available, and descriptions of how they can be per-
formed using the class definitions above.

The example history tree used is given in Figure 7 below.

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

Figure 7. Example history tree.

 40

The temporal development of the history tree can be given in the form of a change table:

Change Source paragraph(s) Target paragraph(s)

create (p1, v0)
create (p2, v0)
create (p3, v0)
modify (p1, v0) (p1, v1)
modify (p2, v0) (p2, v1)
modify (p3, v0) (p3, v1)
combine (p1, v1), (p2, v1) (p4, v0)
modify (p3, v1) (p3, v2)
create (p5, v0)
modify (p4, v0) (p4, v1)
derive (p3, v2), (p5, v0) (p6, v0)
split (p4, v1) (p7, v0), (p8, v0), (p9, v0), (p10,

v0)
modify (p6, v0) (p6, v1)
modify (p7, v0) (p7, v1)
delete (p9, v0)
modify (p10, v0) (p10, v1)
modify (p6, v1) (p6, v2)
modify (p7, v1) (p7, v2)
modify (p8, v0) (p8, v1)
create (p11, v0)
combine (p10, v1), (p6, v2) (p12, v0)
replace (p7, v2), (p8, v1) (p13, v0)
modify (p11, v0) (p11, v1)
modify (p12, v0) (p12, v1)

02-01: Created paragraphs list

Ref.: REQ-SPEC 05-01

Whenever a new paragraph is created,
either “from scratch” or by certain
changes to other paragraphs (e.g. de-
rive, split, combine...), the
STATUS_CREATED bit in the para-
graphs status variable is set to 1 (by
default this bit is 0).

To generate a list of created para-
graphs, the tool will iterate through
the list of paragraphs within current
history tree and display (textually or
graphically) the paragraphs with the
STATUS_CREATED bit set.

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

Figure 8. Current paragraphs.

 41

In the example the created paragraphs have bold outline.

02-02: Current paragraphs list

Ref.: REQ-SPEC 05-02

The current, or most recently updated version of a paragraph, is found by iterating through the
list of paragraphs and for each paragraph label find the paragraph with the highest version
number. Paragraphs that have been explicitly deleted are not included in this search.

In the example case, the current paragraphs would be: (p1,v1), (p2,v1), (p3,v2), (p4,v1),
(p5,v0), (p6,v2), (p7,v2), (p8,v1), (p10,v1), (p11,v1), (p12,v1) and (p13,v0).

02-03: Deleted paragraphs list

Ref.: REQ-SPEC 05-03

Whenever a paragraph is deleted, the STATUS_DELETED bit in the paragraphs status vari-
able is set to 1 (by default this bit is 0).

To generate a list of deleted paragraphs, the tool will iterate through the list of paragraphs
within current history tree and display (textually or graphically) the paragraphs with the
STATUS_DELETED bit set.

In the example case, the paragraph (p9, v0) has been deleted.

02-04: Paragraph history

Ref.: REQ-SPEC 05-04

The paragraph history for any paragraph can be determined by find all versions of the selected
paragraph, all changes affecting these versions, as well as the relevant version of all para-
graphs included in these changes. This is straightforward, as all paragraph objects contain
lists of “incoming” and “outgoing” changes, and all change objects contain lists of “input”
and “output” paragraphs.

In the example case, the backward search would
be:

• The incoming change to (p6, v1) is a modify

change, whose input paragraph is (p6, v0).
• The incoming change to (p6, v0) is a derive

change, whose input paragraphs are (p5, v0)
and (p3, v2).

At this point the backward search is halted, since
(p6, v0) is the first version of paragraph p6.

The forward search would be:

p6, v1

p12, v0

combine

p10, v1 p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p6, v1

p12, v0

combine

p10, v1 p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

Figure 9. Paragraph history of (p6, v1).

 42

• The outgoing change from (p6, v1) is a modify change, whose output paragraph is (p6,
v2).

• The outgoing change from (p6, v2) is a combine change, whose output paragraph is (p12,
v0) and other input paragraph is (p10, v1).

At this point the forward search is halted, since (p6, v2) is the last version of paragraph p6.

The paragraph history for paragraph (p6, v1) would thus include (p3, v2), (p5, v0), (p6, v0),
(p6, v1), (p6, v2), (p10, v1) and (p12, v0) (see Figure 9). The changes involved are given in
the following table:

Change Source paragraph(s) Target paragraph(s)

derive (p3, v2), (p5, v0) (p6, v0)
modify (p6, v0) (p6, v1)
modify (p6, v1) (p6, v2)
combine (p10, v1), (p6, v2) (p12, v0)

02-05: Paragraph backward traceability

Ref.: REQ-SPEC 05-05

Given a paragraph, we want to find
the development of paragraphs that
leads to this paragraph, i.e. the
minimum fragment of the change
history that has influenced the de-
velopment of the given paragraph.

The trace can be performed by a
recursive search through all input
changes starting with the selected
paragraph. The search through a
sub-tree is halted once a paragraph
whose input is a “create” change is
reached.

Figure 10 shows the results of a
backward trace on paragraph (p12,
v1). In this case there is a modify
change as input, whose source is
(p12, v0). This paragraph is the
result of a combine change with (p6, v2) and (p10, v1) as inputs. Continuing the search
through several sub-trees, we finally reach the paragraphs (p1, v0), (p2, v0), (p3, v0) and (p5,
v0), all results of create changes.

Note that the paragraphs (p7, v0), (p8, v0) and (p9, v0) are included in the trace result, as they
are involved in the split change of (p4, v1).

The changes involved are given in the following table:

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

Figure 10. Backward traceability from (p12, v1)

 43

Change Source paragraph(s) Target paragraph(s)

create (p1, v0)
create (p2, v0)
create (p3, v0)
modify (p1, v0) (p1, v1)
modify (p2, v0) (p2, v1)
modify (p3, v0) (p3, v1)
combine (p1, v1), (p2, v1) (p4, v0)
modify (p3, v1) (p3, v2)
create (p5, v0)
modify (p4, v0) (p4, v1)
derive (p3, v2), (p5, v0) (p6, v0)
split (p4, v1) (p7, v0), (p8, v0), (p9, v0), (p10,

v0)
modify (p6, v0) (p6, v1)
modify (p10, v0) (p10, v1)
modify (p6, v1) (p6, v2)
combine (p10, v1), (p6, v2) (p12, v0)
Modify (p12, v0) (p12, v1)

02-06: Paragraph forward traceability

Ref.: REQ-SPEC 05-06

Forwards traceability relates to the devel-
opment of paragraphs starting with a se-
lected paragraph. The result will include all
paragraphs affected by the selected para-
graph.

The trace can be performed by a recursive
search through all output changes starting
with the selected paragraph. The search
through a sub-tree is halted once a para-
graph without any output changes is
reached.

Figure 11 shows the results of a forward
trace on paragraph (p3, v0). In this case
there is a modify change as output, whose
target is (p3, v1). Continuing the search, we
finally reach the paragraphs (p12, v1), which has no output changes.

Note that the paragraphs (p5, v0) and (p10, v0) are included in the trace result, as they are
involved in the derive and combine changes of (p3, v2) and (p6, v2), respectively.

The changes involved are given in the following table:

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

p1, v0 p2, v0 p3, v0

p1, v1

modify

p2, v1

modify

p4, v0

combine

p4, v1

modify

p8, v0p7, v0 p10, v0 p6, v1

p12, v0

combine

p12, v1

modify

p10, v1

modify

p6, v2

modify

p6, v0

modify

p3, v2 p5, v0

derive

p3, v1

modify

modify

p7, v1

modify

p7, v2

modify

p8, v1

modify

create create create

p11, v0

p11, v1

modify

create

p13, v0

replace

create

split

p9, v0

Figure 11. Forward traceability from (p3, v0)

 44

Change Source paragraph(s) Target paragraph(s)

create (p3, v0)
modify (p3, v0) (p3, v1)
modify (p3, v1) (p3, v2)
create (p5, v0)
derive (p3, v2), (p5, v0) (p6, v0)
modify (p6, v0) (p6, v1)
modify (p6, v1) (p6, v2)
combine (p10, v1), (p6, v2) (p12, v0)
modify (p12, v0) (p12, v1)

02-07: Origin traceability

Ref.: REQ-SPEC 05-05 + 05-06

The origin parameter in the Paragraph class provides links to information used when creating
a paragraph. This information could be a textual description of why the paragraph should be
included, a shortcut to a file, a hypertext link to an IEEE standard used as basis for the para-
graph, or a link to another paragraph in a different history tree. A typical use of the origin
parameter could be during a software development project, where a separate history tree is
created for each development phase (requirement, design, implementation, test...). Here, each
paragraph would represent a specific version of a specification, and often a specification in
the design phase would be based on a specification in the requirement phase.

This situation is shown in Figure 12 below. Here we have included 3 developments phases:
requirement, design and implementation. The origin of paragraph (or specification) (p1, v0) in
the design phase is paragraph (p2, v1) in the requirement phase. The origin of paragraph (p3,
v0) in the implementation phase is paragraph (p1, v1) in the design phase.

Right-clicking on a selected Paragraph will provide a list of origins for the Paragraph, and the
possibility to go to a selected origin. If the origin is
• another Paragraph in another history tree, the history tree will be displayed and the Para-

graph highlighted
• a file link, the file will be opened
• a hypertext link, a webpage based on the link will be opened

 45

p1, v0 p2, v0 p1, v0

p1, v1

modify

p2, v1

modify

p3, v0

combine

p3, v1

modify

p3, v1

p3, v2

modify

p3, v0

modify

p1, v2 p2, v0

derive

p1, v1

modify

modify

create create create

create

p1, v0

p2, v1

p2, v2

modify

p2, v0

modify

p1, v2

split

p1, v1

modify

modify

create

p3, v0

p3, v1

modify

modify

p3, v2

History Tree 1
“Requirements Spec”

History Tree 2
“Design Spec”

History Tree 3
“Implementation Spec”

p1, v0 p2, v0 p1, v0

p1, v1

modify

p2, v1

modify

p3, v0

combine

p3, v1

modify

p3, v1

p3, v2

modify

p3, v0

modify

p1, v2 p2, v0

derive

p1, v1

modify

modify

create create create

create

p1, v0

p2, v1

p2, v2

modify

p2, v0

modify

p1, v2

split

p1, v1

modify

modify

create

p3, v0

p3, v1

modify

modify

p3, v2

History Tree 1
“Requirements Spec”

History Tree 2
“Design Spec”

History Tree 3
“Implementation Spec”

Figure 12. Origin trace

03-01: Authentication

Ref.: REQ-SPEC 07-01

The tool will provide a login procedure (see Figure 13). Passwords will be encrypted and
stored in a separate file.

Figure 13. Login dialog box.

 46

7.3 Implementation Specifications
This section describes the implementation specification for the prototype of the tool TRACE.

7.3.1 Language specifications

01-01: Programming language

The prototype will be written in Java 1.5.

01-02: Data storage

Application data and configuration information will be stored in XML formats specified be-
low.

7.3.2 Class specifications

02-01: Paragraph class

Paragraph

Parameter Type Description
ID String Unique ID
label String Textual label
version int Paragraph version
time long Creation time (given as millisec-

onds since January 1, 1970)
status int Paragraph status (see table below)
open boolean True if the Paragraph can be modi-

fied, otherwise false
description String Textual description of Paragraph,

which for e.g. SW development
would contain the requirements
text

changeIn Change Change which created the Para-
graph

changesOut Vector<Change> List of output Changes from the
Paragraph

origins Vector<Link> List of origins for Paragraph
originOf Vector<Paragraph> List of Paragraphs for which this

Paragraph is the origin
ownerTree HistoryTree The history tree to which this

Paragraph belongs
posX int Horizontal position in history tree

display
posY int Vertical position in history tree

display

 47

selected boolean True if Paragraph is selected in
history tree view, otherwise false

Method Input Return Description
getID String Returns the ID parameter.
setID String Sets the ID parameter.
getLabel String Returns the label parameter.
setLabel String Sets the label parameter.
getVersion int Returns the version parameter.
setVersion int Sets the version parameter.
incVersion Increases the version parameter.
getTime long Returns the time parameter.
setTime long Sets the time parameter.
getStatus int Returns the status parameter.
setStatus int Sets the status parameter.
isStatusBitSet boolean int Returns true if given status bit is

set (see status constants in table
below)

setStatusBit int Sets a bit in the status parameter
clearStatusBit int Clears a bit in the status parameter
close Sets the open attribute to false
isOpen boolean Returns the open attribute
getOpen boolean Returns the open attribute
setOpen boolean Sets the open attribute to the input

value
setOpen String Sets the open attribute to the input

String value, given as “open” or
“false”

getDescription String Returns description parameter
setDescription String Sets description parameter
getChangeIn Change Returns the input Change
setChangeIn Change Sets the input Change
getChangesOut Vector<Change> Returns the list of output Changes
setChangesOut Vector<Change> Sets the list of output Changes
addChangeOut Change Adds an output Change
getOrigins Vector<Link> Returns the list of origins
setOrigins Vector<Link> Sets the list of origins
addOrigin Link Adds an origin
getOriginOf Vector<Paragraph> Returns the list of Paragraphs for

which this Paragraph is the origin
setOriginOf Vector<Paragraph> Sets the list of Paragraphs for

which this Paragraph is the origin
addOriginOf Paragraph Adds to the list of Paragraphs for

which this Paragraph is the origin
getOwnerTree HistoryTree Returns the history tree to which

this Paragraph belongs
setOwnerTree HistoryTree Sets the history tree to which this

Paragraph belongs
getPosX int Returns X position in history tree

view

 48

setPosX int Sets X position in history tree
view

getPosY int Returns Y position in history tree
view

setPosY int Sets Y position in history tree
view

setXY int, int Sets X and Y position in history
tree view

isSelected boolean Returns true if Paragraph is se-
lected in display, otherwise false

getSelected boolean Same as isSelected
setSelected boolean Sets the selected parameter

The status parameter may be assigned any combination of the following constant values:

Constant Value Description
STATUS_NONE 0x0000 Default status value of a Paragraph, meaning no bit field has

been set.
STATUS_CREATED 0x0001 When this bit is set, it indicates that the Paragraph is the first

in a list of Paragraphs with the same label, but different ver-
sion numbers. The Paragraph is the result of either a create
change or a change performed on another Paragraph which
creates one or more new Paragraph(s) (derive, split, com-
bine...).

STATUS_TRACE 0x0002 This status bit used to mark a Paragraph as part of a trace re-
sult, e.g. a backward trace. When this bit is set, the Paragraph
will be highlighted in the history tree display.

STATUS_HIGHLIGHT 0x0004 This status bit is used highlight the Paragraph in the history
tree display.

STATUS_DELETED 0x0008 This status bit is used to indicate that the Paragraph has been
explicitly deleted (having been subject to the delete change).

02-02: ChangeType class

ChangeType

Parameter Type Description
label String Textual label
paraIn int Number of input Paragraphs
paraOut int Number of output Paragraphs
description String Textual description of Change, including reason for

introducing it
resultStatus int The status of the Paragraph created due to this Change
update int Indicates how to update the label and version number of

a new Paragraph (see below)
locked boolean True if the ChangeType is locked for editing (modifica-

tion), false otherwise
Method Input Return Description
getLabel String Returns the label parameter.

 49

setLabel String Sets the label parameter.
getParaIn int Returns the paraIn parameter.
setParaIn int Sets the paraIn parameter.
getParaOut int Returns the paraOut parameter.
setParaOut int Sets the paraOut parameter.
getDescription String Returns the description parameter.
setDescription String Sets the description parameter.
getResultStatus int Returns the resultStatus parameter.
setResultStatus int Sets the resultStatus parameter.
getUpdate int Returns the update parameter.
setUpdate int Sets the update parameter.
isLocked boolean Returns the locked parameter, which determines

whether ChangeType is editable.
getLocked boolean Same as isLocked.
setLocked boolean Sets the locked parameter, which determines whether

ChangeType is editable.

The paragraphsIn and paragraphsOut parameters may be assigned one of the following con-
stant values:

Constant Value Description
NUM_0 0 Zero
NUM_1 1 One
NUM_1PLUS 2 One or more
NUM_2PLUS 3 Two or more

The resultStatus parameter may be assigned one of the following constant values (see status
parameter of Paragraph class):

Constant Value Description
STATUS_NONE 0x0000 For Changes that do not delete or create new Paragraphs
STATUS_CREATED 0x0001 For all Changes that create new Paragraphs, i.e. with new label
STATUS_DELETED 0x0008 For “delete” change

The update parameter may be assigned one of the following constant values:

Constant Value Description
UPDATE_NOCHANGE 0 The label and version number of the new Paragraph is the

same as for the source Paragraph
UPDATE_NEWLABEL 1 The new Paragraph shall be given a new label, with version

number 0
UPDATE_INCVERSION 2 The new Paragraph shall keep the same label as the source

Paragraph, but with incremented version number

For use in software development, the change types may include, but not be limited to:

label para...In para...O

ut
description resultStatus update

“create” NUM_0 NUM_1 “This change causes a creation of a STATUS_CREATED UPDATE_NEWLABEL

 50

paragraph”

“modify” NUM_1 NUM_1 “This change causes a modification of
a paragraph”

STATUS_NONE UPDATE_INCVERSION

“combine” NUM_2PLUS NUM_1 “This change causes a combination of
2 or more paragraphs”

STATUS_CREATED UPDATE_NEWLABEL

“replace” NUM_1PLUS NUM_1 “This change causes a replacement of
one or more paragraphs”

STATUS_CREATED UPDATE_NEWLABEL

“split” NUM_1 NUM_2PLUS “This change causes a split of one
paragraph into 2 or more paragraphs”

STATUS_CREATED UPDATE_NEWLABEL

“derive” NUM_1PLUS NUM_1 “This change causes a derivation of 1
or more paragraphs into 1 paragraph”

STATUS_CREATED UPDATE_NEWLABEL

“delete” NUM_1 NUM_0 “This change causes a deletion of 1
paragraph”

STATUS_DELETED UPDATE_NOCHANGE

“un-delete” NUM_1 NUM_1 “This change causes an un-deletion of
1 paragraph”

STATUS_NONE UPDATE_NOCHANGE

02-03: Change class

Change

Parameter Type Description
ID String Unique ID of Change
type ChangeType The type of the Change (see

ChangeType)
sources Vector<Paragraph> Input Paragraphs
targets Vector<Paragraph> Output Paragraphs resulting

from the Change
status int See table below
userID String ID of user introducing the

Change
time long Time the Change was intro-

duced
reason String Textual description of the rea-

son for introducing the Change
basis int The basis for introducing the

Change (see table below)
validated boolean True if the Change has been

manually validated by a user,
false otherwise

validateUserID String ID of the user who has vali-
dated the Change

Method Input Return Description
getID String Returns the ID parameter.
setID String Sets the ID parameter.
getType ChangeType Returns the type parameter.
setType ChangeType Sets the type parameter.
getSources Vector<Paragraph> Returns the list of source Para-

graphs.
setSources Vector<Paragraph> Sets the list of source Para-

graphs.

 51

addSource Paragraph Adds a Paragraph to the list of
source Paragraphs.

getTargets Vector<Paragraph> Returns the list of target Para-
graphs.

setTargets Vector<Paragraph> Sets the list of target Para-
graphs.

addTarget Paragraph Adds a Paragraph to the list of
target Paragraphs.

getStatus int Returns the status parameter.
setStatus int Sets the status parameter.
isStatusBitSet boolean int Returns true if given status bit

is set (see status constants in
table below)

setStatusBit int Sets a bit in the status parame-
ter

clearStatusBit int Clears a bit in the status pa-
rameter

getUserID String Returns the user ID of the user
who introduced the Change.

setUserID String Sets the user ID of the user
who introduced the Change.

getTime long Returns the time parameter.
setTime long Sets the time parameter.
getReason String Returns the reason parameter.
setReason String Sets the reason parameter.
getBasis int Returns the basis parameter.
setBasis int Sets the basis parameter.
isValidated boolean Returns the validate parameter.
getValidated boolean Returns the validate parameter.
setValidated boolean Sets the validate parameter.
setValidated String Sets the validate parameter

using the string “true” or
“false”.

validate Sets the validate parameter to
true.

invalidate Sets the validate parameter to
false.

getValidateUserID String Returns the user ID of the user
who validated the Change.

setValidateUserID String Sets the user ID of the user
who validated the Change.

The basis parameter may be assigned the following constant values:

Constant Value
BASIS_NONE 0 No basis given for introducing Change
BASIS_METHOD 1 The Change was introduced due to some method output
BASIS_EXPERT 2 The Change was introduced due to expert judgement

 52

The status parameter may be assigned one of the following constant values (see status pa-
rameter of Paragraph class):

Constant Value Description
STATUS_TRACE 0x0002 This status bit used to mark a Change as part of a trace result,

e.g. a backward or forward trace. When this bit is set, the
Change will be highlighted in the history tree display.

STATUS_HIGHLIGHT 0x0004 This status bit is used highlight the Change in the history tree
display.

02-04: HistoryTree class

The HistoryTree class is used to hold all required information about one history tree, includ-
ing all Paragraphs and Changes.

HistoryTree

Parameter Type Description
ID String Unique ID
label String Textual label
paragraphs Vector<Paragraph> List of Paragraphs in Histo-

ryTree
changes Vector<Change> List of Changes in History-

Tree
createTime long Creation time of HistoryTree

given as milliseconds from
Jan 1 1970.

lastChangeTime long Time of last change to Histo-
ryTree.

Method Input Return Description
getID String Returns the ID parameter.
setID String Sets the ID parameter.
getLabel String Returns the label parameter.
setLabel String Sets the label parameter.
getParagraphs Vector<Paragraph> Returns the list of Paragraphs.
setParagraphs Vector<Paragraph> Sets the list of Paragraphs.
addParagraph Paragraph Adds a Paragraph to the list

of Paragraphs.
removeParagraph Paragraph Removes a Paragraph from

the list of Paragraphs.
getChanges Vector<Change> Returns the list of Changes.
setChanges Vector<Change> Sets the list of Changes.
addChange Change Adds a Change to the list of

Changes.
getCreateTime long Returns the createTime pa-

rameter.
setCreateTime long Sets the createTime parame-

ter.
getLastChangeTime long Returns the lastChangeTime

 53

parameter.
setLastChangeTime long Sets the lastChangeTime pa-

rameter.
setLastChangeTime Sets the lastChangeTime pa-

rameter to current millisec-
ond.

paragraphExists String Returns true if a paragraph
with same label exists in the
tree.

02-05: Set class

The Set class extends the HistoryTree class to include a list of Sets, links to parent and child
sets, and information about opening and closing times and status. This allows a Set to contain
any number of Paragraph objects, as well as any number of Set objects, and to maintain a de-
rivative relationship between Sets.

A Set will be able to compare its content (list of Paragraphs) to the content of another Set, i.e.
which Paragraphs are common to both Sets, and which Paragraphs are unique. This will be
achieved by an iteration through the list of Paragraphs in each Set and compare Paragraph
labels and versions.

Set

Parameter Type Description
trees Vector<HistoryTree> The list of HistoryTree objects

contained by the Set.
sets Vector<Set> The list of Set objects contained

by the Set.
parentSet Set The parent Set.
childSet Set The child Set.
open boolean True if the content of the Set

can be modified, false other-
wise.

closeTime long The time the Set was closed (0
if Set is still open)

posX int Horizontal position in set dis-
play

posY int Vertical position in set display
selected boolean True is Set is selected in Set

view, otherwise false
Method Input Return Description
getTrees Vector<HistoryTree> Returns the list of HistoryTrees

in Set
setTrees Vector<HistoryTree> Sets the list of HistoryTrees in

Set
addTree HistoryTree Adds a HistoryTree to the list

of HistoryTrees
removeTree HistoryTree Removes a HistoryTree from

 54

the list of HistoryTrees
getSets Vector<Set> Returns the list of Sets in Set
setSets Vector<Set> Sets the list of Sets in Set
addSet Set Adds a Set to the list of Sets
removeSet Set Removes a Set from the list of

Sets
getParentSet Set Returns the parent Set
setParentSet Set Sets the parent Set
getChildSet Set Returns the child Set
setChildSet Set Sets the child Set
getCloseTime long Returns the time the Set was

closed
setCloseTime long Sets the time the Set was closed
close Closes the Set, and sets the

close time to the current milli-
second

isOpen boolean Returns the open parameter
getOpen boolean Same as isOpen
setOpen boolean Sets the open parameter
setOpen String Sets the open parameter using

String input “true” or “false”
getPosX int Returns X position in set view
setPosX int Sets X position in set view
getPosY int Returns Y position in set view
setPosY int Sets Y position in set view
setXY int, int Sets X and Y position in set

view
isSelected boolean Returns the selected parameter
getSelected boolean Same as isSelected
setSelected boolean Sets the selected parameter
treeExists boolean Returns true if a tree with same

label exists in set.
setExists boolean Returns true if a set with same

label exists in set.

02-06: Link class

A Link is used to provide different sources of information to the origin parameter of a Para-
graph (there may be other uses as well). The origin of a Paragraph could be a combination of
textual descriptions, files, hypertext links, other Paragraphs or Sets.

Link

Parameter Type Description
ID String Unique ID
type int Type of link (see table below)
string String Textual information on Link
Method Input Return Description

 55

getID String Returns ID
setID String Sets ID
getType int Returns type
setType int Sets type
getString String Returns string
setString String Sets string

The linkType parameter may be assigned the following constant values:

Constant Value Description
LINK_TEXT 0 The link is text
LINK_FILE 1 The link is the name (with path) of a file, e.g. “c:\code\test.java”
LINK_HYPERTEXT 2 The link is a hypertext string, e.g. “www.ife.no”
LINK_PARAGRAPH 3 The link is the ID of a Paragraph, e.g. “PA_003782”
LINK_SET 4 The link is the ID of a Set, e.g. “SE_000218”

02-07: Project class

Project

Parameter Type Description
name String Project name
description String Project description
links Vector<Link> List of origin links in Project
Method Input Return Description
getName String Returns name
setName String Sets name
getDescription String Returns description
setDescription String Sets description
getLinks Vec-

tor<Link>
Returns list of links

setLinks Vec-
tor<Link>

 Sets list of links

7.3.3 Menu specifications

03-01: File menu

Menu item Description
New Project... Create a new project.
Open Project... Open an existing project for editing.
Save Project Save a project to file.
Project Properties... Dialog box to set properties for current project.
Quit Quit application.

03-02: Analysis menu

 56

Menu item Description
Paragraphs

Created Display all paragraphs with status Created.
Current Display all paragraphs with status Current.
Deleted Display all paragraphs with status Deleted.
History Display history of selected Paragraph.

Trace
Backward... Perform backward trace of selected Paragraph.
Forward... Perform forward trace of selected Paragraph.
Origin... Perform origin trace of selected Paragraph.

03-03: Tools menu

Menu item Description
Paragraph

New... Create a new Paragraph.
Edit... Edit an existing Paragraph.

ChangeType
New... Create a new ChangeType.
Edit... Edit an existing ChangeType.
Delete... Delete a ChangeType.

History Trees
New... Create a new History Tree.
Edit... Edit an existing History Tree.
Delete... Delete a History Tree.

Sets
New... Create a new Set.
Edit... Edit an existing Set.
Delete... Delete a Set.
Add to... Add selected Paragraphs to a Set.
Remove from... Remove selected Paragraphs from a Set.

Templates
New... Create a new Template.
Edit... Edit an existing Template.
Delete... Delete a Template.

03-04: Context-sensitive menus

Right-clicking on a Paragraph should produce a pop-up menu with the following items:

• Change (subject Paragraph to a change, provide list of possible Changes based on
number of selected Paragraphs)

• Select (allow forward and backward selection from this Paragraph, as well as selecting
all Paragraphs in tree)

• Analysis (provide list of available analyses)
• Properties...
• Add to Set (provide list of Sets)

 57

Right-clicking on a Change should produce a pop-up menu with the following items:
• Properties...

Right-clicking on a HistoryTree should produce a pop-up menu with the following items:

• Properties...

Right-clicking on a Set should produce a pop-up menu with the following items:

• Properties...

7.3.4 Display specifications

04-01: Paragraph display

A newly created Paragraph will be displayed like this (with label and version):

R05, v0R05, v0

A Paragraph that has been subject to some change will be displayed like this:

R05, v1R05, v1

A selected Paragraph will be displayed like this:

R05, v1R05, v1R05, v1R05, v1

A Paragraph that has been subject to a “delete” change will be displayed like this:

R12, v2R12, v2

04-02: Change display

A Change (e.g.”modify”) of a single Paragraph into another Paragraph will be displayed like
this:

 58

R08, v2R08, v2

R08, v3R08, v3

modify

modify

R08, v2R08, v2

R08, v3R08, v3

modify

modify

A Change (e.g.”combine”) of two Paragraphs into another Paragraph will be displayed like
this:

R08, v2R08, v2

R10, v0R10, v0

combine

R09, v1R09, v1R08, v2R08, v2

R10, v0R10, v0

combine

R09, v1R09, v1

A Change (e.g.”split”) of a single Paragraph into two other Paragraphs will be displayed like
this:

R08, v2R08, v2

R10, v0R10, v0

split

R09, v0R09, v0

R08, v2R08, v2

R10, v0R10, v0

split

R09, v0R09, v0

04-03: Set display

A closed Set (s1) and its open derivatives (s2 and s3) will be displayed like this:

 59

s1s1

s2s2

s3s3

s1s1

s2s2

s3s3

 60

04-04: Main display

Figure 14. Main display of the TRACE prototype.

 61

Figure 15. Graphical display of Sets.

Figure 16. Paragraph properties dialog box.

 62

Figure 17. Change properties dialog box.

Figure 18. Change Type properties dialog box.

7.3.5 DTD/XML Specifications

All configuration and data files will be stored in various XML format, and the DTDs (Docu-
ment Type Definitions) are specified here. The formats are kept as simple and similar to each
other as possible to facilitate implementation and testing. Examples of XML files are given
for each format.

Application-specific files (such as configuration and template files) will be placed in the ap-
plication directory, while project-specific files will be placed in sub-directories, where the

 63

directory-name is identical to the project name. An example of the directory structure is given
in the figure below.

05-01: PARAGRAPH

This file will contain all Paragraphs belonging to a specific project, and will therefore be
placed in the appropriate project directory.

Paragraph DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT document (paragraph+)>
<!ELEMENT paragraph (id, label, version, time, status, open, description,
changeIn?, changeOut*, origin*, posX, posY)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT label (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT time (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT open (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT changeIn (#PCDATA)>
<!ELEMENT changeOut (#PCDATA)>
<!ELEMENT origin (#PCDATA)>
<!ELEMENT posX (#PCDATA)>
<!ELEMENT posY (#PCDATA)>

Paragraph XML example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "paragraphs.dtd">

 64

<document>
 <paragraph>
 <id>PA_000001</id>
 <label>REQ001</label>
 <version>0</version>
 <time>1115891134921</time>
 <status>1</status>
 <open>false</open>
 <description>Here is some description...</description>
 <changeIn>CH_000001</changeIn>
 <changeOut>CH_000004</changeOut>
 <changeOut> CH_000005</changeOut>
 <origin>LI_000002</origin>
 <posX>5</posX>
 <posY>3</posY>
 </paragraph>
 <paragraph>
 <id>PA_000002</id>
 <label>REQ001</label>
 <version>1</version>
 <time>1115891134921</time>
 <status>0</status>
 <open>true</open>
 <description>Some changes to REQ001...</description>
 <changeIn>CH_000004</changeIn>
 <posX>5</posX>
 <posY>5</posY>
 </paragraph>
</document>

05-02: CHANGETYPE

This file will contain all ChangeTypes available in the application, and will therefore be
placed in the application directory.

ChangeType DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT document (changetype+)>
<!ELEMENT changetype (label, paraIn, paraOut, description, resultStatus,
update, locked)>
<!ELEMENT label (#PCDATA)>
<!ELEMENT paraIn (#PCDATA)>
<!ELEMENT paraOut (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT resultStatus (#PCDATA)>
<!ELEMENT update (#PCDATA)>
<!ELEMENT locked (#PCDATA)>

ChangeType XML example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "changetypes.dtd">
<document>
 <changetype>
 <label>create</label>
 <paraIn>0</paraIn>
 <paraOut>1</paraOut>

 65

 <description>This is the create changetype</description>
 <resultStatus>1</resultStatus>
 <update>1</update>
 <locked>true</locked>
 </changetype>
 <changetype>
 <label>modify</label>
 <paraIn>1</paraIn>
 <paraOut>1</paraOut>
 <description>This is the modify changetype</description>
 <resultStatus>0</resultStatus>
 <update>2</update>
 <locked>true</locked>
 </changetype>
 <changetype>
 <label>split</label>
 <paraIn>1</paraIn>
 <paraOut>3</paraOut>
 <description>This is the split changetype</description>
 <resultStatus>1</resultStatus>
 <update>1</update>
 <locked>true</locked>
 </changetype>
 <changetype>
 <label>delete</label>
 <paraIn>1</paraIn>
 <paraOut>0</paraOut>
 <description>This is the delete changetype</description>
 <resultStatus>128</resultStatus>
 <update>0</update>
 <locked>true</locked>
 </changetype>
</document>

05-03: CHANGE

This file will contain all Changes belonging to a specific project, and will therefore be placed
in the appropriate project directory.

Change DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT document (change+)>
<!ELEMENT change (id, type, source*, target*, status, userID, time, rea-
son, basis, validated, validateUserID)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ELEMENT target (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT userID (#PCDATA)>
<!ELEMENT time (#PCDATA)>
<!ELEMENT reason (#PCDATA)>
<!ELEMENT basis (#PCDATA)>
<!ELEMENT validated (#PCDATA)>
<!ELEMENT validateUserID (#PCDATA)>

Change XML example

 66

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "changes.dtd">
<document>
 <change>
 <id>CH_000001</id>
 <type>create</type>
 <sources></sources>
 <targets>PA_000002</targets>
 <status>0</status>
 <userID>UID_0025</userID>
 <time>1115891134921</time>
 <reason>Paragraph created due to specs in doc...</reason>
 <basis>0</basis>
 <validated>false</validated>
 <validateUserID></validateUserID>
 </change>
 <change>
 <id>CH_000002</id>
 <type>split</type>
 <sources>PA_000002</sources>
 <targets>PA_000005, PA_000006</targets>
 <status>0</status>
 <userID>UID_0025</userID>
 <time>1115891184791</time>
 <reason>Paragraph split on recommendation from...</reason>
 <basis>2</basis>
 <validated>true</validated>
 <validateUserID>thunem</validateUserID>
 </change>
</document>

05-04: HISTORYTREE

This file will contain all HistoryTrees belonging to a specific project, and will therefore be
placed in the appropriate project directory.

HistoryTree DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT document (historytree+)>
<!ELEMENT historytree (id, label, paragraph*, change*, createTime, last-
ChangeTime)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT label (#PCDATA)>
<!ELEMENT paragraph (#PCDATA)>
<!ELEMENT change (#PCDATA)>
<!ELEMENT createTime (#PCDATA)>
<!ELEMENT lastChangeTime (#PCDATA)>

HistoryTree XML example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "historytrees.dtd">
<document>
 <historytree>
 <id>HT_000001</id>
 <label>Requirements specifications</label>

 67

 <paragraph>PA_000001</paragraph>
 <paragraph>PA_000002</paragraph>
 <paragraph>PA_000003</paragraph>
 <paragraph>PA_000004</paragraph>
 <paragraph>PA_000005</paragraph>
 <paragraph>PA_000006</paragraph>
 <paragraph>PA_000007</paragraph>
 <change>CH_000001</change>
 <change>CH_000002</change>
 <change>CH_000003</change>
 <change>CH_000004</change>
 <createTime>1115891134921</createTime>
 <lastChangeTime>1118267816921</lastChangeTime>
 </historytree>
 <historytree>
 <id>HT_000002</id>
 <label>Design specifications</label>
 <paragraphs>PA_000008</paragraphs>
 <paragraphs>PA_000009</paragraphs>
 <paragraphs>PA_000010</paragraphs>
 <paragraphs>PA_000011</paragraphs>
 <paragraphs>PA_000012</paragraphs>
 <paragraphs>PA_000013</paragraphs>
 <paragraphs>PA_000014</paragraphs>
 <changes>CH_000005</changes>
 <changes>CH_000006</changes>
 <changes>CH_000007</changes>
 <changes>CH_000008</changes>
 <createTime>1115891134921</createTime>
 <lastChangeTime> 1119380718787</lastChangeTime>
 </historytree>
</document>

05-05: SETS

There will be several files containing Set information: a application-specific template-file
containing template sets available to all projects (placed in the application directory), and pro-
ject-specific files containing the sets specific to each project (placed in appropriate project
directories).

Set DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT document (set+)>
<!ELEMENT set (id, label, paragraph*, change*, createTime, lastChangeTime,
tree*, subSet*, parentSet?, childSet?, open, closeTime, posX, posY)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT label (#PCDATA)>
<!ELEMENT paragraph (#PCDATA)>
<!ELEMENT change (#PCDATA)>
<!ELEMENT createTime (#PCDATA)>
<!ELEMENT lastChangeTime (#PCDATA)>
<!ELEMENT tree (#PCDATA)>
<!ELEMENT subSet (#PCDATA)>
<!ELEMENT parentSet (#PCDATA)>
<!ELEMENT childSet (#PCDATA)>
<!ELEMENT open (#PCDATA)>
<!ELEMENT closeTime (#PCDATA)>
<!ELEMENT posX (#PCDATA)>

 68

<!ELEMENT posY (#PCDATA)>

Set XML example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "sets.dtd">
<document>
 <set>
 <id>SE_000001</id>
 <label>Version 1.0</label>
 <paragraph>PA_000017</paragraph>
 <paragraph>PA_000018</paragraph>
 <paragraph>PA_000019</paragraph>
 <paragraph>PA_000020</paragraph>
 <createTime>1129019868593</createTime>
 <lastChangeTime>1129020058312</lastChangeTime>
 <childSet>SE_000002</childSet>
 <open>true</open>
 <closeTime>0</closeTime>
 <posX>16</posX>
 <posY>7</posY>
 </set>
 <set>
 <id>SE_000002</id>
 <label>Version 1.1</label>
 <paragraph>PA_000019</paragraph>
 <paragraph>PA_000020</paragraph>
 <paragraph>PA_000024</paragraph>
 <paragraph>PA_000025</paragraph>
 <createTime>1129019907937</createTime>
 <lastChangeTime>1129020064000</lastChangeTime>
 <parentSet>SE_000001</parentSet>
 <childSet>SE_000003</childSet>
 <open>true</open>
 <closeTime>0</closeTime>
 <posX>16</posX>
 <posY>14</posY>
 </set>
 <set>
 <id>SE_000003</id>
 <label>Version 1.2</label>
 <paragraph>PA_000019</paragraph>
 <paragraph>PA_000020</paragraph>
 <paragraph>PA_000024</paragraph>
 <paragraph>PA_000026</paragraph>
 <createTime>1129020025687</createTime>
 <lastChangeTime>1129020025687</lastChangeTime>
 <parentSet>SE_000002</parentSet>
 <open>true</open>
 <closeTime>0</closeTime>
 <posX>16</posX>
 <posY>21</posY>
 </set>
</document>

05-06: LINKS

This file will contain all HistoryTrees belonging to a specific project, and will therefore be
placed in the appropriate project directory.

 69

Link DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT document (link+)>
<!ELEMENT link (id, type, string)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT string (#PCDATA)>

Link XML example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "links.dtd">
<document>
 <link>
 <id>LI_000001</id>
 <type>0</type>
 <string> This Paragraph was included due to a talk...</string>
 </link>
 <link>
 <id>LI_000002</id>
 <type>1</type>
 <string>p08-basis.doc</string>
 </link>
 <link>
 <id>LI_000003</id>
 <type>2</type>
 <string> http://standards.ieee.org/catalog/olis/index.html
</string>
 </link>
 <link>
 <id>LI_000004</id>
 <type>3</type>
 <string>PA_000004</string>
 </link>
 <link>
 <id>LI_000005</id>
 <type>4</type>
 <string>SE_000004</string>
 </link>
</document>

05-07: PROJECT

This file will contain relevant information regarding a specific Project, and will therefore be
placed in the appropriate project directory. A list of all available projects will be placed in the
application directory.

Project XML example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>---Project information---</comment>
 <entry key="description">Software Development Project for a Calcula-

 70

tor application providing a number of mathematical functions.</entry>
 <entry key="time">1128936487531</entry>
</properties>

05-08: File Associations

This file will contain all file associations, linking specific applications to specific file types.

Association XML example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>---file associations---</comment>
 <entry key="XML">C:\PROGRAM FILES\XML MARKER\XMLMARKER.EXE</entry>
 <entry key="PPT">C:\PROGRAM FILES\MICROSOFT
OFFICE\OFFICE11\POWERPNT.EXE</entry>
 <entry key="TXT">C:\PROGRAM FILES\TEXTPAD 4\TEXTPAD.EXE</entry>
</properties>

 71

8. Appendix C: The Dissemination Activities
The activities related to the project MORE included a presentation in an NKS initiated semi-
nar on decommissioning projects in Nordic countries (Roskilde, Denmark, September 13-15,
2005), a paper presentation and demonstration of the prototype during SAFECOMP 2005
conference (Fredrikstad, Norway, September 28-30, 2005), a paper presentation and demon-
stration during the EHPG 2005 (Lillehammer, Norway, October 17-21, 2005), a project meet-
ing (October 18, 2005), and a paper presentation and demonstration during an IAEA special
meeting (Espoo, Finland, November 22-24, 2005). The participation during the two latter
events also included meetings and discussions with the staff members of FORTUM who are
involved in modernisation projects at Loviisa NPP.

The following provides brief description of each activity.

8.1 NKS Initiated Seminar on Decommissioning
The seminar was arranged by NKS and in collaboration with Dansk Dekommissionering. The
focus was on decommissioning activities in Nordic countries, and the aim was to allow as
many as possible presentations of 5-10 minutes duration. The last day of the seminar was re-
served for group work based on a pre-prepared set of questions and issues to discuss.

8.2 SAFECOMP 2005
Since it was established in 1979, by the European Workshop on Industrial Computer Systems,
Technical Committee 7 on Reliability, Safety and Security, EWICS TC7, SAFECOMP has
contributed to the progress of the state-of-the-art in dependable applications of computer-
systems. SAFECOMP is an annual event covering the state of-the-art, experience and new
trends in the areas of computer safety, reliability and security regarding dependable applica-
tions of computer systems.

SAFECOMP 2005 focused on dependability of critical computer applications. Due to the in-
creasing awareness and importance of security issues of critical computer-based systems,
SAFECOMP 2005 emphasised work in this area. Nowadays practical experience points out
the need of multidisciplinary approaches to deal with the nature of critical complex settings.
SAFECOMP 2005, therefore, was open to multidisciplinary work enhancing understanding
across disciplines.

8.3 EHPG 2005
The EHPG meeting in 2005 was the 32nd in the series of Enlarged Halden Programme Group
meetings. It was arranged in order to promote dissemination of the results of the Halden Pro-
ject’s research activities, and further to identify and discuss the research priorities of the
member organisations of the Project.

The meeting reviewed activities in all the main areas of the Project’s work. Reports on the
joint programme results and on results from participant sponsored programmes were pre-
sented, as well as papers on related work performed at the participants’ own establishments.

 72

Invited papers reviewing topics of interest within the scope of the Project’s activities were
equally presented.

8.4 Project Meeting (Minutes)
The meeting was a combined project meeting and a meeting with FORTUM/Loviisa. The
present were: Samuli Savolainen (Loviisa NPP), Olli Ventä (VTT), Janne Valkonen (VTT),
Jan Posmyr (IFE), Atoosa P-J Thunem (IFE), Harald P-J Thunem (IFE), and Rune Fredriksen
(IFE).

Atoosa P-J Thunem presented an introduction to the TACO and MORE projects and the
traceability model developed in the project TACO. She explained that this model will be fur-
ther improved in the project MORE, along with the TRACE tool supporting an approach for
dependable requirements engineering. She stressed the need for one or several test cases in
order for the project MORE and its results to become more applicable towards modernisation
projects and other activities (e.g., maintenance improvement activities) at NPPs.

Samuli Savolainen suggested that he could ask people at Loviisa to become involved. The
best person might be someone from the QA department or archive. The plan was therefore:

1. A group visit to Loviisa to see the small case study
2. Access to some documentation of the case study (An issue might be that the documen-

tation is in Finnish)

Atoosa P-J Thunem will send an email to Samuli Savolainen about the intention behind a con-
tact with Loviisa, including a brief introduction to the project (and remembering to point out
that the work will be performed by the members of the project MORE, and will not cost any-
thing for Loviisa beyond providing the test case). She will mention that the project members
would like to come to Loviisa for a visit in December 2005. Samuli Savolainen will forward
the email directly to Markku Tiitinen, Mikko Pihlatie and Arvo Vuorenmaa.

The MORE team would also like to get input on how people at Loviisa work with traceability
issues and how these challenges should be dealt with in the future.

8.5 IAEA Meeting
The purpose of the meeting was to provide an international forum for presentation and discus-
sion of experience in implementing and licensing digital I&C systems and equipment in nu-
clear power plants. The meeting was intended for I&C experts from power utilities, vendor
companies, licensing bodies, research organisations and academic institutions. The meeting
provided both experience from earlier projects and descriptions of new and planned I&C pro-
jects. The meeting was hosted by VTT and was attended by 85 participants from 24 countries
presenting 27 papers. During the meeting, new innovative methods and tools to test and vali-
date the implementation and operation of digital systems were also presented. In addition, a
TECDOC initiated in August 2005 and with the focus on implementing and licensing digital
I&C systems and equipment in nuclear power plants was further discussed during the meet-
ing.

Available on request from the NKS Secretariat, P.O.Box 49, DK-4000 Roskilde, Denmark.
Phone (+45) 4677 4045, fax (+45) 4677 4046, e-mail nks@nks.org, www.nks.org

Bibliographic Data Sheet NKS-133

Title MORE. Management of Requirements in NPP Modernisation

Projects. Project Report 2005

Author(s) Atoosa P-J Thunem1, Rune Fredriksen1, Harald P-J Thunem1,
Olli Ventä2, Janne Valkonen2 and Jan-Erik Holmberg2

Affiliation(s) 1IFE, Norway

2VTT Technical Research Centre of Finland

ISBN 87-7893-195-9 Electronic report

Date April 2006

Project NKS_R_2005_47 MORE

No. of pages 72

No. of tables 1

No. of illustrations 6

No. of references 8

Abstract The overall objective of the project MORE is to improve the means
for managing the large amounts of evolving requirements in Nordic
NPP modernisation projects. In accordance to this objective, the
activity will facilitate the industrial utilisation of the research results
from the project TACO. On the basis of experiences in the Nordic
countries, the overall aim of the TACO project has been to identify
the best practices and most important criteria for ensuring effective
communication in relation to requirements elicitation and analysis,
understandability of requirements to all parties, and traceability of
requirements. The project resulted in the development of a
traceability model for handling requirements from their origins and
through their final shapes. Particular emphasis for the MORE
project in 2005 was put on utilising a prototype of a tool (TRACE)
intended to support an adopted approach to dependable
requirements engineering, suitable for modelling and handling large
amounts of requirements related to all stages of the systems
development process and not only those traditionally including
requirements at high-level stages.

Key words

MORE, tracability of requirements, dependable requirements engineering,
TRACE

	Abstract
	Key words
	NKS-133.pdf
	1. Introduction
	2. The TACO Traceability Model
	2.1 The Motivation and Rationale
	2.2 The Elements of the Model
	3. An Approach for Dependable Requirements Engineering
	3.1 The Background
	3.2 The Four Pillars of the Approach

	4. TRACE: A Tool for Traceability of Requirements for Analysable Computerised Environments
	4.1 The Main Elements of TRACE
	4.1.1 Paragraphs
	4.1.2 Changes
	4.1.3 Change Types
	4.1.4 Links
	4.1.5 History Trees
	4.1.6 Sets

	4.2 Basic analyses

	5. References
	6. Appendix A: Project Organisation and Activities
	6.1 Project Organisation
	6.2 Project Activities

	7. Appendix B: The Complete Documentation for TRACE
	7.1 Requirements Specifications
	7.1.1 Paragraph specifications
	7.1.2 Change Types specifications
	7.1.3 Set specifications
	7.1.4 Display specifications
	7.1.5 Analysis specifications
	7.1.6 Documentation specifications
	7.1.7 Authentication specifications
	7.1.8 Project specifications
	7.1.9 History Tree specifications

	7.2 Design Specifications
	7.2.1 Class specifications
	7.2.2 Analysis specifications

	7.3 Implementation Specifications
	7.3.1 Language specifications
	7.3.2 Class specifications
	7.3.3 Menu specifications
	7.3.4 Display specifications
	7.3.5 DTD/XML Specifications

	8. Appendix C: The Dissemination Activities
	8.1 NKS Initiated Seminar on Decommissioning
	8.2 SAFECOMP 2005
	8.3 EHPG 2005
	8.4 Project Meeting (Minutes)
	8.5 IAEA Meeting

