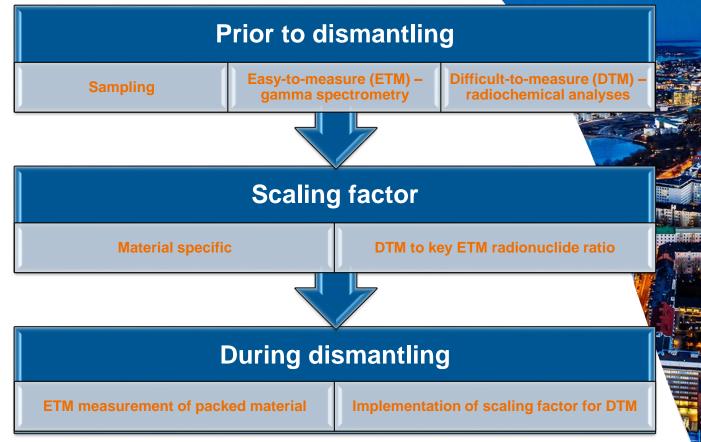




#### **Contents**

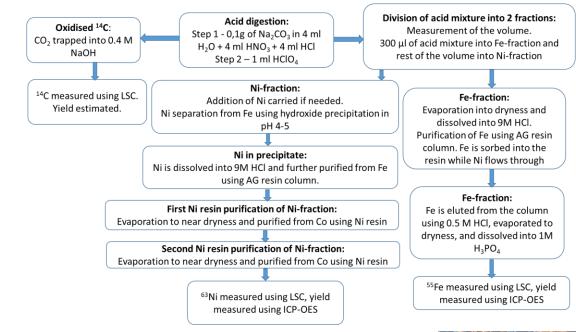
- Characterisation in decommissioning projects
- Difficult to measure radionuclides (DTM)
- Intercomparison exercises for analysis validation
- Conclusions




# Characterisation in decommissioning projects

#### Characterisation in decommissioning projects




characterisation Waste



#### DTM – why are they difficult to measure?



- Sampling
  - Representative sample
  - Correct sampling technique
- Radiochemical analysis
  - Variety of materials and radionuclides
  - Low and high activities
  - Long radiochemical procedures
  - Solubility
  - Interferences
  - LSC quenching



Validation of the radiochemical analyses

Spiked samples vs real samples



# Intercomparison exercises for analysis validation

#### Intercomparison exercises

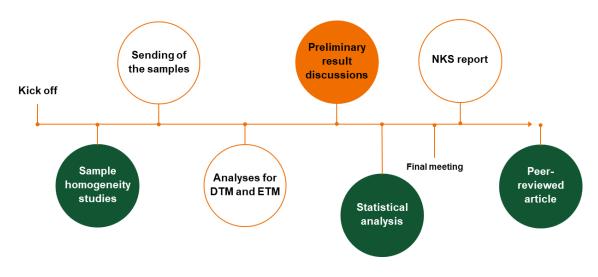




Finland (3) Sweden (1) Denmark (1) Norway (3)

France (1) Taiwan (1) UK (1) Need for DTM analysis validation 2020 DTM
Decom II
Activated
concrete

2022 RESINA Spent ion exchange resin (alphas)


2019 DTM
Decom I
Activated
steel

2021 DTM
Decom Spent
ion exchange
resin
(betas)

#### Intercomparison exercises







#### **Analysis validation**

- Statistical analysis according to ISO standard<sup>1</sup>
- Assigned values calculate from participants' results
- Comparison of performance using z score

$$z_i = (xi - xpt)/\sigma_{pt}$$

 $x_{nt}$ = the assigned value

 $\sigma_{nt}$ = standard deviation for the proficiency assessment

| Z score         | Analysis result |
|-----------------|-----------------|
| z  ≤ 2.0        | Acceptable      |
| 2.0 <  z  < 3.0 | Warning signal  |
| z  ≥ 3.0        | Unacceptable    |

#### DTM Decom I – activated steel<sup>[2,3]</sup>

- Reactor Pressure Vessel (RPV) steel
  - 1 cm x 1 cm thin slices
  - 0.1-0.2 g
- Homogeneity check using gamma spectrometry
  - 1.8 RSD%
- 2-3 samples for each participant
- Radionuclides
  - Fe-55 and Ni-63
  - Optional C-14 and Co-60
- Additionally activation calculation
  - Neutron dosimetry samples





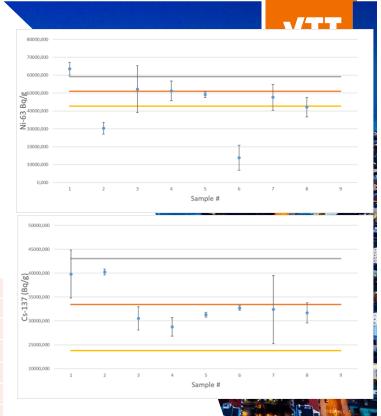
#### DTM Decom II – activated concrete<sup>[4,3]</sup>

- Biological shield activated concrete
- Homogeneity
  - 1.7 RSD% Eu-152
- 20 g / participant
- Radionuclides
  - H-3, C-14, Fe-55 and Ni-63
  - Optional: Ca-41, Cl-36, Co-60, Eu-152
- Additionally activation calculation
  - Reactor history, neutron fluxes and chemical composition

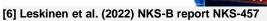


[5] Leskinen et al. (2020) JRNC 329:945-958

## DTM Decom III – spent ion exchange resin [6]


- Spent ion exchange resin
- Homogeneity
  - 0.9 RSD% Co-60
- 0,8 g / participant
- Radionuclides
  - Fe-55, Ni-63, Sr-90, gammas
  - Optional H-3, C-14, Tc-99




### DTM Decom III – spent resin betas<sup>[6]</sup>

- Excerpt of results shown from final meeting
- Updated for the NKS report and upcoming publication
- Mainly good results for Fe-55, Ni-63, and Sr-90
- Excellent results for gammas

|        | Z score |       |       | Sample | Z score |       |        |
|--------|---------|-------|-------|--------|---------|-------|--------|
| Sample |         |       |       | #      | Mn-54   | Co-60 | Cs-137 |
| #      | Fe-55   | Ni-63 | Sr-90 | 1      | 1,3     | 1,2   | 1,3    |
| 1      | 0,6     | 1,6   | -     | 2      | 1,4     | 1,5   | 1,4    |
| 2      | 0,9     | 5,1   | 5,3   | 3      | 0,7     | 0,6   | 0,6    |
| 3      | 0,4     | 0,2   | 0,5   | 4      | 1,1     | 0,9   | 1,0    |
| 4      | 1,4     | 0,0   | 1,2   |        | ·       |       | ·      |
| 5      | 0,3     | 0,2   | 0,9   | 5      | 0,2     | 0,1   | 0,4    |
| 6      | 0,3     | 4,6   | -     | 6      | 0,4     | 0,7   | 0,1    |
|        | ·       | ·     |       | 7      | 0,1     | 0,1   | 0,2    |
| 7      | 0,2     | 0,4   | 0,1   |        | · ·     | ·     | ·      |
| 8      | 1,3     | 1,1   | 0,8   | 8      | 0,2     | 0,4   | 0,4    |
| 9      | _       | _     | _     | 9      | -       | -     | -      |



| Z score         | Analysis result |
|-----------------|-----------------|
| z  ≤ 2.0        | Acceptable      |
| 2.0 <  z  < 3.0 | Warning signal  |
| z  ≥ 3.0        | Unacceptable    |



#### DTM Decom I - III & lessons learned





Oxidative acid digestion vs thermal combustion for volatile DTMs



H-3 and C-14 is challenging due to volatility and trapping

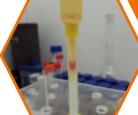




calculations

Easy to measure radionuclides are easier (danger of false positives, efficiency calibration,




Uncertainty and limit of detection



Sr-90 measurement with Cerenkov or LSC. Can be time consuming.









#### **Conclusions**

#### **Conclusions**

- Method validation is crucial
- High advantage in using real materials
- High advantage with collaborative project
- Interest of joining is increasing
- DTMs are still difficult to measure
- ETMs are easier than DTMs





# bey<sup>O</sup>nd the obvious

Anumaija Leskinen @vtt.fi

www.vtt.fi