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1 Introduction 
 
This report describes a simple comparison of two CCF-models, ECLM, (see 
Mankamo (2001a)) and Beta-model (see Alm (2001b)&(2001c)). The comparison 
was initiated by the Nordic PSA group (NPSAG) in 2002, due to the findings by Alm 
(2001a) about the Mankamo’s Extented Common Load Model and Mankamo’s 
response (Mankamo 2001b, 2002a, 2002b) on Alm’s comments.  
 
The objective of the comparison is to identify differences in the results of the above 
mentioned models by applying the models in some simple test data cases. The models 
were applied in these cases by Mankamo (2002c) and Alm & Parviainen (2002). The 
comparison presented here focuses mainly on theoretical aspects of the above 
mentioned CCF-models. The properties of the model parameter estimates in the data 
cases is also discussed. The practical aspects in using and estimating  CCF-models in 
real PSA context (e.g. the data interpretation, properties of computer tools, the model 
documentation) are not discussed in this report. Similarly, the qualitative CCF-
analyses needed in using the models are not discussed in this report. 
 
In this report, the models and their estimation principles are first shortly reviewed 
(section 2), and the results of comparisons are described in section 3. Finally, some 
conclusions are given.  
 
2 Models and their estimation 
 
The models to be compared in this report are both based on the Common Load Model 
(CLM), (Mankamo 1977). The basic assumption of CLM is that redundant 
components are operating under common load or stress, which is a random variable. 
The strengths of the components are independent and identically distributed random 
variables, and a failure occurs when the load exceeds the strength. The probability that 
k out of n components fail is according to the CLM 
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where fL(x) is the probability density function of the common load and FR(x) is the 
cumulative distribution of the strength (resistance) of the components. In the original 
CLM, the distributions of the common load and component resistances are  Gaussian. 
 
Because there is some evidence that the multiple failures of highly redundant systems 
may have stronger dependence, Mankamo (1995, 2001)  introduced an new version of 
CLM, i.e. the Extented Common Load Model (ECLM), in which the load variable is 
described by a two component Gaussian distribution, 
 

),,(),(~ xnxxbnbbL xNwxNwX σσ +        (2) 
 
where wb is the mixing parameter, i.e. the proportion of basic load part (wx=1- wb is 
the proportion of extreme loiad part). The extreme load part corresponds to the very 
high stresses (~ dependence) which may caus CCFs with very high multiplicity. 
Mankamo (xxx) uses a paramnetrisation of ECLM, in which the density function of 
the strength distribution is 
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where )(,1 x

Rσϕ is the gaussian denszity with expected value 1 and standard deviation 

Rσ . The parametrisation of basic load part of the load distribution is 
 

),,0()()( , boLb Nxxf
b

σϕ σ ==         (4) 
 
and the parametrisation of the extreme load part is 
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In this report, the predictions of  ECLM are compared with those of so called Beta 
model, developed by Alm (200x). The Beta model is based on the observation that the 
strength variable can be transformed to the interval [0,1] by defining a new variable 
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where FR(x) is the cumulative distribution of the strength. The transformed strength 
variable follows uniform U(0,1)-distribution, and the equation (1) has the form 
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In the Beta model, it is assumed that the load variable follows a beta distribution 
 

).,(Beta~ βαLX          (8) 
 
 
It is possible to transform ECLM to the interval [0,1] as in equations (7)-(8). The form 
of equation (7) reveals that all CLM models can be interpreted as kind of distributed 
failure probability models.  
 
The estimation of the models is based on maximum likelihood principle (see 
Mankamo 2001 and Alm 2001b). The data used in estimation consists of numbers of 
observed failures of different multiplicity, and the likelihood is essentially a product 
of probabilities of the form (1). The maximum likelihood estimates are found by a 
numerical procedure. In principle, the confidence bounds of the parameter estimates 
could be determined by using the Fishers information matrix (i.e. the expected values 
of second partial derivatives of the log-likelihood). However, they have not been 
calculated for the models. Instead of this, Mankamo (2001) has made some 
experiments with Bayesian estimation. 
 
 
3 Comparison of the models  
3.1 Comparison principles 
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The models are compared by estimating their parameters on the basis of 5 data sets. 
The multiple failure probabilities are then compared. In addition to this, the estimated 
loads distributions are compared. In order to do that, the  domain of ECLM is 
transformed onto the unit interval according to the transformation (9). The density 
function of the transformed (ECLM) load distribution is  
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If ECLM is transformed according to (9), the strength distribution is the uniform 
U(0,1)-distribution, as in the case of the Beta-model.. 
 
Similarly, it is possible to transform the Beta model in such way that it’s domain is  (-
∞,∞) and it’s strength distribution is identical to that of ECLM.  The density function 
of the load of the transformed Beta model becomes 
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It is also possible to compare the goodness of fit using the maximal likelihood values. 
However, in this case the number of parameters of ECLM is larger than that of Beta 
model, and it is clear that it has “better” likelihood values. One possibility to make a 
likelihood-based evaluation of the goodness is to use some kind of Akaike criterion.  
 
 
3.2 Data set 1 
 
The first data set is based on the OL1/OL2 experience and it is suggested by 
Mankamo. It consists of five different variants which are formed for purpose of 
sensitivity analysis, The data set is in Table 1. The fractional numbers of failures (e.g. 
0.8 failures of multiplicity 3 in the data set 1.1) are based on the impact vector 
assumption, in which some failure events are interpreted uncertain.  
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Table 1. Data set 1 
 
Multiplicity Data set 1.1 Data set 1.2 Data set 1.3 Data set 1.4 Data set 1.5 

0 26.5 27 26 26 26 
1 5 5 5 5 5 
2 1 0 2 2 2 
3 0.8 0.8 1 1 1 
4 0.5 1 0 0 0 
5 0 0 0 0 0 
6 0 0 0 0 0 
7 0.15 0 0 1 2 
8 0 0 0 0 0 
9 0 0 0 0 0 
10 0.05 0.2 0 0 0 

Total 34 34 34 35 36 
 
The above data set is rather weak evidence (totally appr. 34 failuree events) for  
estimating CCF parameters. However, the number of failures with high multiplicity is 
high, and it should be reflected on the parameter estimates. 
 
The estimated parameter values for the Beta model are in the Table 2. The parameters 
are rather sensitive to changes in the data. This is understandable due to the small 
amount of data. In the case of data set 1.3, the estimate of parameter β is large 
compared to the other cases. This is caused by the fact that in that data set there is no 
failures of multiplicities 4-10. For data sets 1.4 and 1.5 the ratio of parameters, α/β, is 
larger. Thus, for these data sets, the Beta-model describes the stronger dependence of 
failures by the ratio of the parameters.  It is worth noticing that the load distribution is 
modeless in all cases.  
 
Table 2. Parameter estimates of Beta-model for data set 1 
 

Parameter Data set 1.1 Data set 1.2 Data set 1.3 Data set 1.4 Data set 1.5 
α 0.2355 0.16017 0.45372 0.19634 0.16381 
β 5.8399 3.6952 12.444 3.3232 2.0597 

 
The parameter estimates for ECLM are in Table 3.  The probability of high 
multiplicity failures is obviously higher in data sets 1.4 and 1.5; in the ECLM 
parameter estimates this is reflected as larger value of the proportion parameter wx. 
The other parameters seem to be rather similar in all data sets, except the data set 1.4. 
It is interesting to note that in the case of data set 1.2 the variance of the extreme load 
part is large compared with that of other cases. The probability of  high multiplicity 
failures in data set 1.2 is higher than in data set 1.1; this stronger dependence of 
failures is now compensated by larger variance of the extreme load distribution. 
However, the dependence of failures is stronger in data sets 1.4 and 1.5, and it is not 
possible to describe this by larger variance of extreme load but by larger proportion 
parameter.  
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Table 3. Parameter estimates of ECLM for data set 1 

Parameter Data set 1.1 Data set 1.2 Data set 1.3 Data set 1.4 Data set 1.5 
wb 0.98801 0.98712 0.99848 0.87487 0.785 
wx 0.01199 0.01288 0.00152 0.12513 0.215 
σR 0.434 0.41895 0.46815 0.44932 0.44336 
σb 0.33977 0.35651 0.29194 0.26633 0.23546 
σx 0.75171 1.82615 0.57336 0.44932 0.49015 
yx 0.566 0.58105 0.53185 0.55068 0.55664 

 
 
 
The comparison of the load distributions is in Figures 1-5. The probability mass of the 
load distribution of Beta model is generally more concentrated on smaller values of 
the load variable, which leads to the smaller probabilities of high multiplicity failures. 
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Figure 1 a). Load distributions for data set 1.1. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 1 b) Load distributions for data set 1.1. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
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Figure 2 a). Load distributions for data set 1.2. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 2 b) Load distributions for data set 1.2. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM ´ 
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Figure 3a). Load distributions for data set 1.3. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 3 b) Load distributions for data set 1.3. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
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Figure 4a). Load distributions for data set 1.4. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 4 b) Load distributions for data set 1.4. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
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Figure 5a). Load distributions for data set 1.5. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 5 b) Load distributions for data set 1.5. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM.
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Figure 6. Multiple failure probabilities P(k out of k fail) for data set 1.1 
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Figure 7. Multiple failure probabilities P(k out of k fail) for data set 1.2. 
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Figure 8. Multiple failure probabilities P(k out of k fail) for data set 1.3 
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Figure 9. Multiple failure probabilities P(k out of k fail) for data set 1.4. 
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Figure 10. Multiple failure probabilities P(k out of k fail) for data set 1.5. 
 
The probabilities of multiple failures according to the models are presented in Figures 
6-10.  In all cases, ECLM gives larger failure probabilities P(k out of k fail) for large 
k. The single and double failure probabilities do not differ very much. It is important 
to note that in the cases where it is possible to estimate the probabilities P(k out of k 
fail) directly from the data ECLM gives estimates which are almost exactly the same 
as those estimated directly from the data. 
 
 
3.3 Data set 2 
 
The second data set (Table 4) consists of five different variants. The number of 
system demands is high ( ~154545). The number of failures of highest multiplicity is 
relatively large. However, the number of demands with failures with multiplicity 0 or 
1 if large. As it can be seen from Table 4, the number of 6-fold failures varies from 4 
to 7 in data sets 2.2-2.5, while the number of other failures remains the same.  
 
 
Table 4. Data set 2. 
 
Multiplicity Data set 2.1 Data set 2.2 Data set 2.3 Data set 2.4 Data set 2.5 

0 15215.2255 15215 15215 15215 15215 
1 224.2402 224 224 224 224 
2 5,2865 5 5 5 5 
3 2,6735 2 2 2 2 
4 0,5533 1 1 1 1 
5 0,0120 0 0 0 0 
6 6 4 5 6 7 

Total 155453 15451 15452 15453 15454 
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The estimated parameter values for the Beta model are in the Table 5  In this case the 
ratio of parameters is almost the same for all data sets. The parameter values get 
smaller with increasing number of failures with highest multiplicity. Also in this case 
the load distribution is modeless in all cases.  
 
Table 5. Parameter estimates of Beta-model for data set 2. 

Parameter Data set 2.1 Data set 2.2 Data set 2.3 Data set 2.4 Data set 2.5 
α 0.038404 0.048595 0.042002 0.037033 0.033153 
β 12.579 16.622 14.007 12.041 10.511 

 
 
The parameter estimates for ECLM are in Table 6. F or this data set, the proportion 
parameter wx is approximately same for all cases, and the dependence seem to be 
described by the variance of extreme load part. 
 
Table 6. Parameter estimates of ECLM for data set 2. 

Parameter Data set 2.1 Data set 2.2 Data set 2.3 Data set 2.4 Data set 2.5 
wb 0.99875 0.99885 0.99865 0.99848 0.99836
wx 0.00125 0.00 115 0.00135 0.00152 0.00164
σR 0.33087 0.33218 0.33408 0.33598 0.3341
σb 0.1335 0.12841 0.12337 0.11812 0.12337
σx 0.99262 0.79074 0.79528 0.7998 0.8643
yx 0.99913 0.66782 0.66592 0.66402 0.6659

 
 
The load distributions are presented for data sets 2.2 and 2.5 (Figures 11 –12). In all 
cases, the load distribution of Beta model is broader, and it has more probability mass 
on smaller load values that ECLM. Thus, it is clear that it predicts smaller multiple 
failure probabilities.  
 
The probabilities of multiple failures according to the models are presented in Figures 
13-16.  In all cases, ECLM gives larger failure probabilities P(k out of k fail) for large 
k.  Also in this case, the single and double failure probabilities are rather similar. The 
Multiple probability 2-6-fold failures of ECLM is almost constant, in Beta model the 
multiple failure probability decreases rapidly with increasing failure multiplicity. It 
seems that the failure probability estimates of Beta model are determined mainly by 
single and double failures.  
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Figure 11 a). Load distributions for data set 2.2. The load distribution of ECLM 
transformed such that the strength distribution is uniform.  
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Figure 11 b) Load distributions for data set 2.2. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
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Figure 12 a). Load distributions for data set 2.5. The load distribution of ECLM 
transformed such that the strength distribution is uniform.  
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Figure 12 b) Load distributions for data set 2.5. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
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Figure 12. Multiple failure probabilities P(k out of k fail) for data set  2.1. 
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Figure 13. Multiple failure probabilities P(k out of k fail) for data set  2.2. 
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Figure 14. Multiple failure probabilities P(k out of k fail) for data set  2.3. 
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Figure 15. Multiple failure probabilities P(k out of k fail) for data set  2.4. 

 19



 

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1 2 3 4 5 6

k

P(
k/

k) ECLM
Beta model

 
 
Figure 16. Multiple failure probabilities P(k out of k fail) for data set  2.5. 
 
 
 
 
 
3.4 Data set 3 
 
The third data set (Table 7) consists of four different variants. The number of system 
demands is again high ( ~16067). The evidence can be regarded as very strong (at 
least for low failure multiplicity).  The number of failures of highest multiplicity is 
now relatively low. The data set 3 differs from the data set 2 in such a way that the 
number of  single and multiple failures is significantly lower. 
 
Table 7. Data set 3 
 
Multiplicity Data set 3.1 Data set 3.2 Data set 3.3 Data set 3.4 

0 15977.8887 15980 15980 15980 
1 84.08 84 81 81 
2 1.8763  2 3 3 
3 0.9866 1 1 1 
4 0.4725 0 1 1 
5 0.4642 0 1 0 
6 0.2317 0 0 1 

Total 155453 15451 15452 15453 
 
 
 
The estimated parameter values for the Beta model are in the Table 8. Also in this 
case the ratio of parameters is almost the same for all data set, and the parameter 
values get smaller with increasing number of failures with highest multiplicity.  
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Table 8. Parameter estimates of Beta-model for data set 3. 
 

Parameter Data set 3.1 Data set 3.2 Data set 3.3 Data set 3.4 
α 0.025259 0.052533 0.17152 0.015613 
β 25.17 55.591 16.611 14.926 

 
The parameter estimates for ECLM are in Table 9. F or this data set, the proportion 
parameter wx is approximately same for cases 3.1-3-3,  but it is slightly smaller in the 
case 3.4 (where the number of the six-fold failures is largest). For this data set, the 
other parameters vary slightly from case to case, and the dependence seem not to be 
described by single model parameter as in earlier data sets. The parameters for the 
case 3.4 differ quite a lot from those of the other data cases. 
 
Table 9. Parameter estimates of ECLM for data set 3 
 

Parameter Data set 3.1 Data set 3.3 Data set 3.3 Data set 3.4 
wb 0.99942 0.99942 0.99913 0.96108 
wx 0.00058 0.00058 0.00087 0.03892 
σR 0.30096 0.27571 0.28793 0.32269 
σb 0.10581 0.16343 0.1349 0.28604 
σx 0.30096 0.27571 0.26045 0.66627 
yx 0.69904 0.72429 0.71207 0.67731 

 
 
The load distributions are presented for data sets 3.1 and 3.4 (Figures 17 –18). As 
earlier,  the load distribution of Beta model is broader, and it has more probability 
mass on smaller load values that ECLM.  
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Figure 17 a). Load distributions for data set 3.1. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 17b) Load distributions for data set 3.1. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
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Figure 18 a). Load distributions for data set 3.4. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 18b) Load distributions for data set 3.4. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM.
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The probabilities of multiple failures according to the models are presented in Figures 
19-22.  In all cases, ECLM gives significantly  larger multiple failure probabilities. 
The single and double failure probabilities are rather similar. The predictions of both 
models are rather sensitive to changes of number of multiple failure probabilities. The 
largest difference in the probability of 6-fold failure is in the data case 3.2, where the 
number of high multiplicity failures is smallest.   
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Figure 19. Multiple failure probabilities P(k out of k fail) for data set  3.1 
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Figure 20. Multiple failure probabilities P(k out of k fail) for data set  3.2. 
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Figure 21. Multiple failure probabilities P(k out of k fail) for data set  3.3. 
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Figure 22. Multiple failure probabilities P(k out of k fail) for data set  3.4. 
 
 
3.5 Data set 4 
 
The data set 5 consists of failure information from five systems with different degrees 
of redundancy. The data is in Table 10. 
  
Table 10. The data set 4. 
 
Multiplicity System 1, 

number of 
components 

6 

System 2, 
number of 

components 
5 

System 3, 
number of 

components 
4 

System 4, 
number of 

components 
2 

System 5, 
number of 

components 
3 

0 200 100 40 100 200 
1 5 5 1 6 8 
2 2 1 0 2 0 
3 3 0 0 - 2 
4 0 0 1 - - 
5 0 2 - - - 
6 0 - - - - 

Total 210 108 42 108 210 
 
 
The parameters of the Beta-model for the data set 4 are: α = 0.28188 and β = 
0.87277. It is worth noticing that these parameters correspond to the load distribution 
with density function having infinite value at load variable values x = 0 and x = 1. 
This is consistent with the rather weak evidence from data set 4. The correspondingf 
parameter estimates of ECLM are in Table 11. 
 
 Table 11. Parameter estimates of ECLM for data set 4. 
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Parameter Estimate 

wb 0.96108 
wx 0.03892 
σR 0.32269 
σb 0.28604 
σx 0.66627 
yx 0.67731 

 
The load distributions are presented in Figure 23. Again, the load distribution of Beta-
model is concentrated more on the smaller load variable values. However, the 
difference is smaller than in earlier data cases. In the beta-model, there is also some 
probability mass at the larger values of the load variable.  
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Figure 23 a. Load distributions for data set 4. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 23 b. Load distributions for data set 4. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
  
The multiple failures probabilities according to the models are presented in Figures 
24. In this data case, the Beta-mode gives higher failure probabilities for all failure 
multiplicities.  
 
Assuming that the failures are independent and, it is possible to estimate the 
corresponding single failure probability; p = 0.0227. This is compatible with the 
estimate of ECLM. The corresponding estimate for the Beta-model is p = 0.0313, 
which is significantly larger. This is probably due to the fact that in this data set, the 
proportion of multiple failures is relatively high, and it has much stronger impact on 
the estimate of the Beta-model. 
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Figure 24. Multiple failure probabilities P(k out of k fail) for data set  4. 
 
 
 
3.6 Date set 5 
 
The data set 5 is the CCF data for OKG 314 valves, and it consists of data from two 
systems with rather high degree of redundancy. This data was used by Alm as 
background in the development of the Beta-model. It can be seen that the data from 
two systems are not homogeneous with respect to the number of single and multiple 
failures. According to Mankamo (2002a) this data doesn’t correspond to any realistic 
data case, and can be used only as a benchmark case for theoretical interests. 
Mankamo (2002a) states that most of the failures are non-critical with respect to 
actual demand conditions. The data and the corresponding CCF-estimates should not 
be used for any practical application, because of strong overestimation of failure 
probabilities.. The data is in Table 12. The evidence of data set 5 is rather weak, only 
110 system demands have occurred, and very few failures (2 single, 1, double and 1 
triple failures) have occurred. However, the occurrence of multiple failures seems to 
indicate dependence between failures. Actually, by assuming independence of 
failures; the expected number of double (triple, respectively) failures for the system 1 
is 0.04 (0.001), which is much less than the occurred number of  failures.  
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Tabl2 12. The data set 5. 
 
Multiplicity System 1, 

number of 
components  

13 

System 2, 
number of 

components 
7 

0 40 66 
1 2 0 
2 1 0 
3 1 0 
4 0 0 
5 0 0 
6 0 0 
7 0 0 
8 0  
9 0  
10 0  
11 0  
12 0 - 
13 0  

Total 44 66 
 
 
The parameter estimates fro rhe beta model are: α = 0.050316 and β = 8.734. The 
parameters of the ECLM are in Table 13. 
 
Table 13. Parameter estimates of ECLM for data set 5. 
 

Parameter Estimate 
wb 0.99979 
wx 0.00021 
σR 0.27127 
σb 0.2999 
σx 0.54254 
yx 0.72873 

 
 
 
The load distributions are presented in Figure 25. Also in this case, the load 
distribution of the Beta model is more concentrated on smaal values of the load 
variable. The ECLM load distribution has also stronger tail, which indicates that the 
multiple failure probabilities should be larger for ECLM.  
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Figure 25a. Load distributions for data set 5. The load distribution of ECLM 
transformed such that the strength distribution is uniform. 
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Figure 25 b. Load distributions for data set 5. The load distribution of Beta-model 
transformed such that the strength distribution is normal with same parameters as 
ECLM. 
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The multiple failure probabilities for the models are in Figure 26. In this case the 
single failure probabilities are rather comparable, but the multiple failure probabilities 
differ significantly.  
 

1,0E-08

1,0E-07

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1 2 3 4 5 6 7 8 9 10 11 12 13

k

P(
k/

k)

ECLM

Beta model

 
 
Figure 26. Multiple failure probabilities P(k out of k fail) for data set  5. 
 
 
3.6 Comparison of likelihoods 
 
As mentioned in section 3.1, the goodness of fit of the models could be compared on 
the basis of maximal likelihood values: the higher the maximal likelihood, the better 
is the fit. In the above comparisons, the maximum likelihood value for ECLM is much 
higher than that of the Beta-model. This is naturally due to the larger number number 
of parameters in ECLM, which implies better fit to the data.  
 
4 Conclusions 
 
Before going to the conclusions made on the basis of the above experiments, the 
behaviour of the models will be considered theoretically. In the ECLM model, the 
dependence between failures is described by several parameters. Depending on the 
case, the dependence is reflected mainly in the variances of the strength and load 
variables and the proportion parameter. The expected value of the extreme load part 
has also an impact on the dependence. In the Beta-model, the single failure 
probability, P(1 component out of 1 fails) has the form 
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If the parameter values increase in such a way that the above probability remains 
constant, the multiple failure probabilities converge to the corresponding independent 
failure probabilities, or mathematically 
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This behaviour is demonstrated in Figure 27, where the multiple failure probabilities 
with different values of r are presented. In Figure 27, the parameters α0 = 0.050316 
and β0 = 8.734 are the estimates corresponding the data set 5. 
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Figure 27. Behaviour of the Beta-mode with increasing parameter values. 
 
This kind of behaviour can be interpreted so the dependence of failures in the Beta-
model is described with one parameter (r), and the total single failure probability 
determines the order of the magnitude of the failure probabilities. In this sense, the 
Beta-model is comparable to the Matti Heikkilä’s model (see Mankamo 1992). 
However, the weak point in Beta-model is that it can only describe dependencies of 
this type.  
 
In many practical cases, the dependency between failures gets stronger when the 
failure multiplicity increases, and this kind of behaviour cannot be dealt properly with 
by Beta-model. The data sets 1-3, which are either real practical cases or their simple 
modifications are examples of such cases. In the ECLM model, the description of 
dependence is richer, and it fits very well to the many practical dependency structures. 
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In fact, if directs estimates for multiple failure probabilities are estimated in the above 
mentioned data cases, the ECLM predictions are almost exactly the same. From this it 
can be concluded that when data shows dependency which increases with increasing 
failure multiplicity, the Beta-model may underestimate the multiple failure probability 
and it should be used with care. However, for low failure multiplicities Beta-model 
may give good results. 
 
It is natural that the ECLM “fits better” to the observations, since it has more 
parameters that the Beta-model. However, in the case of low failure multiplicities, 
ECLM creates an overfitting, since it has a parameter almost for all failure 
multiplicity (ECLM is actually developed for describing the CCFs of high 
multiplicity, and it should not be used without care for other cases). From a statistical 
modelling point of view, this may not be favourable. The Beta-model is simple and 
rather easy to interpret, and the small number of parameters is an advantage (at least 
in the case of low failure multiplicity).  
 
In all cases except one (the data set 4) ECLM gave higher multiple failure 
probabilities. The differences between the results were significant in almost all cases. 
As a multi-parameter model, in fits better to the multiple failure data in those cases. 
Usually, in the failure data, there are many single failures, but the number of actual 
CCFs is low. In these cases, the Beta-model adjusts its parameters according to the 
low multiplicity failures mainly, implying rather low dependence. From PSA point of 
view, this may lead to over-optimistic results. On another hand, ECLM may give 
more conservative results, since it seems to adjust the dependence according to the 
failures of highest multiplicity. In any case it clear that the models lead to differences 
of PSA results. 
 
The data set 4 is an interesting exception. It corresponds to relatively weak evidence 
compared to the other cases, but the number of multiple failures is high compared to 
that of single failures. The Beta-model seems to track this rather high dependency by 
increasing also the single failure probability (see Figure 24).  
 
The sensitivity of parameter estimates to the changes of failure data has been studied 
in the data sets 1-3. It seems that ECLM parameters are more robust for the changes 
of data. In the most of the cases it tracks the changes of dependency by changing the 
variance of the extredme load part. However, in the data set 3.4, also the proportion 
parameter and the mean of the extreme load part changes more that in the other cases. 
The Beta-model parameters change rather much along the changes in data, but the 
single failure probability is relatively stable. 
 
Both models are estimated by using the maximum likelihood principle. However, the 
confidence regions for the parameter are not determined. It would be rather simple 
task to determine approximate confidence bounds for the estimates by using the 
Fisher’s information.  Another possibility is to apply Bayesian methods. The 
determination of confidence bounds is recommended for both of the models. 
 
In this comparison study, the models were compared with a limited number of data 
cases. It was not possible to make the comparison according to the best statistical 
principles and theoretical analyses. One possibility to make such a comparison is to 
simulate a large number of data cases from some CCF-model (with known multpile 
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failure probabilities) and to estimate the parameters of the ECLM and Beta-model on 
the basis of the simulated data. In such a comparison, the statistical properties (e.g. the 
goodness of fit, the consistency of estimates, sensitivity of the parameters etc.) could 
have been studied. This comparison gives only a view on some rather evident the 
properties of the models.  
 
It must be emphasised that the most important issue in CCF-analysis is not the 
models, but the amount and quality of the raw data. The treatment of the data is 
mainly engineering work and it is at least partially independent on the applied CCF-
model. Another question is how well the applied model supports the use of expert 
judgements, but it was not studied here.  
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