NKS-B MOBELRAD and GAMFAC: Nordic Field Exercises In The Belarusian Exclusion Zone.

Mark Dowdall¹, Yuri Bondar² ¹Norwegian Radiation Protection Authority, Østerås, Norway ²Polessie State Radiation-Ecology Reserve, Khoiniki, Belarus

Stockholm, 13.01.2016

www.nrpa.no

Introduction

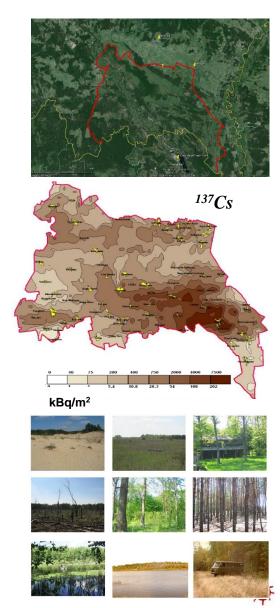
• NKS MOBELRAD - Mobile Measurement: Field Exercise in Fallout Mapping in the Belarusian Exclusion Zone

NKS Activity in 2014 contract number AFT/B(14)4 Participants – NRPA, SSM, IRSA, DEMA, PSRER

NKS GAMFAC - Advanced In-situ Gamma Spectrometry Field Activity – Chernobyl

NKS Activity in 2014 contract number AFT/B(14)4 Participants – NRPA, FOI, IRSA, DEMA, PSRER Stirling University

Belarus – Partners and Location

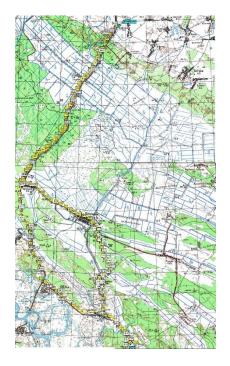

Polessie State Radiation-Ecological Reserve (PSRER)
Department for Liquidation of the Consequences
of the Accident at the Chernobyl NPP, Ministry of
Emergency Measures of Belarus

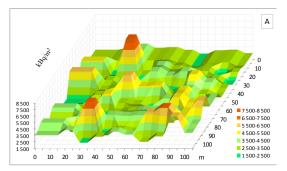
Belarusian Exclusion Zone

216.2 thousand hectares 90 Sr: 20 kBq/m² to > 3 MBq/m² 241 Am: 0.4 kBq/m² to > 100 kBq/m² 238 Pu: 0.2 kBq/m² to >37 kBq/m² 239,240 Pu: 0.2 kBq/m² to > 74 kBq/m² 137 Cs: up to 12 MBq/m²

Dose rates: up to11 µSv/hr

92 abandoned villages/towns



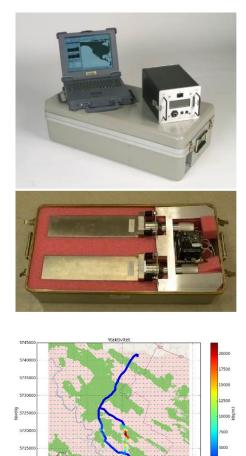

General Objectives

- Exercise/development opportunity for Nordic actors in highly contaminated areas/complex post-depositional environment.
- Improve capabilities with respect to conducting typical post-accident assistance operations in other countries.
- «Young scientist» activity.
- Establish and maintain relations with relevant Belarusian authorities.
- Technical and expertise exchange between Belarusian partner and Nordic actors.

NKS MOBELRAD

- Specific objective exercise/practice in conducting practical mobile measurements/mapping in a highly contaminated, complex post-depositional environment.
- Realisation (September 2014):
 - specific route (88 km) through the zone prepared in advance with detailed high resolution measurements of contamination status
 - route traversed a variety of road surfaces, contamination levels, environment types, etc.
 - separate well characeterised «control» points along the route.
 - calibration area for control measurements

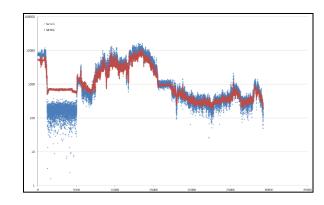
NKS MOBELRAD

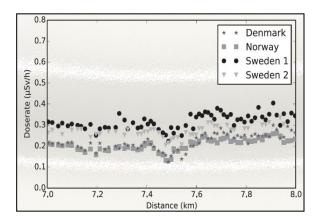

Each team travelled the route alone and with other teams.

Wide variety of instrumentation employed – typical for mobile mapping/source searching.

Large volume Nal (8 l), LaBr, small volume Nal etc etc.

Wide range of typical data handling/display solutions.


Various calibration routines/systems.



NKS MOBELRAD

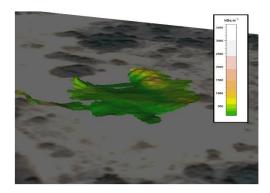
Lessons learned:

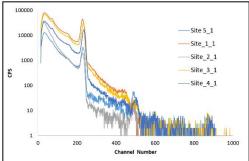
- The role of redistribution processes and their impact on measurement performance.
- The impact of rapidly varying and high contamination levels on performance.
- The difficulty in establishing realistic estimates of deposition that go beyond simple dose rate measuring.
- The role of the operator in interpreting the instrumental response in relation to the measurement environment.

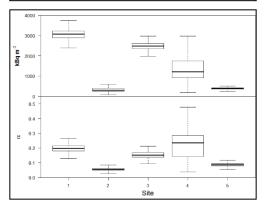
- Objective –conducting in-situ gamma spectrometric measurements in contaminated environments.
- Realisation (September 2015):
 - five sites within the exclusion zone selected based on a set of criteria relating to contamination levels, topography, soil type, etc.
 - all sites characterised by the PSRER according to depth penetration, isotope levels, dose rates etc.using laboratory and in-situ methods.
 - each team attempted to determine activity levels, depth penetration, etc. using their own in-situ systems.

		Koordinater	Doserate (1 m)	¹³⁷ Cs kBq/m ²
			μSv/h	⁹⁰ Sr kBq/m²
Site 1	sod-podzol	N 51°33'07,9" E 029°55'26,1"	2.21 – 2.50	<u>2414</u>
				356
Site 2	sandy soil	N 51°33'17,1" E 029°55'12,1"	0.29 – 0.35	<u>215</u>
				0.38
Site 3	peat soil	N 51°32'54,7" E 029°55'52,2"	1.55 – 1.73	<u>1672</u>
				319
Site 4	partly flooded	N 51°31'45,2" E 029°56'07,5"	0.52 -0.89	<u>1178</u>
				194
Site 5	agricultural land	N 51°47'11,8" E 030°01'16,8"	0.25 – 0.39	<u>644</u>
Site 6	control (football	N 51º54'46.5" E 029º58'57.1"	<0,1	<u>13</u>
	stadium in Khoiniki)			22






- Wide variety of instrumentation employed:
 - HPGe
 - Nal and LaBr
 - CdZnTe
- Wide range of methods and routines:
 - mathematical calibration
 - empirical calibrations
 - depth penetration routines
 - realtime mapping
- Wide variety of experience levels.



- More advanced methods indicate uses beyond simple determination of activity levels.
- Realtime mapping and advanced analysis procedures expand the use of traditional in-situ measurement methods.
- Vertical distribution analysis of obvious interest but requires work.

NKS GAMFAC and MOBELRAD

Some observations:

Mobile measurements

- High sensitivity systems/procedures for source searching/low level mapping will fail in a fresh fallout/high contamination situation.
- Procedures for such operations must be flexible enough to account for postdepositional processes (contamination in/on trees/buildings).
- Operator experience is and will continue to be more important than technical solutions.

In-situ measurements

- Larger detectors are not optimal for higher contamination levels.
- Newer detector types offer significant advantages.
- The impact of higher contamination levels on various automatic analysis routines.
- Certain weaknesses in performance for non-trivial cases.

Acknowledgements

- The NKS willing to take a risk in funding such activities.
- The staff of the PSRER for facilitating and participating such activities.
- All the willing participants.

Report links:

NKS-GAMFAC (NKS Report 352)

http://www.nks.org/scripts/getdocument.php?file=111010213245375

NKS-MOBELRAD (NKS Report 320)

http://www.nks.org/scripts/getdocument.php?file=111010212617378