Performance of LaBr₃ Detectors for Fresh Fallout Response (PERLAD)

NKS seminar Nordic Nuclear Safety: Research, Operations and Beyond, Stockholm, 24-25 May 2022

M.Dowdall ¹ Kari Peräjärvi ² Tero Karhunen ² Sara Ehrs ³ Charlotte Alfast Espensen ⁴ Gísli Jónsson ⁵

DSA

¹Norwegian Radiation and Nuclear Safety Authority (DSA)

²Radiation and Nuclear Safety Authority, Finland (STUK)

³Danish Emergency Management Agency (DEMA)

⁴Swedish Radiation Safety Authority (SSM)

⁵Icelandic Radiation Safety Authority

Direktoratet for strålevern og atomsikkerhet

Detectors

Good resolution No cooling Small size Not bad efficiency Reasonable price

Poor resolution No cooling Small size Good efficiency Reasonable price

Direktoratet for strålevern og atomsikkerhet

Good resolution No cooling Very small size Terrible efficiency Expensive

Context

Direct quantitative/qualitative measurement of airborne contaminants/fallout by LaBr₃ detectors:

- Cloud geometry
- Ground geometry

Problems with the above:

- Efficiency calibration for cloud shine geometry
- Efficiency calibration for very large ground areas
- Qualitative how does LaBr₃ cope with fallout type spectra?
- Separation of cloud and ground signals

Approaches

Efficiency calibration – two obvious candidate methods:

- Analytical functions
- Monte Carlo simulations

Some data from an analytical approach was available for the LaBr₃ detectors.

The Monte Carlo approach is at first glance relatively simple – the geometry is not very complex.

The primary problem is the size of the geometry – as photons can travel long distances in air, the geometry modelled has to be very large.

Related to the above, the amount of activity to be simulated – the «number of histories» - becomes very large resulting in impracticable simulation times* (weeks or months)

*for the workstations available to the project

		Bq/m ³	Bq in total volume (750 m radius)
io notvony complay	131	3046	2,56811E+12
is not very complex.	132	2937	2,47621E+12
	133	2443	2,05971E+12
	¹³⁴ Cs	321	2,70638E+11
a dictoncos in air tha	¹³⁶ Cs	73	6,2E+10
y distances in all, the	¹³⁷ Cs	251	2,1162E+11
	¹⁰³ Ru	298	2,51246E+11
	¹²⁷ Sb	218	1,83798E+11
	¹⁴⁰ Ba	914	7,70601E+11
	¹⁴⁰ La	209	1,7621E+11
of histories» - becomes	¹⁴¹ Ce	66	5,5645E+10
	⁹¹ Y	376	3,17009E+11
	⁹¹ Sr	58	4,89E+10
	⁹⁵ Zr	80	6,7448E+10
	⁹⁵ Nb	409	3,44831E+11
	^{131m} Te	202	1,70308E+11
Direktoratet for	¹³² Te	2850	2,40286E+12
	¹³¹ Te	45	3,79E+10
stralevern og atomsikkerhe	91mY	37	3,1195E+10
	¹³³ Xe	27	2,27639E+10
	¹³⁵ Xe	193	1,6272E+11

Approaches

A series of air-filled hemispheres were constructed which functioned as uniform sources of monoenergetic photons where the radius of the hemisphere corresponded to the 95% transmission distance of the photon.

Only photons that would interact with a voume around the detector would be followed – this facilitates estimation of the full energy photopeak <u>only.</u>

The activity present in the hemisphere was then determined based on a simulation period of approximately two weeks.

This was then performed for all the energies and for all of the detectors. to obtain an estimate of the efficiencies for the cloud shine geometry.

All simulations were conducted with GEANT4 - physics packages QGSP_BIC_HP plus Radioactive Decay

keV	Hemisphere radius m	Total volume m ³	Activity per m ³
60	204	1.78E+07	1000
100	250	3.27E07	543.34
200	310	6.24E+07	284.97
661	510	2.78E+08	64.0
1000	602	4.57E+08	38.91
1400	715	7.66E+08	23.23
2000	860	1.33E+09	13.35

Direktoratet for strålevern og atomsikkerhet

Outcomes

The simulations generate a series of efficiency curves for each detector typical of any other geometry.

Two possible ways of assessing outcomes: relative to results produced by other calculations and relative to some comparison between the model and reality.

Relative to results computed by other means – the results are not so deviant. The computational method omits certain aspects of possible relevance – angular dependancies, detector height, contributions of near detector activity etc.

In addition, the Monte Carlo method has its own vulnerabilities related to the quality of the model used to represent the detector.

DSA

Direktoratet for strålevern og atomsikkerhet Norwegian Radiation and Nuclear Safety Authority

Energy keV	Radius m	Bq/m³	Peak eff. Sim. (counts/(Bq/m³)	Peak. eff. Comp.	Rel. diff (%)
60	204	1000	0.0152	0.0186	18
100	250	543.34	0.0197	0.0242	19
200	310	284.97	0.0234	0.0281	17
661	510	64.0	0.0130	0.0155	16
1000	602	38.91	0.0100	0.0124	19
1400	715	23.23		0.0109	
2000	860	13.35	0.0067	0.0095	29

Detector 1 - hemisphere

Models

The problem of models in simulation of detectors is well known.

The information available from manufacturers is often less than ideal.

For detectors designed for outdoor use which may have weather shields or various types of *«ruggedisation»* – the problem is worse.

To test how the models were performing – a series of experiments were conducted comparing empirical data to the simulated data.

In general – for sources in front of the detector, simulation to an acceptable degree is possible. For sources behind the detectors – simulation to an acceptable degree is not possible. The problem being worse the more «stuff» there is behind the crystal (HPGe type systems being very problematic).

DSA

Direktoratet for strålevern og ator

Nuclide	Act. (MBq)	Dist. (m)	E (keV)	Orient.	Livetime (s)	Area	CPS	Area	CPS										
						Simulated	Simulated	Actual	Actual										
Am-2/1 as «pure	10.7	1	60	Front	260	74526 ± 1484 *	286	23744	80										
point» source	10.7		00	1 Ion	200	74520 1 1404	200	20144	00										
				WS	269	75218 ± 270*	279	22181	83										
				Back	892	?????	????	1131.6	1.27										
Am-241 as	10.7	1	60	Front	260	69410	266	23744	89										
aluminium				WS	269	81071	301	22181	83										
point source				Back	892	??????	????	1131.6	1.27										
Co-57 as volume	10.4	1.5	122	Front	372	92490	248	80177	216										
source						WS	375	91488	244	87220	237								
				Back	428	97	0.22	8145	19.0										
													136	Front	372	11634	31.3	4144	11.1
				Back	428	47	0.10	330	0.77										
Co-57 as a	10.4	1.5	122	Front	372	30925	265	80177	216										
thin surface				WS	375	97679	260	87220	237										
source				Back	428	327	0.76	8145	19.0										
			136	Front	372	3684	33.3	4144	11.1										
				Back	428	121	0.28	330	0.77										
Cs-137	8.9	8.9 2 662 Front WS	8.9 2	8.9 2 662	Front	156	6940 ± 138*	44.7	7055	45.2									
			WS	248	10787	43.5	11096	44.7											
				Back	280	4314	15.40	4847	17.3										
Co-60	3.5	3.5 2 1173 Front WS Back	Front	503	5792 ± 98*	11.6	5373	10.7											
			WS	491	5309	10.81	5850	11.9											
				Back	500	2612	5.22	2757	5.5										
			1332	Front	503	5091 ± 64*	10.28	4894	9.7										
				WS	491	4674	9.51	5073	10.3										
				Back	500	2482	4.96	2602	5.2										

Direktoratet for strålevern og atomsikkerhet

Surface deposistion

Similar approach adopted for the ground deposition.

Circular disks with a soil composition were constructed of radii corresponding to the 95% transmission for the energy concerned.

Spectra were then recorded for each detector type using the same restrictions as for the cloud shine scenario.

Results for MC calculations for LaBr₃ detectors comparable with results yielded from calculations.

Qualitative

Two scenarios presented - cloud shine and deposition.

Data used for isotopes and activity levels from Johansson et al., 2019. For cloud shine – 2 assemblages devised:

- Cloud activity 5 6 hours after release
- Cloud activity 20-21 hours after release

For deposition – 3 assemblages devised:

- After 3 days
- After 7 days
- After 30 days

Johansson, J., Kock, P., Boson, J., Karlsson, S., Isaksson, P., Lindgren, J., Tengborn, E., Blixt Buhr, A.M., Bäverstam, U. 2019. Review of Swedish emergency planning zones and distances, Appendix 3, Report number: 2017:27e ISSN: 2000-0456. 91 p.

Direktoratet for strålevern og atomsikkerhet

Isotope	Bq/m³	Hemisphere volume m ³	Total activity Bq
Xe-133	2.8E+04	718377.52	2.00643E+10
Xe-135	1.1E+04	718377.52	8.22183E+09
Kr-88	2.3E+03	718377.52	1.62425E+09
Rb-88	1.6E+03	718377.52	1.18329E+09
Kr-85m	1.4E+03	718377.52	9.95671E+08
Xe-133m	9.0E+02	718377.52	6.43666E+08
Xe-135m	6.4E+02	718377.52	4.60121E+08
Kr-87	2.7E+02	718377.52	1.91340E+08
I-133	1.7E+02	718377.52	1.22211E+08
I-132	1.4E+02	718377.52	9.90643E+07
Te-132	1.3E+02	718377.52	9.65499E+07
I-135	1.0E+02	718377.52	7.39210E+07
I-131	9.7E+01	718377.52	6.94174E+07
Cs-134	2.6E+01	718377.52	1.87066E+07
Mo-99	2.2E+01	718377.52	1.59157E+07
Ba-137m	1.8E+01	718377.52	1.26973E+07
Te-131m	1.7E+01	718377.52	1.21693E+07
I-134	6.2E+00	718377.52	4.46242E+06
Cs-136	5.9E+00	718377.52	4.22406E+06

⁵ hour and <u>20 hour</u> cloud shine spectra for Detector 1. Norwegian Radiation and Nuclear Safety Authority

Qualitative

In general – there is no problem in adapting analytical routines for HPGe detectors.

Results – irrespective of which method for efficiency calculation is used – are probably more than adequate for emergency preparedness uses.

Nuclide	Deposition density (Simulated) (kBg/m²)	Deposition density (Detector 1) (kBg/m²)	Deposition density (Detector 2) (<u>kBg</u> /m²)
I-131	16.202	13.98	18.83
I-132	5.945	4.01	6.0
Te-132	5.764	5.03	7.6
Mo-99	5.555	5.12	5.12

Table 11. 3-day ground deposition results

Nuclide	Deposition density (Simulated) (kBg/m²)	Deposition density (Detector 1) (kBg/m²)	Deposition density (Detector 2) (kBg/m²)
Cs-134	5.060	3.72	5.15
Cs-137	3.520	2.54	3.36
I-131	2.855	2.76	3.25
Te-129m	460	-	-

Table 13. 30-day ground deposition results

Nuclide	Activity conc. (Simulated) (kBg/m³)	Activity conc. (Detector 1) (kBg/m³)	Activity conc. (Detector 2) (kBg/m³)
I-132	11.71	7.4	7.07
I-133	11.33	8.01	7.04
I-131	10.14	8.07	6.16
Xe-133	9.57	9.49	7.09

Table 15. 20 hour cloud results

Direktoratet for Norwegian Rad strålevern og atomsikkerhet and Nuclear Se

Separation of ground and cloud

Differentiation of signals arising from cloud contamination from those generated by deposition on the ground.

If achievable - most probably based on the lower energy region.

Requires simulation where there are no restrictions applied – all histories must be followed to ensure scattered radiation is included.

Very significant increase in computational time required.

Subsequent work indicates potential problems in such an approach.

Direktoratet for strålevern og atomsikkerhet

Lessons learned

- I really need better/more computers
- Monte Carlo is probably a reasonable way to estimate efficiencies for semi-infinite cloud geometries or long range flat plane geometries for energies over 200 keV
- Given the difficulty in modelling ancilliary assemblies in the detector module its debateable whether or not there is anything to be gained by Monte Carlo over simpler methods. Especially for «ruggedized» detectors.
- It is probably improbable that there is an acceptable way of separating out which signals come from the ground and which come from the cloud by simply looking at spectral details
- Of all the detector types LaBr₃ is probably the one best suited to these types of measurements

Direktoratet for strålevern og atomsikkerhet

Questions?