

Tellurium transport in the primary circuit of a nuclear power plant (NKS-R TETRA)

Anna-Elina Pasi NKS Seminar 24.-25.5.2022

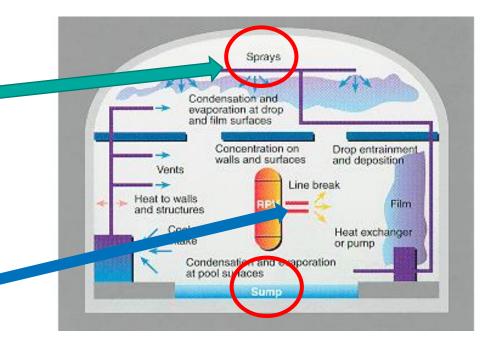
WHY TELLURIUM?

- Releases from Fukushima and Chernobyl comparable to those of iodine and cesium
- Tellurium is one of the most significant radionuclides released during a nuclear accident
 - Volatile
 - Relatively long-lived isotopes
 - Somewhat chemically toxic
 - Decays to iodine
- So far, the release and behavior of tellurium in the core are well known but the transport to and behvaior in the containment are unclear

Experimental SA chemistry

- Experimentalists are a rare species nowadays
- Large facilites used in e.g. PHEBUS, VERCORS expensive
- Small-scale and detailed experiments still needed
- Managements systems like pool scrubbing and re-volatilization studies popular
- Important in developing codes and incorporating chemistry

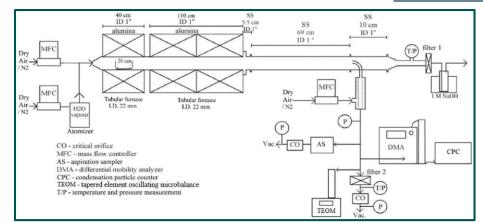
CHALMERS


Focus of TETRA project

Removal of tellurium species by the containment spray system

Transport of tellurium species in the

Reactor Coolant System (RCS)


http://www.nucleartourist.com/systems/cs.htm

Experimental: Transport of Tellurium

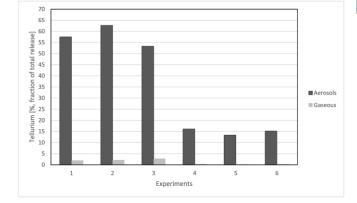
How does atmosphere, humidity and other fission products affect tellurium transport?

- Six experiments conducted with changing parameters
- Air and nitrogen used as carrier gases
- Temperature chosen to represent RCS conditions
- Aerosol size and amount, particulate/gaseous species and precursor were analyzed

Condition	Experiment	Gas	Temperature ^a [K]	Humidity [ppmV]	Caesium iodide [M] ^b
Oxidizing	1	Air	1500	Dry	
	2	Air	1500	$2.1 \cdot 10^4$	
	3	Air	1500	$2.1 \cdot 10^4$	0.15
Inert	4	Nitrogen	1500	Dry	
	5	Nitrogen	1500	$2.1 \cdot 10^4$	
	6	Nitrogen	1500	$2.1 \cdot 10^4$	0.15

Temperature in the reaction furnace.

^b Concentration of the solution used in the atomizer.

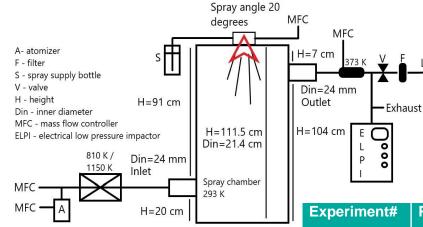

Results: Transport of Tellurium

- Majority of tellurium was transported in particualte form (aerosols), only small percentage as "gaseous"
- Humidity increased the amount Te in air → Supported by the literature
- Slight decrease in transport when Csl added in air
- Significantly lower release in inert (N₂)

No unexpected species observed

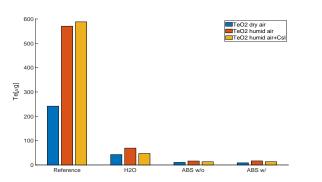
.

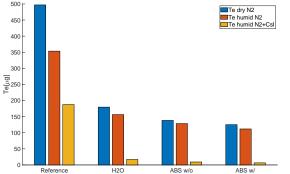
6

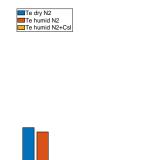

Condition	Experiment	Te- aerosols (filter)	Te- gaseous (liquid traps)	Identified species	Agglomerated chains
Oxidizing	1	58%	2.0%	TeO ₂	Thin dendritic
	2	63%	0.95%	TeO ₂	structure
	3	50%	0.71%	TeO ₂	(<100)
				TeO ₃ , CsI	
Inert	4	16%	0.99%	TeO ₂ , Te	Chains of
	5	13%	0.57%	TeO ₂ , Te	spherical
	6	15%	0.94%	TeO ₂ , Te,	particles (<50)
				CsI, Cs, I	-

Experimental: Containment Spray System

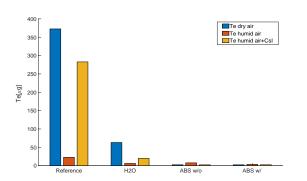
Liquid


Spray solutions used:


- Water
- Alkaline borate solution (ABS) without sodium thiosulfate
- Alkaline borate solution (ABS) with sodium thiosulfate


- Removal efficiency towards tellurium species formed under various conditions
- Effect of chemical composition of the spray

Experiment#	Precursor	Temperatur e, [K]	Atmosphere	Added humidity	Csl
1	TeO ₂	1150	Air	No	
2	TeO ₂	1150	Air	Yes	
3	TeO ₂	1150	Air	Yes	Yes
4	Те	810	Air	No	
5	Те	810	Air	Yes	
6	Те	810	Air	Yes	Yes
7	Те	810	Nitrogen	No	
8	Те	810	Nitrogen	Yes	
9	Те	810	Nitrogen	Yes	Yes


Results: Removal Efficiency

	Removal Efficiency [%]			
Experiment	MilliQ water	ABS without thiosulfate	ABS with thiosulfate	
1	83	96	97	
2	89	97	97	
3	91	97	97	
4	83	99	99	
5	74	73	73	
6	92	99	99	
7	63	72	75	
8	70	65	60	
9	89	93	94	

What can we learn form these results?

- Tellurium transport in the RCS is affected at least by atmosphere and humidity
 - Humidity increases the Te transport in air due to formation of more volatile species
 - Transport lower in N2 atmosphere
 - No new species formed in any of the experiments, transient/intermediate species possibly not detectable
 - Espegren, F., Kärkelä, T., Pasi, A. E., Tapper, U., Kučera, J., Lerum, H. V., ... & Ekberg, C. (2021). Tellurium transport in the RCS under conditions relevant for severe nuclear accidents. Progress in Nuclear Energy, 139, 103815.
- Containment spray system is efficient in removing tellurium species
 - Addition of CsI increased the removal due to agglomeration
 - Removal in nitrogen atmosphere was slightly lower \rightarrow Shift in particle size distribution
 - Chemical effect considered negligible
 - Kärkelä, T., Pasi, A. E., Espegren, F., Sevón, T., Tapper, U., & Ekberg, C. (2021). Tellurium retention by containment spray system. Annals of Nuclear Energy, 164, 108622.

Current and future work on tellurium

CHALMERS

- Tellurium behavior in the containment sump
- Organic tellurium chemistry \rightarrow Formation of volatile species
- Management of these possible re-volatilized species e.g. scrubber efficiency
- Gas phase tellurium chemistry, effect of organics \rightarrow NKS ORTEF project currently ongoing

Thank you for all partners, NKS, Nuclear Research Institute Rez! Thank you for for your attention!

CHALMERS