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Abstract 
 
The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation con-
ditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an 
external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonati-
on pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation 
and applying the strong explosion theory. The results can be considered as rough and conservative estimates for 
the first shock pressure impact induced by a reflecting detonation wave.  
Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local 
detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or 
slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the 
opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the 
wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. 
Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit 
program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were mo-
delled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these stu-
dies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using ideali-
sed boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during 
the numerical simulation. 
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1 Introduction 
This study aims to assess the structural integrity of a reinforced concrete wall during a hydro-
gen detonation. Hydrogen detonation leads to high, peak type pressure transients, followed by 
a relatively high, slowly decreasing pressure. Structural integrity can be endangered due to 
slow pressurisation or dynamic impulse loads associated with local detonations.   
 
Shock pressure transient loads typical of hydrogen detonation are evaluated with the DETO 
code. This code is based on the strong explosion theory, taking into account the pressure ef-
fects of both the incident shock wave and the first shock reflection from the structure. Propa-
gation of the combustion front of detonation is not treated. Instead, the code models the pro-
pagation of an adiabatic shock wave induced by point-like energy release, and the first reflec-
tion of the shock from the wall structure. A program interface between DETO 2.0 and ABA-
QUS/Explicit codes has also been developed at VTT Energy. This program provides a fle-
xible data transfer between these codes.  
 
Preliminary linear structural analyses were carried out by the ABAQUS/Standard program. 
Eigenmodes and natural frequencies of the model were evaluated. Also, the capacity of the 
reinforced concrete wall under constant pressure was predicted by linear and non-linear 
methods. Materially non-linear static analyses were carried out using the reinforced concrete 
model available in the ABAQUS/Standard Finite element method program.    
 
Non-linear dynamic finite element analyses of the reinforced concrete wall were carried out 
by the ABAQUS/Explicit program. The reinforcement and its rate-dependent elastic-plastic 
material behaviour, as well as the tensile cracking of concrete, were modelled.  
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2 Preliminary studies 

2.1 Finite element model 
The geometric model showing the main dimensions and FE mesh is represented in Figures 
2.1, 2.2 and 2.3 for the three topmost floors of the reinforced wall in the shaft and part of the 
connecting structure. Since the wall and its supporting framework are horizontally nearly 
symmetrical, only half the structure is modelled. The X-Y (1-2) plane is the symmetry plane. 
All modelled floors and walls are assumed to be rigidly joined. Figure 2.1 also shows the lo-
cations of the detonation points. Also, the location of the model used in non-linear analyses is 
indicated.  
 

6.6

7.2

3.0

Symm.

+25.0

+31.5

t = 0.6

+19.5+19.5

2.5

 
 
Figure 2.1.  Finite element model of the structure. Locations closest to the upper and lower  
detonation point indicated by circles. The dashed line indicates the location of the non-linear 
FE-model.  
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t = 0.6

t = 0.6

t = 0.5t = 0.35

t = 0.5

t = 0.85

 
 
Figure 2.2. FE Model. t is the thickness of the structure. 
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Figure 2.3. Detail of the FE model. 
 
In preliminary studies, the whole structure is assumed to be a homogeneous material. For sta-
tic analyses and the natural frequency extractions the following three material parameters are 
needed: 
 
Density 

  32500
m
kg

c =ρ  

 
Young's Modulus 
 

KkEc 5000= , (2.1) 
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Since the concrete is reinforced throughout the system, an equivalent eq
cE  has to be defined. It 

is a weighted mean value of the moduli of concrete and steel. On average the concrete rein-
forcement is ∅ 16 k 250 near the upper and the lower surfaces, in the direction of the load. 
The average thickness of the wall is 0.6 m. Thus in 1 cubic meter the volume of the steel is 
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and the equivalent Young's Modulus for the reinforced concrete is 
 

( )
PaMPaMPaMPa

MPaE eq
c

10108.22784953627313

200000002681.027386002681.01

⋅≈=+=
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2.1.1 Loads and boundary conditions 
In the following there are three main variations in respect of boundary conditions, termed Ca-
se 1L, Case 2L and Case 3L. Letter L refers to the analysis type, which is linear. In all these 
cases the X-Y plane is the symmetrical plane. Thus every node in that plane has three degrees 
of freedom: translation in the Z direction and rotations around X and Y axes. With those con-
ditions alone, however, the system would be statically indeterminate. Thus additional 
constrictions are introduced: In Case 1L the lowest floor level is completely rigid, and all six 
degrees of freedom are fixed in these nodes. In Case 2L also the downmost level of the left 
wall edge is rigid. In Case 3L the two first levels of that particular edge are rigid as shown in 
Figure 2.4, meaning approx. 2/3 of the whole height of the examined structure. 
 

                    
Figure 2.4. Load and boundary conditions of the model. Case 3L. 
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In all these cases the loading is a constant pressure on the wall considered. It is defined in 
Chapter 2.4. Figure 2.4 shows the load and boundary conditions. Constant pressure load is 
indicated with pink arrows. 
 
Also, a finite element model of the wall was used in non-linear analyses. Only the loaded part 
of the geometry shown in Fig. 2.1 was modelled. A simplified model was formulated by re-
moving surrounding elements and composing these parts of the model with boundary condi-
tions. The supporting vertical wall and supporting vertical structures at level 19.0 m were mo-
delled as fully fixed. The floor at level 25.0 m was modelled assuming the displacement of the 
wall at level 25.0 m along the global 1-axis to be zero. These models are referred to in the 
following as Wall. 

2.2 Eigenmodes 
The first 20 natural frequencies and corresponding mode shapes of the system are calculated 
in Case 1. The lowest natural modes, their frequencies and generalised masses are given in 
Table 2.1. The first five mode shapes are shown in Figures 2.5 - 2.7. 
 

                       
 
Figure 2.5. Mode shape 1 (amplitude of oscillation). The corresponding frequency is 8.2933 
Hz. Undeformed shape in red.  
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Figure 2.6. Mode shapes 2 and 3 (amplitudes of oscillation). The corresponding frequencies 
are 12.412 Hz and 15.460 Hz.  

 
 
Figure 2.7. Mode shapes 4 and 5 (amplitudes of oscillation). The corresponding frequencies 
are 28.902 Hz and 30.515. 
 
The lowest eigenfrequencies of the model used for linear considerations and corresponding 
values of the model of the wall are given in Table 2.1. 
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Table 2.1. Eigenfrequencies [Hz]. 
Mode Linear 

Model 
Wall 
only  

1 8.2933 14.5 
2 12.412 46.9 
3 15.46 56.3 
4 28.902 62.4 
5 30.515 85.5 

 
For conservative reasons and due to computational capacity limitations the Wall-only model 
was used in non-linear analyses. 
 

2.3 Moment capacities 
The moment capacities of three critical areas in the studied reinforced wall were defined. The 
critical areas are evaluated in the next chapter by examining the moment distributions in the 
case of a unit pressure load. The ultimate strength design is based on Finnish concrete norms 
B4 (1987). The structural class is 1. First, the design strengths of the steel and concrete are 
defined. Service strength is divided by the partial safety coefficient. 
________________________________________________________________ 
 
Steel A400H 
 
Ultimate yield strength 
 

 MPa
f

f
s

yk
yd 364

1.1
400 ===

γ
  (2.4) 

 
Concrete K30 
 
The following two values were obtained from the Finnish Concrete Standard (Betoninormit 
1981).  
 
Ultimate compressive strength  
 
  MPaf cd 6.15=  
 
Ultimate tensile strength  
 
  MPaf ctd 43.1=  
________________________________________________________________ 
 
 
Initially, the wall cross-section and the reinforcement is known. The protective screed of both 
the main reinforcement and the compression reinforcement is 20 - 45 mm and is simplified to 
a constant value of 30 mm. Since the reinforcement bars are 16 mm in diameter, the distance 
of the inner tensile force from the compression side is 
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md 562.0
2
016.003.06.0 =−−=  (2.5) 

 
The corresponding distance of the compressive force is 
 

md 038.0
2
016.003.0, =+=  

 
Since the ratio of compression and tension in the surfaces is approximately 8 to 10 in every 
critical area (according to the stress results in Chapter 2.4), the height of the compression side 
is calculated as follows: 
 

267.0
9
4

10
8 ==�=

−
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xh
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First, the bending strength uM  has to be defined. Only after that is the compression reinfor-
cement relevant. A section length of 1 m is considered. 
 

s

ydsydsydsydsu

A
d
xdfA

d
ydfAdfAzfAM

⋅=

�
�

�
�
�

� −=�
�

�
�
�

� −=�
�

�
�
�

� −==

166

4.01
2

1
2

1
β

   (2.7) 

 
The main reinforcement area has to be given in square meters for a 1 m breadth of wall sec-
tion. Table 2.2 shows the main reinforcement related to the direction of the critical moment 
and the corresponding steel area and bending capacity of the critical regions. The first critical 
region is the upper left corner of the wall. The second critical region is the upper right corner, 
which is at the symmetry line of the model. Both regions are critical in the horizontal bending. 
The third region is critical in vertical bending and lies at the junction of the wall, the floor 
(level 25.00) and the symmetrical plane.   
 
Table 2.2 Ultimate bending capacity in critical regions. 

crit. region main reinf. steel area Mu 
 [mm] [m2] [MNm/m] 
1 16k125 0.001608 0.267 
2 16k250 0.000804 0.134 
3 16k325 0.000619 0.103 

 
If the moment is higher than the ultimate bending moment, the main reinforcement starts to 
yield and the concrete cracks on the tensile side. Next, the structure has to be checked against 
compression. The ultimate bending strength of a structure with compression reinforcement is 
the sum of the compressive strength of both the concrete and compressive reinforcement: The 
compression capacity of this, rather weakly reinforced, wall becomes non-critical. 

2.4 Unit pressure 
A static FEM analysis is run to determine the displacements, stress and moment distribution. 
The loading is a pressure of 1 bar (0.1 MPa) in the negative direction of the X axis. The loa-
ded area is the two uppermost levels of the wall and is shown in Figure 2.5. Figure 2.8 shows 
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the displaced shape of the wall under a constant pressure load, Case 2L. The von Mises stress 
distribution throughout the model is shown in Fig. 2.9.  
 

                      
 
Figure 2.8. Displaced shape of the model. Case 2L. 
 
The horizontal stress distribution at the outer surface of the wall in Case 1L is shown in Fig. 
2.10. The surface at which the pressure is acting is referred to as the inner surface. Vertical 
stresses at the inner surface of the wall are shown in Fig. 2.11. As can be seen, the ultimate 
tensile stress of the concrete is exceeded near the supporting areas at the inner surface and at 
the outer surface near the symmetry line. 
 
The horizontal bending moment distribution in Case 1L is shown in Fig. 2.12 and the vertical 
bending moment distribution in Fig. 2.13. The horizontal displacement distribution in the 1-
axis direction is presented in Fig. 2.14. 
 
The horizontal bending moment distribution in Case 3L is shown in Fig. 2.15 and the vertical 
bending moment distribution in Fig. 2.16. The horizontal displacement distribution in the 1-
axis direction is presented in Fig. 2.17. 
 
The moments in the critical regions and critical direction are listed in Table 2.3. There are no 
significant differences in the bending moment distributions in the studied Cases 1L-3L.  
 
Since the moment is directly proportional to the pressure load, the design moment can be de-
rived by superposition: 
 

MMM d ⋅=⋅= 0.1γ   (2.8) 
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where γ = 1 in accident load cases. 
 
Table 2.3.  Bending moment at critical regions. 

crit. region Md 
 [MNm/m] 
1 0.5 
2 -0.4 
3 0.5 

 
The load capacity of the wall can be defined by comparing the moments in the case of unit 
load and the corresponding bending capacity (Table 2.2). The most critical region is thus Re-
gion 3 and the maximum load capacity for uniformly distributed load in the wall is 
 

bar
M
Mp

d

u
d 206.0

5.0
103.01 ==⋅=  (2.9) 

 
Thus, when the load exceeds 0.206 bar, the main reinforcement starts to yield. 
 

    
 
Figure 2.9. Contour plot of the von Mises stress distribution (max. 14.7 MPa throughout the 
model, section point 1 (inner surface), Case 1L. 
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Figure 2.10. Contour plot of the horizontal stress (σ11) distribution (min.-12.9 MPa, max. 6.6 
MPa) in the wall, section point 1, Case 1L. 
 

 
Figure 2.11. Contour plot of the vertical stress (σ11) distribution (min. -10 MPa, max. 11.1 
MPa) in the wall, section point 5, Case 1L. 
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Figure 2.12. Contour plot of the horizontal moment (M1) distribution (min. -0.45 MNm/m, 
max. 0.71 MNm/m) in the wall, Case 1L. 
 

 
Figure 2.13. Contour plot of the vertical moment (M2) distribution (min. -0.1 MNm/m,  
max. 0.75 MNm/m) in the wall, Case 1L. 
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Figure 2.14. Contour plot of the displacements (m) in the normal direction (u1). 
 

 
Figure 2.15. Contour plot of the horizontal moment distribution (min. -0.45 MNm/m,  
max. 0.7 MNm/m) in the wall, Case 3L. 
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Figure 2.16. Contour plot of the vertical moment distribution (min. -0.1 MNm/m, max. 
0.8 MNm/m) in the wall, Case 3L. 

 
Figure 2.17. Contour plot of the displacements (m) in the normal direction, Case 3L. 
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Wall model 
 
Linear moment distributions of the wall model under constant pressure are not shown here. 
Compared to the previously presented results, the horizontal moment distribution (around the 
2-axis) overestimates the moment on the support. This is, of course, due to the fully fixed ro-
tational degrees of freedom along the edge. At any rate, the fully fixed assumption is more 
conservative. On the other hand, the results of Cases 1L, 2L and 3L may underestimate the 
support moment. Moment distributions related to the vertical direction (around the 3-axis) are 
similar in Cases 1L-3L and in the wall model. For a number of reasons only the wall model is 
used in further non-linear analyses.  

3 Non-linear analyses  
The FE mesh used in the following analyses is shown in Figs 2.10 - 2.17. There are about 
6500 four-noded shell elements. This element, referred to as S4R in ABAQUS Manuals, is a 
double curved shell element with hourglass control and reduced integration. In these analyses 
five calculation points were used through the element thickness.   

3.1 Material modelling of reinforced concrete 
Concrete 
 
Concrete withstands primarily compression and its tensile strength is typically one tenth of 
the compression strength. The response of concrete to uniaxial and combined stresses is non-
linear due to progressive microcracking at the transition zone between the aggregates and the 
bulk cement paste. Yielding and failure surfaces in the biaxial stress state are shown in Fig. 
3.1. Uniaxial behaviour of concrete is shown in Fig. 3.2.  
 
The ABAQUS/Standard program provides a more general capability for modelling concrete 
due to the elastic-plastic yield theory applied for dominantly compressive stress components. 
Also, this model simplifies the actual behaviour especially when the concrete is strained 
beyond the ultimate stress point. Open tensile cracks are modelled by a loss of elastic 
stiffness. The cracks may close if the stress across them becomes compressive.  
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Figure 3.1. Yield and failure surfaces in plane stress (ABAQUS Theory Manual 1998). 
 

 
Figure 3.2. Uniaxial behaviour of plain concrete (ABAQUS Theory Manual 1998). 
 
In the ABAQUS/Explicit program the brittle cracking model provides the capability to model 
tensile properties of concrete. This model is designated for applications in which the beha-
viour is dominated by tensile cracking. ABAQUS/Explicit uses a smeared crack model. A 
simple Rankine criterion is used to detect crack initiation. The Rankine criterion is presented 
in Fig. 3.3. A crack forms when the maximum principal tensile stress exceeds the tensile 
strength of the material. Further cracks of the same material point are orthogonal to any 
existing cracks (ABAQUS Theory Manual 1998).   
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Figure 3.3. Rankine criterion in plane stress (ABAQUS Theory Manual 1998). 
 
The crack forms when the maximum principal tensile stress exceeds the tensile strength of the 
concrete. A reasonable starting point for relatively heavily reinforced concrete modelled with 
a fairly detailed mesh is to assume that the tensile stress after failure linearly decreases when 
the strain εtu is ten times the strain at failure. In this case the strain at zero tensile stress is eva-
luated according to Shayanfar et al. (1997): 
 

 h
tu e 2.0004.0 −=ε  (3.1) 

 
where h is the width of the element in inches. In this case h is about 4 inches.  
 
The material properties of the concrete used in these non-linear analyses are shown in Table 
3.1. The numerical values are obtained from codes and standards.  
  
Table 3.1. Concrete material properties. 

Ec [MPa] fctk [MPa] υ εcr εtu fcd [MPa] fck [MPa] 
27000 1.93 0.15 0.0007 0.0018 15.6 21 

  
The mode II shear behaviour is based on the observation that shear behaviour depends on the 
amount of crack opening. The shear modulus decreases as the crack opens. Compressive be-
haviour is assumed to be linear elastic.   
 
Standard material tests are conducted quasi-statically using a strain rate of 10-6 to 10-5 per 
second. Experiments simulating dynamic loading conditions with strain rates up to 0.2 per 
second show an increase in compression strength up to 35% when the strain rate increases. 
The increase in tensile strength by increasing strain rates is up to 50%. These rate-dependent 
properties of concrete cannot be numerically simulated with the available material model 
library. 
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Damping 
 
Damping is modelled by the mass proportional part of Rayleigh damping; the damping matrix 
C is defined by 
 

KMC RR βα +=  (3.2) 
 
where K is the stiffness matrix and M is the mass matrix. The αR factor introduces damping 
forces caused by absolute velocities of the model and defines mass proportional damping. The 
factor βR defines viscous material damping (Bathe & Wilson 1976). 
 
Mass proportional damping is used to damp out the low frequency response. In this case the 
mass proportional damping is used for damping the lowest mode with 10% of the critical 
damping. The damping factor is calculated by 
 

ξωα min2=R  (3.3) 
 
where ξ in this study is basically 10%.   
 
Reinforcement 
 
Reinforcement is modelled by one-dimensional strain theory elements. Reinforcement is defi-
ned as layers of uniformly spaced reinforcing bars in shell elements. The concrete cracking is 
considered independently of rebars. Effects between concrete and the rebar interface, such as 
bond and dowel action, are modelled approximately by introducing some tension stiffening 
into the concrete cracking model. This simulates the load transfer across the cracks through 
the reinforcement.    
 
The material behaviour of reinforcing steel is assumed to be linear elastic up to the yield 
stress. The stress vs. plastic strain is presented in Table 3.2. Young's modulus is 210 GPa and 
Poisson's ratio 0.3. 
 
Table 3.2. Stress vs. plastic strain values for reinforcement steel.  

Stress [MPa] 390. 400. 480. 
Plastic strain [mm/mm] 0. 0.002 0.15 

 
The strain rate effect of reinforcing steel is accounted for by a standard procedure for conside-
ring the strain rate effects, and is expressed by the formula 

p

y
pl D ]1

~
[

.
−=

σ
σε  (3.4) 

where pl

.
ε  is the equivalent plastic strain rate, 

~
σ  is the effective yield stress and σy is the 

static yield stress, ABAQUS/Explicit 5.8. In these calculations p = 5 and D = 40. 
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3.2 Loading transients due to hydrogen detonation 
Pressure loading transients on the wall due to a hydrogen detonation are calculated by the 
DETO program (Silde & Lindholm 2000). The code is based on the strong explosion theory 
with oblique (and normal) shock reflection relations. Actually, the code models the adiabatic 
shock wave induced by point-like energy release. Propagation of the real detonation (com-
bustion) front is not modelled. In any case, the code is found to yield the first, rough estimates 
of shock pressure loads typical in detonation conditions. Loading transients for the ABAQUS 
input file were produced by a special interface program. This interface program between the 
DETO code and ABAQUS Finite element code is described elsewhere (Silde 1999).  
 
Shock pressure loads corresponding to the energy release from a burn of 0.5 kg hydrogen are 
shown in Fig. 3.4a. The explosion centre is 1.3 m away from the wall at the symmetry line of 
the model. The heights of the two ignition points considered are shown in Fig. 2.2. In the fol-
lowing, the ignition near the upper edge of the wall (level + 28.00 m) is referred to as Case 1. 
 
Shock pressure loads corresponding to the energy release from a burn of 1.428 kg hydrogen 
are shown in Fig. 3.4b. The explosion centre is 1.3 m away from the wall. This corresponds to 
the situation referred to as Case 1 in Table 6-1 of the NKS Report (Silde & Lindholm 2000). 
Two different parameter variations were used: ignition near the upper location (Case 2) and in 
the lower location of the wall (Case 3). Ignition occurring in the upper position is referred to 
as Case 2 and detonation occurring at the level 21.50 as Case 3.  
 
The over-pressure increases statically before detonation until 0.27 bar, and the constant over-
pressure after detonation is 1.5 bar. According to the preliminary studies this clearly exceeds 
the ultimate capacity of the wall.  
 
The numerical simulations were carried out in three steps. The time increment needed for ex-
plicit time integration was 5 µs. First, the constant loading pressure on the non-linear part of 
the model was increased to 0.27 bar in 0.1 seconds. During the second step the detonation 
transient was applied to the wall. The duration of this step was 3.5 ms. Constant pressure du-
ring the final step was 1.5 bar. 
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Figure 3.4 a and b. Pressure transients on the wall during detonation transients of 0.5 kg and 
1.428 kg hydrogen.  
 
Decrease of the constant over-pressure after detonation due to ventilation has also been asses-
sed (Lindholm 2000). The initial temperature in room B.60-80 is assumed to be 800 K and in 
the outer room 303 K, respectively. The pressure in the outer room is assumed as 1 bar.  
 
In the first scenario the joint sealing compound is absent and the area of the ventilation hole is 
0.67 m2. Pressure decrease as a function of time with different initial pressure differences is 
shown in Fig. 3.5. The pressure decrease rate is rather low and does not affect the constant 
pressure load as rapidly as needed in respect of the wall point.  
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In the second scenario the doors at level 19.00 are assumed to be open in addition to the hole 
in the seam area. The ventilation hole is 4.67 m2. In this case the pressure decrease affects the 
constant pressure load significantly. The pressure decrease is shown in Fig. 3.6 in a case whe-
re the initial pressure difference is 2 bar.  
 

 
Figure 3.5. Pressure increase at different pressure differences, hole 0.67m2.  

 
Figure 3.6. Pressure increase at different pressure differences, hole 4.67 m2. 
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4 Results 
In non-linear studies only model of the wall was used. For conservative reasons the suppor-
ting structures were modelled by simplified boundary conditions described in the end of the 
chapter 2. Shell element used in these calculations is called S4R in ABAQUS/Explicit pro-
gram. It is a 4-node doubly curved shell element with hourglass control and finite membrane 
strains.  

4.1 Constant load 
The non-linear element model was first loaded with a constant pressure. These analyses were 
carried out with the ABAQUS/Standard using the Riks method for the proportional loading 
procedure, and with the ABAQUS/Explicit program increasing the load gradually. 
 
The material properties presented in Chapter 3.1 were applied. Only the zero tensile strain 
value was varied. Values of 1.8*10-3, 0.9*10-3 and 1.8*10-2 were used in static ABA-
QUS/Standard analyses. The first value is calculated according to Equation (3.1).  The second 
value is obtained by dividing the first calculated value by 2, and is equal to 12.6 times the 
cracking strain, which is close to the value of the cracking strain multiplied by ten. In the fol-
lowing these are referred to as Cases A, B and C, respectively.  
 
Dynamic ABAQUS/Explicit analyses were carried out using the zero tensile value of 1.8*10-3 

and varying the load increasing rate. In Case D the load increasing rate was 3 bar/s, in Case E 
the pressure load was increased by 1.4 bar/s and in Case F the load increase rate was 0.7 bar/s. 
 
Pressure loads as a function of the deflection of the upper edge of the model, at the symmetry 
line, are presented in Fig. 4.1. The results of these analyses may be treated as reliable until the 
energy balance holds reasonably, which in this case means a deviation of less than 10% of the 
total energy.  In Cases A-C the energy balance is lost when the pressure exceeds 0.4 bar. In 
Cases D-F the energy balance holds until the pressure exceeds 0.6 bar. The ultimate capacity 
of the wall seems to be somewhere beyond 0.5 bar. Also, the concrete is no longer behaving 
elastically in the compressed part of these cross-sections. Pressure values at reinforcement 
yielding and concrete compression crushing are summarised in Table 4.1. The parameters 
varied in these analyses are summarised in the first row. 
 
Table 4.1. Summary of predicted pressure values [bar]. 

Case A 
 

εtu = 1.8*10-3 

B 
 

εtu = 0.9*10-3 

C 
 

εtu = 1.8*10-2 

D 
rate 3 bar/s 

εtu = 1.8*10-3 

E 
rate 1.4 bar/s 
εtu = 1.8*10-3 

F 
rate 0.7 bar/s 
εtu = 1.8*10-3 

Region 1 3 1 3 1 3 1 3 1 3 1 3 
Reinf. 
yielding 

0.73 0.55 0.65 0.4 0.8 0.8 0.8 0.5 - 0.5 - 0.4 

Concrete 
comp. crush 

0.55 0.55 0.5 0.4 0.55 0.8 0.5 0.7 0.5 0.5 0.5 0.6 
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Figure 4.1. Pressure loads as a function of maximum displacement. 
 

4.2 Decreasing pressure 
According to the preliminary calculations, the wall does not resist well a constant static over-
pressure exceeding 0.5 bar. After a detonation, the static pressure may be relatively high. Af-
ter a 0.5 kg hydrogen detonation the static type pressure is 1.5 bar. Thus this kind of static 
pressure  may damage the wall severely even if it has survived a detonation peak. The effect 
of the pressure decrease following the detonation transient has also been studied. According 
to Fig 3.6, the pressure after detonation of 0.5 kg hydrogen as shown in Fig. 3.4a decreases to 
zero in 0.5 seconds if the ventilation hole is 4.67 m2, and in 2.0 seconds if the ventilation hole 
is 0.67 m2 (Fig. 3.5). 
 
Dynamic non-linear analyses were performed by the ABAQUS/Explicit program, which is 
based upon implementation of an explicit integration rule together with the use of diagonal 
element mass matrices. The equations of motion are integrated using the explicit central diffe-
rence integration rule.  
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Structural analyses were carried out to find a relatively slow linearly decreasing pressure loa-
ding which the wall resists. The peak value of this triangular shape loading was decreased to 
0.5 bar and the duration to 0.25 seconds.   
 
Dynamic magnitification factor 
 
The maximum undamped response of a SDOF (Single Degree Of Freedom) system which is 
subjected to a shock motion depends on the ratio of the impulse duration (t1) to the natural 
period of the vibration system (T), i.e. t1/T (Boswell & D'Mello 1993) as shown in Fig. 4.2. 

 
Figure 4.2. Dynamic magnification factor as a function of impulse length ratio (Boswell & 
D'Mello 1993).  
 
The dynamic magnification factor for a triangular-shaped pulse increases monotonically and 
reaches 1.8 at an impulse length ratio of 2.  
 
The first eigenfrequency of the wall model is 14.5 Hz (see Table 2.1) and the duration T1 of 
the first eigenperiod in this case is 69 ms. The impulse length ratio is 3.6. Thus it can be ex-
pected that the effect of the decreasing type pressure load has a magnification factor greater 
than one, compared to the effect of the static pressure load.  
 
If the duration of the pulse is markedly shorter than the period of vibration, the impact factor 
is less than one. The structure can resist dynamic loads with relative high peak values provi-
ded the duration is short. For a detonation peak load the impulse length ratio may be e.g. 0.01. 
These speculations are only qualitative. The problem tackled in this study is far more complex 
than an undamped SDOF system. 
 
The energy balance during a pressure decrease in 0.25 s and the following 0.25 s is shown in 
Fig. 4.3. The external work done by the increasing load (ALLWK) creates kinetic energy 
(ALLKE), strain energy (ALLIE) and part of the external work is dissipated by viscous ef-
fects (ALLVD) like damping. The total strain energy further consists of recoverable strain 
energy (ALLSE) and energy transfer to plastic deformations (ALLPD). ETOTAL shows the 
total energy balance (ETOTAL=ALLKE+ALLIE+ALLVD-ALLWK). The ETOTAL value is 
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zero if the energy balance holds. So far, the total energy balance is negligible, thus a differen-
ce of about 5% of the energy due to the external work is acceptable, and the results are re-
liable from the energy balance point of view. In this case the difference in energy balance is 
about 10% but remains constant.     
 
 

 
 
Figure 4.3. Energy balance, unified 0.5 MPa pressure decreasing linearly in 0.25 seconds. 
 
The total energy dissipated per unit volume in the element by rate-independent and rate-
dependent plastic deformation in presented in Fig 4.4, at the end of the calculation t = 0.5 s. 
 
The cracks on both sides of the wall and in the middle of the wall are shown in Figs 4.5 a-c at 
t = 0.5 s. On the outer surface, the cracks are mainly located in the field area (Fig. 4.5 a). In 
contrast, at the inner surface the cracks are located near the support area (Fig. 4.5 c). The lo-
wer part of the wall remains uncracked in the middle of the wall (Fig. 4.5 b).  
 
Cracking is extensive near the supporting wall and floor areas. The compressive strength of 
the concrete is not exceeded.  
 
The reinforcement yields in the area of highest dissipated plastic energy density, as seen in 
Fig. 4.4. The vertical reinforcement at the supporting floor (level 25.00) near the inner surface 
of the wall is yielding. Development of plastic deformation in the reinforcement at the sym-
metry line and at locations 0.5 m, 1.0 m and 1.5 m away from the symmetry line along floor 
level 25.00 is shown as a function of time in Fig. 4.6. Plastic strains are relatively low and do 
not increase once the pressure reaches zero. 
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Figure 4.4. Plastic deformation energy dissipated per unit volume, t = 0.5 sec. 

              
Figure 4.5 a. Crack distribution at the outer surface, b) in the middle of the wall t = 0.5 sec. 

 
Figure 4.5 c. Crack distribution at the inner surface, t = 0.5 sec. 
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Figure 4.6. Plastic deformation of reinforcement at the support, level 25.00. 
 
Because this kind of pressure impact already seems to damage the wall severely, in the follo-
wing the pressures after the detonations are assumed to be lower that the calculated pressure 
values after detonation.  
 
According to previous studies, slowly decreasing pressure after detonation seems to destroy 
the wall. After the detonation peak the structure is less stiff due to cracking, and also the dura-
tion of the eigenperiod is longer. Accordingly the magnification factor would in this case be 
lower. Due to damping and non-linear effects, the above speculation based on the SDOF sy-
stem has only a qualitatively sense. 

4.3 Detonation transients  
In these studies the detonation is assumed to occur at the symmetry line of the model. The 
'upper'place definition  means 3 meters below the upper edge of the wall. 'Lower' means 2.5 
meters above the lower edge. First, three detonation cases after which the pressure fell to zero 
in 0.25 seconds were considered. This triangular shaped pressure load is described in the pre-
vious chapter. 
 
The effects of several parameters were studied upon 0.5 kg of hydrogen detonating near the 
top of the wall. These studies are referred to in the following as Cases 1a, 1b, 1c and 1d. A 
summary of these cases is presented in Table 4.2. 
 
Table 4.2. Summary of the studied cases. 

Case Hydrogen 
[kg] 

Place 
 

Damping εtu Strain rate 
effect D, p 

Degr. time 
[sec] 

1a 0.5 upper 10% 1.8*10-2 40, 5 0.25 
1b 0.5 upper no 1.8*10-2 40, 5 0.25 
1c 0.5 upper 10% 1.8*10-3 40, 5 0.25 
1d 0.5 upper 10% 1.8*10-3 40, 5 0.5 
2 1.428 upper 10% 1.8*10-3 40, 5 det. only 
3 1.428 lower 10% 1.8*10-3 40, 5 det. only 
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4.3.1 Case 1 
According to Table 4.2, in Cases 1a, 1b, 1c and 1d a detonation corresponding to 0.5 kg of 
hydrogen was assumed to occur in the upper part of the wall. The pressure increase up to 0.27 
bar is assumed to occur in 0.1 seconds before detonation. The duration of the detonation is 3.5 
ms. After the detonation the pressure decreases from 0.5 bars to zero in 0.25 seconds or in 0.5 
seconds and there is no pressure during the last time period of the numerical simulation. In 
Cases 1a-1c the behaviour of the wall is simulated during 0.604 seconds starting from the 
pressure increase before detonation. The initial time increment used in these analyses was 7.5 
µs and about 66 000 increments were needed for this calculation.  
 
One calculation was carried out using the pressure value of 0.75 bar after detonation, decrea-
sing to zero in 0.25 s. Due to the loss of energy balance the results are not reliable and not 
worth presenting here.    
 
Case 1a 
 
In Case 1a the Rayleigh damping corresponding to 10% of the critical damping and the strain 
rate effect on the yield strength of the reinforcement were taken into account. The tensile 
stress was assumed to decrease to zero unrealistically slowly (εtu = 1.8*10-2) in order to get 
results for damping parameter studies. The energy balance during the loading transient is 
shown in Fig. 4.7. The kinetic energy drops nearly to zero towards the end of the simulation, 
mainly due to damping and inelastic effects.  
 
The same phenomena can be seen in Fig. 4.8, where displacements in locations normal to the 
wall in two locations at the symmetry line are shown as a function of time. Notation Deto 
refers to the point located in the area where the detonation first hits the wall. Notation Lev31sl 
refers to the nodal point located at the symmetry line and on top of the wall. As can be seen, 
the wall hardly moves at all during the detonation peak. Because the upper edge of the model 
is totally free, the maximum displacement occurs in this corner (Fig. 4.7) in the curve referred 
to as Lev31sl. 
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Figure 4.7. Energy balance as a function of time, Case 1a. 
 
 

 
 
Figure 4.8. Displacements at the symmetry line as a function at time, Case 1a. 
 
Bending moment distributions after the pressure increase just before detonation are shown in 
Figs 4.9 and 4.10. 
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Figure 4.9. Bending moment SM1 distribution [Nm] after the pressure increase, Case 1a. 
 

 

Figure 4.10. Bending moment SM2 distribution [Nm] after the pressure increase, Case 1a. 
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Development of cracks at the outer and inner surfaces of the wall are shown in Figs 4.11 a-h. 
The surface loaded by the pressure is referred to as the inner surface. Cracking on the outer 
and inner surfaces after the pressure increase and just before the detonation peak are shown in 
Fig. 4.11 a and b.  The outer surface is cracked near the corner of the model, where the sym-
metry line meets the upper edge. 
 
Cracking occurs in the supporting areas at the inner surface, i.e. near the wall at the left edge 
of the model and near the floor at level 25.00. The left edge of the model is modelled as fully 
fixed, simulating the supporting effects due to surrounding structures. The boundary condition 
due to the floor is modelled as simply supported. The displacements normal to the wall are 
fixed along level 25.0. The lower edge of the model is fully fixed.  
 
Crack propagation at the outer surface of the wall during the detonation transient is shown in 
Figs 4.11 c, e and g. Cracking near the supporting areas is shown in Figs 4.11 d, f and h. 
 

       
Figure 4.11 a, b. Cracks at the outer (a) and inner (b) surfaces before detonation, t = 0.1 s, Case 1a. 

       
Figure 4.11 c, d. Cracks at the outer (c) and inner (d) surfaces, t=1.02 s, Case 1a. 
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Figure 4.11 e, f. Cracks at the outer (e) and inner (f) surfaces, t=1.03 s, Case 1a. 

             
Figure 4.11 g, h. Cracks at the outer (g) and inner (h) surfaces, t = 1.04 s, Case 1a.  
 
Cracks at the end of the calculation are shown in Figs 4.12 a and b, Case 1a. 

        
Figure 4.12 a, b. Cracks at the outer (a) and inner (b) surfaces at end of calculation, Case 1a. 
 
The cracking strain magnitude is defined as 
 

( ) ( ) ( )222 ck
ss

ck
tt

ck
nn eeeCKEMAG ++=  (4.1) 

 
where eck

nn  eck
tt  eck

ss are cracking strains. Contour plots of cracking strain magnitude distribu-
tions are shown in Figs 4.13 a-b. Because at the end of the calculation the model is slightly 
deformed outwards, the open cracks are at the outer surface near the symmetry line and at the 
inner surface near the supporting areas. 
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Figure 4.13 a. Cracking strain magnitude at the outer surface of the wall at end of calcula-
tion. 

   
Figure 4.13 b. Cracking strain magnitude at the inner surface of the wall at end of calcula-
tion. 
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The cracking strain magnitude distribution reaches its maximum value on the outer surface, 
near the symmetry line. Crack strain magnitude contours at the end of the calculation, cor-
responding the cracking situation shown in Figs 4.12 a and b, are shown in Figs 4.13 a and b. 
 
It should be noted that all the cracks, not only the open ones, are shown in Figs 4.12 a and b. 
The maximum crack strain is less than 2*10-5 near the symmetry line (Fig. 4.13 a). The cor-
responding value near the support area is less than 2*10-4 (Fig. 4.13 b).  
 
Case 1b 
 
Case1b looks at the effect of damping. The tensile stress was assumed to decrease to zero un-
realistically slowly (εtu = 1.8*10-2) in order to get results for damping parameter studies. The 
only difference from the previous case is that there is no damping involved. This phenomenon 
is also seen in the energy balance during the loading transient shown in Fig. 4.14. 
 

  
 
Figure 4.14. Energy balance as a function of time, Case1b. 
 
The kinetic energy does not decrease as effectively as in the previous case, where damping 
was involved. The energy dissipated by the viscous effects stays at zero (Curve 5). Due to the 
slower decreasing kinetic energy, there is more cracking on both sides of the wall at the end 
of the calculation. The energy used for plastic deformations at the end of the calculation is 
slightly higher compared with the previous, damped case. 
 
Crack propagation at the outer surface of the wall during and after the pressure increase, after 
the detonation peak transient and at the end of the calculation, are shown in Figs 4.15 a, c and 
e. Cracking of the inner surface is shown in Figs. 4.15. b, d and f. 
  
The behaviours during the pressure increase before the detonation peak are fairly similar 
compared with Case 1a (Figs 4.11 a-b and Figs 4.15 a-b). Also the detonation occurs so rapid-
ly that damping does not affect the results during the sharp detonation peak (Figs 4.11 g-h and 
Figs 4.15 c-d). 
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Due to the more slowly decreasing kinetic energy in the undamped case, there is more crack-
ing on both sides of the wall at the end of the calculation (see Figs 4.12 a-b compared with 
Figs 4.15 e-f). 
 

       
Figure 4.15. Cracks at the outer (a) and inner (b) surfaces, t = 0.1 s, Case 1b. 
 

       
Figure 4.15. Cracks at the outer (c) and inner (d) surfaces, t = 0.104s, Case 1b. 
 

       
Figure 4.15. Cracks at the outer (e) and inner (f) surfaces, at end of calculation, Case 1b. 
 
Case 1c 
 
Case 1c looked at the effect of the cracking parameter εtu. The tensile stress was assumed to 
decrease to zero when εtu = 1.8*10-3. This value was predicted in Chapter 3.1 according to the 
recommendations. The energy balance during the loading transient is shown in Fig. 4.16. 
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Figure 4.16. Energy balance as a function of time, Case 1c. 
 
Total energy dissipated per unit volume in the element by rate-independent and rate-
dependent plastic deformation is presented in Fig 4.17, at the end of the calculation t = 0.604 
s. This distribution looks quite similar to that in Fig 4.4, where the corresponding plastic de-
formation energy dissipation is shown after the pressure decrease without any detonations. 
Also in Case 1c the reinforcement yields somewhat near the junction with the floor at level 
25.00. 
 

 
Figure 4.17. Total energy dissipated per unit volume by  plastic deformation, Case 1c. 
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Figure 4.18. Cracks at the outer (a) and inner (b) surfaces at end of calculation, Case 1c. 
 
Cracks at the outer and inner surface of the wall at the end of the calculation are shown in 
Figs 4.18 a and b. These crack distributions are almost equal to the corresponding distributi-
ons in Case 1a (Figs 4.12 a and b). There is cracking through the wall in the supporting floor 
area. 
 
In Case 1c the reinforcement yields because the steel bars are carrying tensile stresses after 
cracking of the concrete sooner than in Case 1a, where the tensile stresses of the concrete we-
re decreased to zero unrealistically slowly. 
 
Case 1d 
 
In Case 1d the effect of a static-type pressure decrease is studied. The tensile stress was assu-
med to decrease to zero when εtu = 1.8*10-3. This value was predicted in Chapter 3.1 accor-
ding to the recommendations. The energy balance during the loading transient is shown in 
Fig. 4.19. 
 

 

Figure 4.19. Energy balance as a function of time, Case 1d. 
 
The total energy dissipated per unit volume in the element by rate-independent and rate-
dependent plastic deformation is presented in Fig 4.20, at the end of the calculation t = 1.1 s. 
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This distribution looks quite similar to that in Fig 4.17. In Case 1d the reinforcement yields 
somewhat more at the junction with the floor at level 25.00 compared with Case 1c. 
 
Cracks at the outer and inner surface of the wall at the end of the calculation are shown in 
Figs 4.21 a and b. These crack distributions are almost equal to the corresponding distributi-
ons in Case 1c, Figs 4.18 a and b. There is cracking through the wall in the supporting floor 
area. 
 

 
 
 
Figure 4.20. Total energy dissipated per unit volume by  plastic deformation, Case 1d. 
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Figure 4.21. Cracks at the outer (a) and inner (b) surfaces at end of calculation, Case 1d. 

4.3.2 Case 2 
The effect of the detonation transient due to a 1.428 kg hydrogen detonation was studied 
when the detonation occurred in the upper location. The shock pressure transients correspon-
ding to a detonation of 1.428 kg hydrogen at the upper location of the room are shown in Fig. 
3.4b. Only the pressure increase before detonation and the detonation peak were simulated. 
Crack development at outer and inner surfaces of the wall is shown in Figs. 4.22 a-h. 
 

      
 
Figure 4.22 a, b. Cracks at the outer (a) and inner (b) surfaces, t = 0.101 s, Case 2. 
 

     
 
Figure 4.22 c, d. Cracks at the outer (c) and inner (d) surfaces, t = 0.102 s, Case 2. 
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Figure 4.22 e, f. Cracks at the outer (e) and inner (f) surfaces,  t = 0.103 s, Case 2. 

     
Figure 4.22 g, h. Cracks at the outer (g) and inner (h) surfaces, t = 0.105 s, Case 2. 
 
The reinforcement starts to yield at the inner surface near the supporting floor at level 25.00. 
The compression strength of the concrete is exceeded at the outer surface of the wall. 
 

4.3.3 Case 3 
The effect of the detonation transient due to a 1.428 kg hydrogen detonation was studied 
when the detonation site was at the lower location. The shock pressure transients correspon-
ding to a detonation of 1.428 kg hydrogen at the lower location of the room are shown in Fig. 
3.4b. Cracking at the outer and inner surfaces of the wall is shown in Figs. 4.23 a-h.   
 
The reinforcement starts to yield near the bottom of the model, at level 19.00. Also, stresses 
on the compressed surface do exceed the compression strength of the concrete. 
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Fig. 4.23 a, b. Cracks at the outer (a) and inner (b) surfaces, t = 0.101 s, Case 3. 
 

     
Fig. 4.23 c, d. Cracks at the outer (c) and inner (d) surfaces, t=0.102 s, Case 3. 
 

     
Fig. 4.23 e, f. Cracks at the outer (e) and inner (f) surfaces, t = 0.103 s, Case 3. 
 

     
Fig. 4.23 g, h. Cracks at the outer (g) and inner (h) surfaces, t = 0.105 s, Case 3. 
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5 Criteria 
The following phenomena should be considered when studying the load carrying capacity of a 
reinforced concrete structure: 
 
Concrete cracking: Cracks on surfaces  
     Through cracked section 
Concrete compression crushing 
Reinforcement:   Yielding  
      Ultimate tensile strain (15%) exceeded. 
 
Due to the low tensile strength of concrete, cracking on the surface starts at a relatively low 
loading level. Gradually, the tensile reinforcement carries more and more tensile stresses. 
Normally, in order to avoid catastrophic failure, the tensile reinforcement is designed to yield 
before the concrete crushes on the compressed surface.  
 
In case the reinforcement does not yield, the elastic tensile strains will recover after a load 
decrease and tensile cracks will close. If there are plastic tensile deformations in the reinfor-
cements, the cracks will not close completely even if there is no longer any loading. 

6 Summary and Conclusions 
The load carrying capacity of a reinforced concrete wall was studied. First, linear analyses 
were carried out and the moment capacities were evaluated based on codes and standards. 
 
Materially non-linear analyses were carried out using simple boundary conditions for simula-
ting the effect of surrounding structures.  
 
Static non-linear analyses were carried out in order to assess the ultimate capacity of the wall 
under unified pressure. The ABAQUS/Standard program using the Riks method for the pro-
portional loading procedure was applied for these analyses. 
 
Dynamic materially non-linear analyses were carried out by ABAQUS/Explicit program. Ac-
cording to the preliminary analyses the wall may not resist a static-type pressure following the 
detonations considered. Some analyses were performed to find a relatively slow linearly 
decreasing pressure load which the wall could resist. 
 
The non-linear behaviour of the wall was studied under detonations corresponding to a deto-
nable hydrogen mass of 0.5 kg and 1.428 kg. 
 
The wall seems to resist quite well the pressure increase before detonation. This pressure va-
lue is near the 'design load'. The duration of the detonation is brief compared with the eigen-
periods of the wall. The wall may somehow survive the detonation peak transient, but the 
relatively slowly decreasing static type pressure after the peak detonation damages the wall 
much more severely than the detonation peak itself. 
 
In calculating dynamic behaviour during a decreasing pressure after detonation, the amount of 
structural damping applied is important. During a rapid detonation simulation the effect of 
damping is negligible. Also, the parameter used in decreasing the tensile stresses to zero in 
cracked concrete calculation points affects the stress state of the reinforcement. In a case whe-
re the stresses are assumed to decrease to zero at a relatively small crack strain value, the ten-
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sile stresses will be transferred quite rapidly to the reinforcement. This is a conservative as-
sumption but easily causes numerical problems in calculations. In order maintain the energy 
balance during analyses, in some parameter studies the zero stress crack strain value was as-
sumed to be unrealistically high. 
 
After extensive cracking the energy balance is easily lost, especially when the reinforcement 
starts to yield. Once the energy balance is lost in numerical analysis, the results are no longer 
reliable. Concrete compression crushing cannot be simulated by the ABAQUS/Explicit pro-
gram. 
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Abstract 
 

The structural integrity of a reinforced concrete wall in the BWR reactor 
building under hydrogen detonation conditions has been analysed. Of par-
ticular interest is whether the containment integrity can be jeopardised by 
an external hydrogen detonation. The load carrying capacity of a reinfor-
ced concrete wall was studied. The detonation pressure loads were estima-
ted with computerised hand calculations assuming a direct initiation of 
detonation and applying the strong explosion theory. The results can be 
considered as rough and conservative estimates for the first shock pressure 
impact induced by a reflecting detonation wave. 
Structural integrity may be endangered due to slow pressurisation or dy-
namic impulse loads associated with local detonations. The static pressure 
following the passage of a shock front may be relatively high, thus this 
static or slowly decreasing pressure after a detonation may damage the 
structure severely. The mitigating effects of the opening of a door on pres-
sure history and structural response were also studied. The non-linear be-
haviour of the wall was studied under detonations corresponding a deto-
nable hydrogen mass of 0.5 kg and 1.428 kg. 
Non-linear finite element analyses of the reinforced concrete struc-
ture were carried out by the ABAQUS/Explicit program. The rein-
forcement and its non-linear material behaviour and the tensile 
cracking of concrete were modelled. Reinforcement was defined as 
layers of uniformly spaced reinforcing bars in shell elements. In 
these studies the surrounding structures of the non-linearly modelled 
reinforced concrete wall were modelled using idealised boundary 
conditions. Especially concrete cracking and yielding of the rein-
forcement was monitored during the numerical simulation. 
 

Key words Non-linear reinforced concrete, hydrogen detonation, finite element 
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