

VTT

Summary of the Zoning Workshop of the NORDIC-SMART project: Goals

Ludovic Fülöp*, Päivi Mäntyniemi, on behalf of the NKS group *VTT Technical Research Centre of Finland Oy

21/08/2024 VTT – beyond the obvious

Outline

- Why the focus on SMR's?!
- Probabilistic seismic hazard analysis (PSHA)
- Quick inventory of the key model inputs:
 - Seismic sources, Seismic source characteristics: Gutenberg-Richter parameters, Ground motion prediction equation, GMPE
- Model logic-tree and uncertainties.
- Goals of the harmonization project.

Why the focus on SMR's?!

- SMR have reduced complexity (e.g. they are only for heat not electricity etc.).
- Risks are therefore also scaled down.
- To facilitate SMR projects, it would be advantageous if elements of siting and/or earthquake hazard estimation could be expedited.
- This is not entirely possible, but in some elements it cam be done.

VTT - beyond the obvious

21/08/2024

Seismic hazard estimation

- Seismic hazard models forecast future hazard, important for long-term safety planning. Main method is Probabilistic Seismic Hazard Analysis (PSHA).
- PSHA aggregates effects of all earthquake scenarios; attempts to capture all uncertainties (i.e. aleatory variability and epistemic uncertainty).
- Result is the yearly probability of exceedance of e.g. a certain acceleration (PGA). This is used in the probabilistic risk assessment (PRA) of the NPP.
- PSHA inputs are: (a) seismic sources (SSZ's), (b) their characteristics depth, activity rates, maximum magnitude, (c) propagation of ground motion from the source (i.e. GMPE);

Something is known from earlier work...

Reproduction of Fig. 4-39 from Technical Report 37 of the Nuclear Radiation and Nuclear Safety Authority of Finland (STUK): https://www.julkari.fi/bitstream/handle/10024/146833/stuk-tr37.pdf?sequence=1&isAllowed=y Burck et al. (2023).

Seismic sources (SSZs)

- SSZs are seismogenic structures representing sites of future earthquakes in the model;
- Areal SSZs are proxies to accommodate unidentified seismogenic structures; not physical characteristics of the earth's crust, but calculation artifice.
- Usually assumed that SSZ's are homogenous source of earthquakes; equal probability of earthquakes to occur at any location within the SSA.

E.g. of areal seismic zones used in Finnish NPP models (https://link.springer.com/article/10.1007/s11069-022-05666-4)

Characterization of SSZs (1)

• Gutenberg-Richter relationship:

 $log_{10}(\lambda_m) = a_{GR} - b_{GR} \cdot m$

- An m_{comp}, related to detectability, and an M_{max} to limits of energy release.
- <M_{min} earthquakes are irrelevant for the risk; depends on the intended use of the hazard calculated. NPP's have M_{min}=M_w4..5, which means that one postulates that <4-5 cannot harm them.</p>

Characterization of SSZs (2)

- Is it an earthquake or something else... mining, icequake, explosion.
- What measure of magnitude? What is the M uncertainty?
- Completeness is from what year all EQs>M_w are in the catalogue
- High level of epistemic uncertainty in each characterization step.

VTT

Characterization of SSZs (3)

Ground motion prediction

- GMPEs have a median prediction for M_{min} < M_w < M_{max}, distance 0<R_{rup} < 300...500km.
- A median prediction uncertainty, an epistemic uncertainty (or use multiple GMPE's).
- An estimate of the variability or σ. If modeling GM using M and R_{rup} there is an unaccounted variability in observed GMs.

"Collectors" of the epistemic uncertainty

Results of different model options

VTT

VTT – beyond the obvious

VTT

Project goals & structure

- The main goal is to harmonize data items and methods in PSHA procedures in Nordic Countries; but NOT to equalize, since preserving epistemic uncertainty is crucial.
 - Task 1: Developing a harmonized seismic source zoning (SSZs) across northern Europe and creating a joint, homogenized, Nordic earthquake catalogue. (2024)
 - Task 2: Procedure harmonization for GR activity rate estimation of SSZs in the Nordic countries. (2024)
 - Task 3: Provide a set of harmonized hazard model inputs for GR parameters for SSZs in the Nordic countries. (2025)
 - Task 4: Integrated Nordic PSHA hazard model developed for the probabilities (frequencies of 10⁻⁴...10⁻⁷/year) relevant to nuclear facilities (2025).

beyond the obvious

First Name Surname firstname.surname@vtt.fi +358 1234 5678 @VTTFinland @your_account www.vtt.fi