Risks from naturally occurring radionuclides in the Nordic diet

With focus on seafood and the NKS NANOD project

Mari Komperød (Stockholm, 16.01.2019)

Recent work in Norway:

- Report on radiation doses to the Norwegian public (all sources)
- Scientific paper on ingestion doses
- Risk assessment by Scientific Committee for Food Safety

Currently:

 NKS NANOD on natural radioactivity in fish and shellfish consumed in Nordic countries

Average effective dose

Ingestion makes a significant contribution

Naturally occurring radionuclides cause majority of ingestion exposure, but receive little attention

External Anthropogenic radiation radionuclides (terrestrial and in diet building **[KATEGORINA** materials) VN1 Cosmic radiation Other radionuclides in air **[KATEGORINA** VN]

Average exposure from environmental sources in Norway

Groups with elevated exposure

Radioactivity in food and drinking water can cause substantially higher doses for some

Average ingestion dose per radionuclide

*Constant ⁴⁰K dose regardless of diet, due to homeostatic K regulation in the body (and constant ⁴⁰K:K ratio)

Average dose per food group

Fish and shellfish is the food group causing largest ingestion dose in several countries*

Due to relatively high levels ²¹⁰Po and other natural radionuclides

Average dose by food category in Norway (minus ⁴⁰K)

Ingestion doses

National estimates vary →Partly due to differences in intake of fish/shellfish

Little data on naturally occurring radionuclides in Nordic food

a. UNSCEAR 2008; b. Watson et al. 2005; Komperød & Skuterud 2018; Renaud et al. 2015; Ota et al. 2009

²¹⁰Po in fish and shellfish

- ²¹⁰Po binds to surfaces of particles, including plankton
- Primary route in fish/shellfish via diet
- →Organisms with diet consisting of e.g. plankton, bottom substrates etc. generally have highest concentrations

Plankton photomontage by Kils at Wikipedia.com CC 3.0. (https://commons.wikimedia.org/wiki/File:Plankton_collage.jpg)

²¹⁰Po in fish and shellfish

²¹⁰Po varies considerably between species

Important to use species actually consumed when performing dose assessments!!

Examples (muscle / edible parts)	Po-210 (Bq/kg fw)
Atlantic cod ^a	0.35
Atlantic mackerel ^b	3.5
European pilchard (sardine) ^b	66
Blue mussels ^a	37
Lobster ^c	62
Common periwinkle (snail) ^b	283

- a. Dahlgaard 1995
- b. Carvalho 2011
- c. Rollo et al. 1992

NKS NANOD project

Natural Radioactivity in the Nordic Diet (NANOD)

Objective: More data to improve dose assessments for fish/shellfish and total diet in the Nordic countries

Partners

- Denmark: Technical University of Denmark (DTU)
- Sweden: University of Gothenburg (GU)
- Iceland: Icelandic Radiation Safety Authority (IRSA)
- Finland: Radiation and Nuclear Safety Authority (STUK)
- Norway: Norwegian Radiation and Nuclear Safety Authority (DSA)

NKS NANOD project

NKS NANOD - consumption

Total and species-specific consumption varies

Preferred fish species (> 5 g/d):

Denmark:	Herring, tuna, mackerel
Finland:	Salmon, trout
Iceland:	Haddock, cod
Norway:	Cod, salmon
Sweden:	Cod, mackerel

Note: Large individual variation!

NKS NANOD - samples

Collected samples 2018

NKS NANOD – preliminary results ²¹⁰Po

NKS NANOD – preliminary results ²¹⁰Po

Possible factors for variations within the same species:

- Location?
- Size?
- Season?

Uncertainties in assessing ingestion doses

- Representative values for activity concentration
- Reliable consumption data
- Dose coefficients (ICRP)

Uncertainties in assessing ingestion doses

Effect of food preparation?

By Superbass - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37744930

By Archangel12 - Normandy '10: Saint-Vaast-la-Hougue, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=31868904

Uncertainties in assessing ingestion doses

Delay from harvest until consumption (²¹⁰Po halflife = 138 days)

Lotus Head [GFDL (http://www.gnu.org /copyleft/fdl.html), CC-BY-SA-3.0 via Wikimedia Commons

By Daniel Case, CC BY-SA 3.0, https://commons.wi kimedia.org/w/inde x.php?curid=58393 92

Nordic seafood in global market

> 10 % of fish export in world market

IAEA, FAO, WHO: joint project on guidelines for natural radioactivity

Already frequent requests for documentation of anthropogenic radionuclides – increased need for documentation of natural radionuclides in future?

By Strebe CC BY-SA 3.0 via Wikimedia Commons)

Summary

- Ingestion contributes a significant share of average dose, primarily through naturally occurring radiouclides
- For some, the ingestion dose is substantially higher
- Fish and shellfish is a major contributor to ingestion dose
- It is important to use species actually consumed

Way forward

NANOD: Remaining analyses, dose assessments and Final Report 2019

For improved dose assessments:

- More data on naturally occurring radionuclides in food
- Obtaining reliable consumption data (incl. percentiles)
- Futher examining effects of delay and food preparation on radionuclide levels