Application of Rapid and Automated Techniques in Emergency Preparedness ---Inspirations from NKS-B Rapid-Tech Project

Jixin Qiao

DTU Nutech Center for Nuclear Technologies

NKS-B Rapid-tech project [AFT/B(14)7]

• Funded by Nordic Nuclear Safety Research (NKS) for 2014-2016

• Partners:

Jixin Qiao, Kai Xu---DTU Nutech, Technical University of Denmark, Denmark

Petra Lagerkvist, Sofia Josson, Stina Holmgren---FOI, CBRN Defence and Security, Sweden

Rajdeep Singh Sidhu---IFE, Institute for Energy Technology, Norway

Iisa Outola, Pia Vesterbacka, Kaisa Vaaramaa---STUK, Radiation and Nuclear Safety Authority, Finland

Project objectives

- To explore the application of different rapid techniques in determination of radionuclides, thus to improve the analytical efficiency of present radioanalytical methods in the areas of E, W and R.
- Specific tasks:
- Identification of current needs and problems in methodology development for rapid determination of ⁹⁰Sr and actinides.
- Identification of individual processes wherein rapid techniques can be potentially applied to improve the analytical efficiency.

Potential Rapid Techniques in Emergency Preparedness

No.	Rapid techniques
1	Flow injection (FI)/sequential injection (SI)
2	High performance liquid chromatography (HPLC)
3	Vacuum box system
4	other effective sample treatment approaches (microwave assisted digestion, alkaline fusion, co-precipitation)

Flow/sequential injection chromatographic separation:

Flow injection (FI) system:

- Peristaltic pump
- Continuous flow

Fig. Scheme of a FI system

Sequential injection (SI) system:

- Syringe pump
- Selection valve

Fig. Scheme of a SI system

Our focus

No.	Rapid techniques
1	Flow injection (FI)/sequential injection (SI)
2	High performance liquid chromatography (HPLC)
3	Vacuum box
4	other effective sample treatment approaches (microwave assisted digestion, alkaline fusion, co-precipitation)

High performance liquid chromatography (HPLC):

Advantages:

- Fully automated
- Can be connected directly with MS

Disadvantages:

- Only handle small samples
- Single sample processing
- High cost

HPLC system

Our focus

No.	Rapid techniques
1	Flow injection (FI)/sequential injection (SI)
2	High performance liquid chromatography (HPLC)
3	Vacuum box system
4	other effective sample treatment approaches (microwave assisted digestion, alkaline fusion, co-precipitation)

Vaccum box:

Advantages:

- Multi-sample processing
- Easy operation
- Low cost
- Flexible

Disadvantages:

Need human attention

Eichrom vaccum box

Our focus

No.	Rapid techniques
1	Flow injection (FI)/sequential injection (SI)
2	High performance liquid chromatography (HPLC)
3	Vacuum box system
4	other effective sample treatment approaches (microwave assisted digestion, alkaline fusion, co-precipitation)

Alkaline fusion --- Rapid sample pre-treatment techniques for solid samples:

Fluxes can be used for alkaline fusion:

- NaOH
- Na₂O₂
- NaCO₃
- LiBO₂
- Others

Busen burner

Katanax automatic electric fluxer

Co-precipitation --- Rapid sample pre-treatment for liquid samples:

- Carbonates (e.g.,CaCO₃)
- Oxalates (e.g., CaC₂O₄)
- Hydroxides (e.g., Fe(OH)₃)
- Oxides (e.g., MnO₂)
- Phosphates (e.g., Ca₃(PO₄)₂, BiPO₄)
- Others (e.g., AMP for Cs)

 $Fe(OH)_3$ co-precipitation

CaCO₃ co-precipitation

CaC₂O₄ co-precipitation

Current application of rapid techniques in Emergency preparedness

1) Current application of novel automated techniques in Nordic countries is very limited.

2) There is a need for end users to become more aware of the advantages of improved techniques for radiochemical assays.

Development of automated system in DTU Nutech

٧S

-9

EF8

Automatically handle 9 samples! Work overnight !

<u>Qiao, J. X.</u>, Hou, X. L., Roos, P., Miró, M. Analytica Chimic Acta. 2011.

Development of automated system in DTU Nutech

Qiao, J. X., Shi, K. L., Hou, X. L., Nielsen, S., Roos, P. Environmental Science & Technology. 2013.

Conclusions

- More efforts are needed to improve the application of automated and rapid techniques in radiochemical analysis
- •More support from NKS or other foundations for future projects
- More communication and collaboration among Nordic and international labs

Thank you!