NOW WE KNOW WHY THERE ARE SO FEW EXAMPLES OF MICROCOSM STUDIES IN RADIOECOLOGY.

Tanya. H. Hevrøy, PhD

The future of Radioecology

...aim to have negligible impact on

- biological diversity,
- conservation of species,
- health and status of natural habitats / communities

Mismatch between environmental protection goals and the endpoints measured

Ecosystem approaches are needed to support protection goals

Lack of good experimental data to evaluate ecosystem-level effects of radiation

Radioecology studies thus far,...

RAPS approach:

- Single species endpoints:
 - Mortality, reproduction, chromosome damage

• Models

Ecosystems approach:

- Population endpoints
 - growth, size, density, age, net reproduction, rates
- Community endpoints
 - Structure (biodiversity, food web)
 - Functional (primary production, biomass, energy)
 - Indirect effects

Figure: Clare Bradshaw

How to study an ecosystem?

Microcosms and mesocosms...

Multispiecies experimental units.

- 1. Contain abiotic and biotic components
- 2. Can show ecological processes

Bilder: Clare Bradshaw, Stockholm University

Bilder: Googleimages

B; Radioecology and environmental assessments.

NORCO I & NORCO II DSA Norwegian Radiation and Nuclear Safety Authority UNIVERSITY **OF EASTERN** B FINLAND Stockholm University of Radioecology

Norsk institutt for vannforskning

CENTRE FOR ENVIRONMENTAL RADIOACTIVITY

NORCO I: Radiation effects and ecological processes in a freshwater microcosm.

Hevrøy. TH & Golz. A-L, Xie.L, Hansen. EL and Bradshaw. C. Submitted JER 2018.

Ecosystems approach:

- Population endpoints
 - growth, size, density, age, net reproduction, rates
- Community endpoints
 - Structure (biodiversity, taxonomi, food web)
 - Functional (primary/NEP production, biomass, energy
 - Indirect effects

Cosms exposed to ionizing radiation from Co-60 source for 21 days

Dose comparisons

Chernobyl Lakes – 0.1 – 30 mGy/hr

Chernobyl acute phase – estimated absorded dose up to 20 Gy/d for pine trees (UNSCEAR 2008)

Fukushima – Strand et al 2014

Some results...

Plants: photosynthetic parameters - different sensitivity

Grazers and production

Structural equation Modelling (SEM)

- Networks to estimate Indirect effects.
- Hypothetical or defined pathways

Summary of NORCO I

- Few significant effects of dose rate at endpoints measured
- Individual effects -> could lead to highler level effects...
- Ecosystem buffering
- Restricted by time
- Restricted by radiation field

NORCO II Radionuclides in our ocean

1	3 1 43 /			
EXPLANATIO	Radionuclide	Rate of	release	Produced water
		GBq/år	Bq/s	Bq/L
	210Pb	1,1	34.88	0.2
	226Ra	20.4	646.88	3.7
	228Ra	19,3	612.00	3.5
	EXPLANATIO	EXTLANATIO Gas or ga 210Pb 226Ra 228Ra	EXTANNIO Gas or goRadionuclideRate of210Pb1,1226Ra20.4228Ra19,3	EXTLANIO Gasorga Radionuclide Rate of release 210Pb 1,1 34.88 226Ra 20.4 646.88 228Ra 19,3 612.00

NORCO II- Trophic transfer of radioisotopes of the micronutrients Mn-54, Zn-65 and Co-57 in the Baltic sea.

(Holmerin I, Bradshaw C, Hevrøy T, Jensen LK) **Aim:** assess transfer and uptake of radionluclides through a bentic Baltic sea community consisting of aglae and grazers.

3RN Treatment: Cosm treatment:	A: Fucus + 3RN spiked water:	B: Grazers + 3RN spiked water:	C: Grazers + Fucus spiked with 3RN:
Control	5 jars	-	-
Eutrophied	5 jars	-	-
Eutrophied + Grazer	5 jars	5 jars	5 jars
Grazer	5 jars	5 jars	5 jars

Prelim results!

Fucus – approx 70 Bq/g – no obvious variation amoung radionuclides

Theodoxus –
$$B(Co = 45, Mn = 50 Zn = 200)$$

 $C (Co = 4, Mn = 2 Zn = 14)$

Restricted by waste management, toxicity, half-lives

Replicability

