

Towards Rapid Radiochemical Analysis

Jixin Qiao

Department of Environmental and Resource Engineering Technical University of Denmark

jiqi@dtu.dk

Source of radioactivity in the environment

Radioactivity determination

Nuclear emergency prepardness

Nuclear decommissioning

Radioactivity determination

Environment monitoring

Radioecology and tracer studies

Departies Brains value of Brai

Why radiochemical analysis?

- There are three primary types of ionizing radiation: alpha, beta and gamma radiation.
- Alpha and beta radiation are particles.
- Gamma rays are electromagnetic waves.

Transition diagram for decay modes of a radionuclide, with neutron number N and atomic number Z (shown are α , β^{\pm} , p^{+} , and n⁰ emissions, EC denotes electron capture).

Shielding

most gamma emitters

Easy-to-measure radionuclides

most alpha and beta emitters

Automation for radiochemical separation

Flow injection (FI)/sequential injection (SI)

Pros: Highly flexible, possibilities for sequential separation or multi-sample handling

Cons: High cost, high demands in technical support

High performance liquid chromatography (HPLC)

Pros: Fully automated, Direct connection to MS

Cons: Only handle small samples, Single sample processing, High cost

Vacuum box

Pros: Multi-sample processing, Easy operation, Low cost, Flexible

Cons: Need human attention

Automated radiochemical separation system

Qiao, J. X., Hou, X. L., Roos, P., Miró, M. Analytica Chimic Acta. 2011, 685, 111-119.

Qiao, J. X., Hou, X. L., Steier, P., Golser, R. Analytical Chemistry. 2013, 85, 11026-11030.

Qiao, J. X., Shi, K. L., Hou, X. L., Nielsen, S., Roos, P. Environmental Science & Technology. 2014, 48, 3935-3942.

Qiao, J. X., Hou, X. L., Roos, P., Miró, M. Analytical Chemistry. 2013, 85, 2853-2859.

Automated method for Pu and Np determination

Qiao, J. X., Hou, X. L., Roos, P., Miró, M. Analytical Chemistry. 2011, 83, 374-381.

NKS Rapid-tech project

Application of Rapid and Automated Techniques in Radiochemical Analysis

Conclusions:

For ^{239,240}Pu determination, it is apparent that ICP-MS technique provides advantages of shortening the measurement time and reducing the LOD. Determination of 90Sr through its daughter 90Y requires sufficient ingrowth time for 90Y. Gas flow proportional counting has a lower LOD Rajdeep Singh Sidhu 4 except for Quantalus ultra low level LSC and can measure a batch of samples simultaneously. However, in this work, LSC measurement for 90Sr works more effectively compared to beta counting. Rapid techniques including sequential injection and vacuum-box-assisted chromatographic separation were applied in this work, which are advantageous when aiming to improve the analytical efficiency

Jixin Qiao 1 lisa Outola 2 Petra Lagerkvist 3 Kai Xu Sofia Josson 3 Pia Vesterbacka 2 Stina Holmgren 3 Kaisa Vaaramaa 2

J Radioanal Nucl Chem (2017) 314:813-826 DOI 10.1007/s10967-017-5385-9

Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples

Jixin Oiao¹ Susanna Salminen-Paatero² · Stina Holmgren Rondahl³ · Marie Bourgeaux-Goget⁴ · Per Roos¹ · Petra Lagerkvist³ · Elisabeth Strålberg⁴ · Henrik Ramebäck^{3,5}

⁹⁴Nb, ⁹³Mo, ²⁴¹Pu

ICP-MS: Inductively coupled plasma mass spectrometry

AMS: Accelerator mass spectrometry

TIMS: Thermal ionization mass spectrometry

Measurement of radionuclides by ICP-MS/MS

Radionuclides: 99Tc, 135Cs, 234, 235, 236, 238U,

^{239,240,241}Pu, ²³⁷Np, ²⁴¹Am

Measurement time: 5-10 min.

Detection limit: 10⁻¹⁵ - 10⁻¹² g/g

Xu et al. Talanta, 2022, 24, 123152.

Agilent 8800/8900 ICP-Q3-MS/MS

J. Anal. At. Spectrom., 2017, 32, 1660

NKS Nordic-ICP and ICP-Biodec projects

NKS-403 ISBN 978-87-7893-491-8

Table 1 Instrumentation conditions used in each laboratory for the inter-comparison exercise

	Lab A	Lab B	DB Lab C		Lab D		Lab E	Lab F	
Instrument	Agilent 8800	Element XR	ICP-SFMS	Element XR ICP-SFMS		Nu Plasma	AttoM double-	Element 2 ICP-	Agilent 8800 ICP-
model	ICP-QQQ					MC-ICP-MS	focusing ICP-	SFMS	QQQ
							SFMS		
Radionuclides	²³⁴ U, ²³⁵ U,	²³⁴ U, ²³⁵ U,	²³⁸ U, ²³⁹ Pu,	²³⁴ U, ²³⁵ U,	²³⁹ Pu, ²⁴⁰ Pu,	²³⁴ U, ²³⁵ U,	²³⁹ Pu, ²⁴⁰ Pu,	²³⁴ U, ²³⁵ U, ²³⁸ U,	²³⁴ U, ²³⁵ U, ²³⁸ U,
measured	²³⁸ U, ²³⁹ Pu,	²³⁸ U	²⁴⁰ Pu, ⁴² Pu	²³⁸ U	²⁴² Pu	²³⁸ U	²⁴² Pu, ²³⁸ U	²³⁹ Pu, ²⁴⁰ Pu,	²³⁹ Pu, ²⁴⁰ Pu, ²⁴² Pu
	²⁴⁰ Pu, ²⁴² Pu							²⁴² Pu	
Auto-sampler	AS X-520	No	No			ASX110	ASX260	SC2 DX	AS X-520
	(CETAC))								(CETAC))
Nebulizer	MicroMist	Conikal	Conikal	MicroMist	PFA	Meinhard	Meinhard	PFA-ST	MicroMist quartz
	(Borosilicate	nebulizer	nebulizer	nebulizer	nebulizer	and	nebulizer		
	glass)					Desolvating			
						nebulizer			
						(DSN)			
Spray chamber	Quartz, ,	Twister	Twister	Cyclonic	Cyclonic	Cyclonic	Cyclonic	Quartz baffled	Quartz, Scott-type
	Scott-type	spray	spray	spray	spray	spray	double pass	micro cyclonic	double-pass
	double-pass	chamber	chamber	chamber	chamber	chamber	spray chamber	with dual gas	
								inlet	
Typical	0.7	2	1.8	1.2	6	2	2	0.8	1.5 with s-lens (s-
sensitivity,									lens for Pu and x-
cps/ppq ²³⁸ U									lens for U)
²³⁸ UH+/U+	1/14892	1/104000	1/104000		1/100000		3/100000		None

An inter-comparison exercise on the application of ICP-MS techniques for measurement of long-lived radionuclides

Journal of Radioanalytical and Nuclear Chemistry (2018) 315:565-580 https://doi.org/10.1007/s10967-018-5697-4

On the application of ICP-MS techniques for measuring uranium and plutonium: a Nordic inter-laboratory comparison exercise

Jixin Qiao¹ ⊙ · Petra Lagerkvist² · Ilia Rodushkin³ · Susanna Salminen-Paatero⁴ · Per Roos¹ · Syverin Lierhaqen⁵ · Karl Andreas Jensen⁵ · Emma Engstrom⁵ · Yann Lahaye² · Lindis Skipperud⁵

Jixin Qiao ¹
Petra Lagerkvist ²
Ilia Rodushkin ³

Susanna Salminen-Paatero

Per Roos

Syverin Lierhagen ⁵ Karl Andreas Jensen ⁶

arl Andreas Jensen ° Emma Engstrom ³ Lindis Skipperud ⁶

decommissioning samples

Jixin Qiao, Susanna Salminen-Paatero, Simon Jerome, Karl Andreas Jensen, Estela Reinoso-Maset, Petra Lagerkvist, Emmi Myllykyla, Petri Hovi, Lindis Skipperud, Mathias Salomon Hvid

Determination of Pu and Am in biological and nuclear

Conclusions

It is concluded that inter-laboratory comparison for the determination of radionuclides using ICP-MS techniques are much needed within the Nordic society. Experience can be shared between the laboratories by performing inter-comparison exercises and by having user meetings with the intention to discuss radionuclides measurements using ICP-MS. For the coming years, inter-comparison exercises and ICP-MS user meetings, activities similar to those within the NKS projects, are desired within the ICP-MS community.

Measurement of radionuclides by AMS and TIMS

AMS at "VERA" (Vienna Environmental Research Accelerator)

Table 1. Overview of research areas where AMS measurements are used (updated from Ref. [10]).

Domain	Research area	Radionuclide ^a ³² Si, ⁴¹ Ca, ⁴¹ Ca, ⁴⁴ Ti, ⁶⁰ Fe, ⁷⁹ Se, ¹²⁶ Sn, ¹⁴⁶ Sm, ¹⁸² Hf		
Technosphere	Half-life measurements			
	Depth profiling in fusion walls	3H		
	Possible fusion plasma thermometer, ²⁷ Al(n,2n) ²⁶ Al	²⁶ AI		
	Nuclear reaction studies for nucleosynthesis in stars	¹⁴ C, ¹⁰ Be, ²⁶ Al, ³⁶ Cl, ⁴¹ Ca, ⁴⁴ Ti, ⁵⁵ Fe, ⁵⁹ Ni, ⁶³ Ni, ⁶⁸ Ge, ¹⁴⁶ Sm, ²⁰² Pb, ^{209m} Bi, ²³⁰ Th, ²³¹ Pa		
	Neutron dosimetry of the Hiroshima bomb Nuclear safeguards	³⁶ CI, ⁴¹ Ca, ⁶³ Ni ^{146, 149, 151} Sm, ²³³ U, ²³⁶ U, ²³⁷ Np, ²³⁹ , ^{240, 241, 242, 244} Pu		

The ingrowth of the number of AMS facilities since 1978.

Walter Kutschera (2016), Advances in Physics: X, 1:4, 570-595.

Determination of Ultratrace Level ¹³⁵Cs and ¹³⁵Cs/¹³⁷Cs Ratio in Small Volume Seawater by Chemical Separation and Thermal Ionization Mass Spectrometry

Liuchao Zhu, Changkun Xu, Xiaolin Hou,* Jixin Qiao, Yonggang Zhao, and Guorong Liu

Table 2 Different Applications of TIMS in Nuclear Science and Technology

Stage	Measurement	Remarks		
Mining	Isotopic composition of U	Build-up national and international libraries fo data on useful signatures from different mines discovering natural reactor		
Enrichment	235U/238U isotope amount ratio	235U enrichment R&D studies and at plant		
Fuel fabrication	Isotopic composition data of U and Pu	Chemical quality assurance of fuel materials in nuclear fuel cycle; to determine fertile and fissile content		
Reactor (for fuel)	Burn-up determination, build-up and depletion of different isotopes of U, Pu	Post-irradiation studies for developing and verifying theoretical reactor codes; for developing isotope correlations		
Reactor (for moderator/coolant)	Isotopic composition and concentration of boron, Gd	B ₂ O ₃ mixed with D ₂ O added in PHWRs, periodic determination required; Gd in coolant for fuel failure		
Reactor for burnable poison	Isotopic composition of Gd, Dy etc.	For determining depletion in neutron absorbing isotopes		
Reprocessing plant	Concentration and isotopic amount ratio data on U, Pu	Nuclear material accounting, input accountability at reprocessing plant		
Nuclear forensics	Isotopic composition, amount, age determination	Isotope amount ratio data for Th, Pa, U, Np, Pu, Am, Sr, Nd, Pb, O etc., amount ratio of daughter to parent		
Environmental and biological samples	Isotopic composition and amount (concentration) of actinides	For accidental releases and nuclear tests		
R&D studies	Half-lives, fission yields of stable isotopes, cross- sections etc.	Fundamental nuclear data required for various applications		
Enriched stable and radioactive isotopes	Isotopic composition	For preparing isotopic reference materials gravimetrically and for characterisation of isotopes to be used as spikes in ID-TIMS		
Round-robin experiments	Isotopic composition and concentration	For proficiency testing of different international laboratories		

Anal. Methods, 2016, 8, 942.

Conclusions

- Up-to-date methods development for effective radiochemical analyses is necessary.
- Automation techniques and modern mass spectrometric instruments could be helpful to improve the efficiency.
- This work highlights the need of a continuous cooperation among radiochemists within the Nordic and international communities.

