The Norwegian seventh scenario

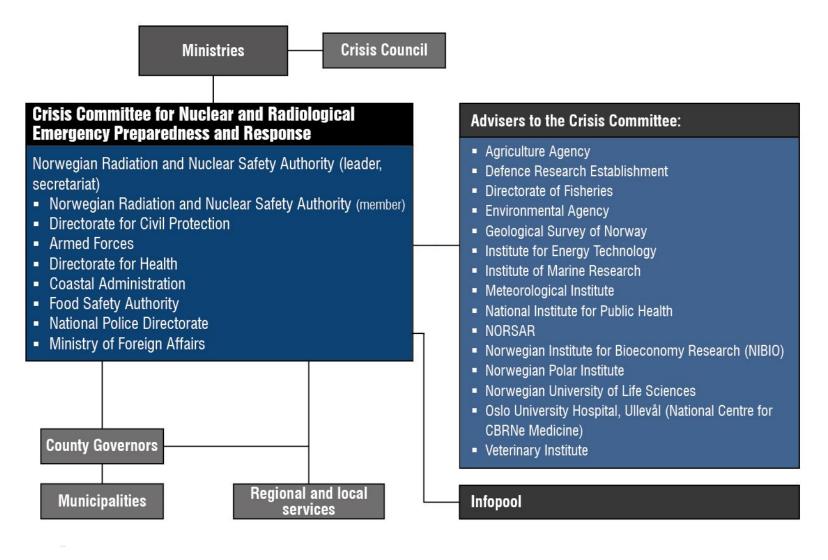
Øyvind Gjølme Selnæs, DSA

NKS-B NUCSEM seminar, Oslo2-3 November 2021

The Norwegian Radiation and Nuclear Safety Authority (DSA)

National authority and expert body in matters concerning radiation protection, nuclear safety and non-proliferation, radioactive contamination and radioactive waste

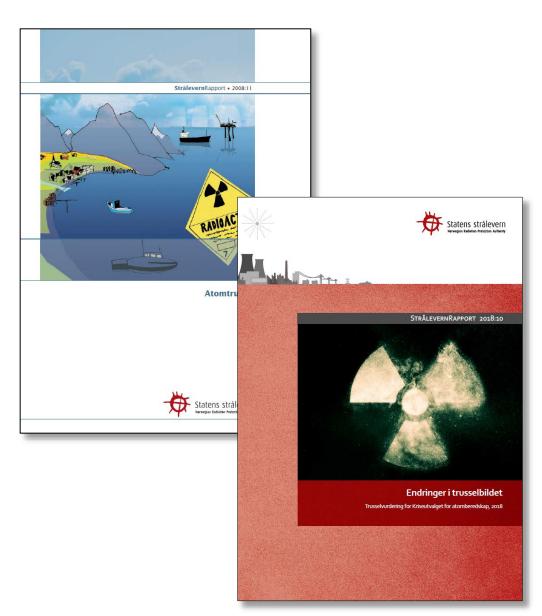
Some key responsibilities:


- → Highest national authority on nuclear safety and security, including recommendations on licencing and inspections
- → Chairs the national nuclear emergency preparedness and response
- → Provides advice and guidance to other authorities and the general public

Approx. 130 employees

Main office on Østerås outside Oslo Regional offices in the High North

The Norwegian Crisis Committee for Nuclear and Radiological Emergency Preparedness and Response



- Established to ensure rapid implementation of measures to protect lives, health, the environment and other important social interests
- Mandate to make decisions in the early phase
- Mandate covers peacetime, security crisis and war
- DSA leader and secretariat

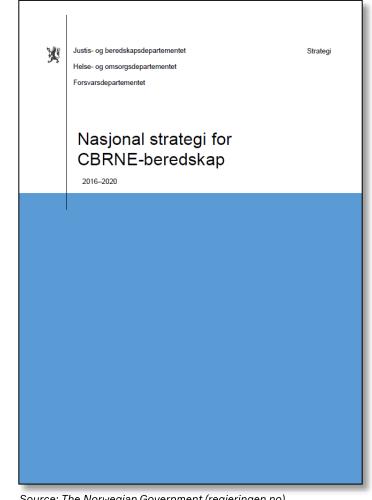
Responsible for maintaining threat and hazard assessments within our field

Some previous publications:

- → StrålevernRapport 2008:11 («Atomtrusler»)
 - Nuclear and radiological threats
- → StrålevernRapport 2018:10 («Endringer i trusselbildet»)
 - Changes in nuclear and radiological threats and hazards

Six planning scenarios for the national nuclear and radiological emergency preparedness

→ Decided by the government in May 2010



Need for a new, seventh scenario

- National Strategy on CBRNE emergency preparedness (2016-2020)
 - Ministry of Justice and Public Security
 - Ministry of Health and Care Services
 - Ministry of Defence
- The Crisis Committee was given the task of extending the existing scenarios with a scenario on use of a nuclear weapons close to or on Norwegian territory, and to work out relevant protective measures in such an event

Source: The Norwegian Government (regjeringen.no)

Working group

- → Norwegian Radiation and Nuclear Safety Authority (DSA) (leader)
- → Health directorate
- → Norwegian Directorate for Civil Protection (DSB)
- → Norwegian Armed Forces (rep. by the CBRN & EP School)

With input from:

- → Norwegian Intelligence Service
- → Norwegian Police Security Service
- → Norwegian Defence Research Establishment (FFI)
- → Others

Project products

Part 1 – Scenario description (due to be finalized by the end of 2021)

- → Restricted technical document
- → Publicly available scenario summary

Part 2 – Protective measures (due in 2022)

→ Publicly available report

Some framework

→ Needs to be as realistic as possible

→ Needs to be meaningful as a planning scenario

Primary effects

- Fireball (several million deg. hot mushroom cloud)
- Release of enormous amounts of energy
 - Ca. 50 % overpressure and shock wave
 - Ca. 35 % thermal radiation (heat)
 - Ca. 15 % ionising radiation (initial radiation and radioactive fallout)
- Electromagnetic pulse (EMP)
- Bright light flash, may cause temporary blindness

Photo: Federal Government of the United States

Secondary effects

Photo: Federal Government of the United States

- → Fire storms
- → Building collapse
- Injuries due to glass from shattered windows, splints etc.
- → Loss of critical infrastructure, essential public emergency services, food and water supply etc.
- → Homelessness etc.

Long-term effects

→ Long-term health effects

→ Radiological effects from nuclear fallout

→ Societal effects

Some topics for discussion

- → State actor vs. non-state actor
- → One single detonation vs. multiple detonations (nuclear exchange)
- → Is there a need to consider detonations outside the border?
- → Is there a need to consider the international security situation in assessing the consequences and protective measures?

Likelihood of use of nuclear weapons

- → Nuclear war (exchange of nuclear weapons)
 - → «Mutually assured destruction»
 - → Global or regional nuclear conflicts
- → Limited use of nuclear weapons during a conflict
 - → Incl. use of a single weapon
 - → The concept of «escalate to de-escalate»
- → Use of an improvised/primitive nuclear weapon

On the probability of the scenario, DSA's choice of words in the publicated report of 2018 was

«Not unthinkable»

Two sub-scenarios

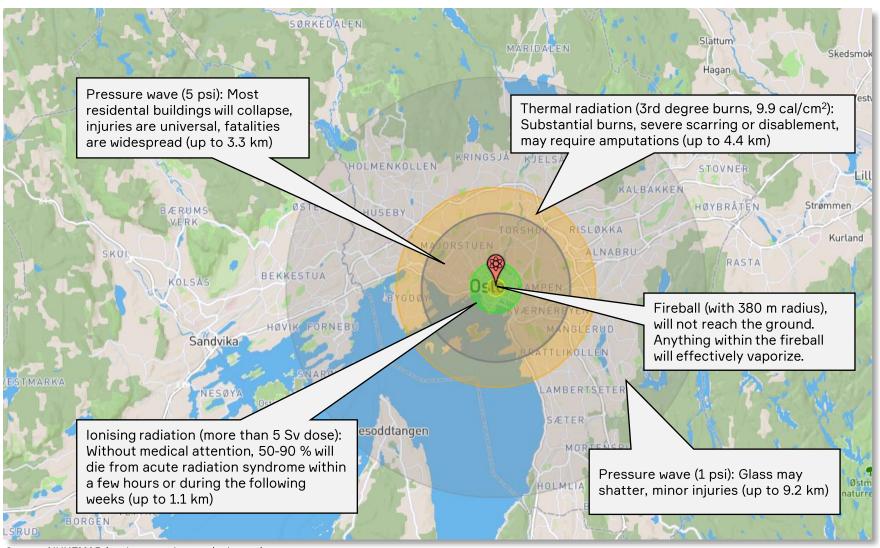
Scenario A: Non-strategic use of a nuclear weapon against a target outside a Norwegian city

Scenario B: Strategic use of a nuclear weapon against a major Norwegian city

Calculations

- → General description of detonations of weapons with different yields (1 kt, 10 kt, 100 kt and 1 Mt) at different heights
- → Calculations done at different sites to get an understanding of the range of consequences
- → Wind and weather data provided by the Norwegian Meteorological Institute
- → Demographic data provided by Statistics Norway
- → Calculations primarily done by the Norwegian Defence Research Establishment (FFI), but also by DSA using HPAC, Hotspot, Nukemap and others
- → Plan to use ARGOS decision support tool for dispersion modelling

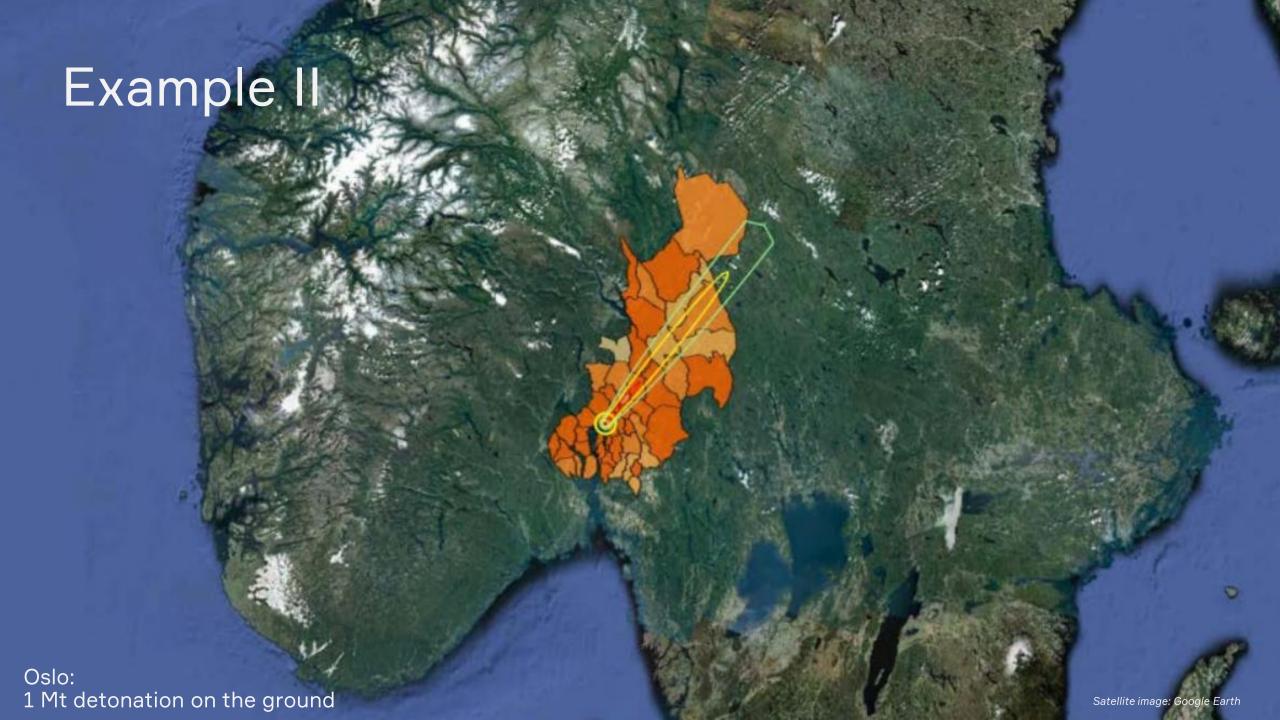
Scenario A: Non-strategic use of nuclear weapon against a target outside a Norwegian city


- → 1 kt detonation at ground level and 100 m height
- → Considers most probable weather and worst case weather

Scenario B: Attack against a major Norwegian city

- → Calculations primarily done using Nukemap by Alex Wellerstein
- → Weapons effects categorized in five categories based on severity
- → Three different detonations have been studied:
 - \rightarrow 10 kt at ground level
 - → 100 kt at 850 m height
 - \rightarrow 1 Mt at 2500 m height
- → Dispersion modelling of the nuclear fallout

Example I


Oslo: 100 kt at 1,450 m altitude

Approx. 104,000 fatalities

Approx. 190,000 injuries

Source: NUKEMAP (nuclearsecurity,com/nukemap)

21.01.2022 **DSA**