Modelling of Digital I&C — MODIG project Jan-Erik Holmberg¹, Ola Bäckström², Markus Porthin³, Tero Tyrväinen³

NKS Seminar, January 12-13, 2016, Solna

¹ Risk Pilot AB ² Lloyd's Register Consulting - Energy AB, ³VTT Technical Research Centre of Finland Ltd

ACKNOWLEDGMENTS

- The work is financed by NKS (Nordic nuclear safety research), SAFIR2018 (The Finnish Research Program on Nuclear Power Plant Safety 2015–2018) and the Swedish Radiation Safety Authority
- MODIG project partners: Risk Pilot AB, Lloyd's Register Consulting Energy AB, VTT Technical Research Centre of Finland Ltd
- NKS conveys its gratitude to all organizations and persons who by means of financial support or contributions in kind have made the work possible

MODIG background

- How to demonstrate safety of complex socio-technological system?
 - Deterministic safety analysis \bullet
 - Postulated scenarios may not lead to unwanted consequences
 - Probabilistic safety assessment (PSA) ullet
 - Quantitative risk criteria shall be met
- power plant
 - Practical and justifiable approaches are needed to assess I&C \bullet

I&C consist consist of several system related to practically all safety functions of a nuclear

MODIG objectives

- To get a consensus approach for a reliability analysis of a plant design with digital I&C
- To get improved integration of probabilistic and deterministic approaches in licensing of digital I&C
- To improve failure data collection including software failure probability quantification
- To perform practical application of PSA to compare design alternatives

What do we try to do better?

- More accurate consideration of failure modes
 - "not just processor crash"
- More accurate consideration of the I&C architecture
 - a processor is "not just a single black box" \bullet
- Reasonable approach to model a complex system
 - relevant dependences and failure modes are accounted for \bullet
 - understandable model structure and designation system \bullet
- Better justification of reliability numbers
 - use of operating experience where applicable and justifiable \bullet
 - coherent use of expert judgements \bullet

Defence-in-depth (DiD)

- More than one protective measure for a given safety objective, such that the objective is achieved even if one of the protective measures fails
 - inherent safety features \bullet
 - use of multiple barriers, engineered safety features \bullet
 - accident prevention and mitigation \bullet
 - principles and procedures followed in design, \bullet construction, operation, maintenance and decommission of the system

Deterministic criteria for DiD [STUK/YVL]

DID level 1

Idealized I&C architecture [EPRI]

Possible sharing and interconnections among DiD levels [EPRI]

DiD and INES scales vs. nuclear risk criteria

Initiating event		Safety functions	Safety functions	Consequence	
Level 1 PSA		Level 1 PSA	Level 2 PSA	Level 3 PSA	
DID level 1 Prevention of abnormal operation and failures	DID level 2 Control of abnormal operation and detection of failures	DID level 3 Control of accidents within the design basis	DID level 4 Severe accident management	DID level 5 Mitigation of the radiological consequences	Consequence

Conclusions from current PSAs

- Level 1 PSA evaluates DiD levels 1-3
 - Without some diversity for DiD level 3 diff 1E-5/yr
- Level 2 PSA evaluates DiD level 4
 - DiD level 4 must be independent from Dil 1E-7...1E-6/yr

Without some diversity for DiD level 3 difficult to achieve the core damage frequency goal

• DiD level 4 must be independent from DiD levels 1-3 to achieve large release freqeuncy goals

Use of PSA for deterministic assessment

- PSA model is an excellent tool to handle complex dependencies
- It is also excellent for sensitivity analysis
- Minimal cut sets provide the necessary and sufficient information to judge whether deterministic failure criteria are fulfilled
- Examples:
 - For DBC2-4 events it must be, e.g., shown that "it shall be possible to accomplish decay heat removal from the reactor and containment by one or several systems that jointly meet the (N+2) failure criterion..."
 - For DEC-A events (= DBC2 or DBC3 combined with a CCF in a safety system) a diverse N+1 system is needed to reach a safe state

Some questions related to the assessment of DiD of typical NPP designs

- Can a system requiring an operator action be (N+1) failure tolerant? Shall the (N+1) failure criterion be applied to structures like the demineralized water tank?
- How different hazards, such as fire events should be classified? Can Loss-of-offsite-power (LOOP) be classified into different design basis categories depending \bullet
- on the duration of the LOOP?
- Which type of software CCF:s should be counted as a common cause failure in the DEC-A analysis?
 - System software CCF (platform failure)? lacksquare
 - CCF between nearly identical application software modules? \bullet

Software reliability

- Functionality of I&C is implemented by software modules running in hardware modules
- Failures of software based systems are due to specification errors lacksquare
 - Latent errors triggered by the context lacksquare
 - Risk for common cause failures \bullet
 - Difficult to apply statistical methods in the reliability assessment \bullet
- How to deal with software reliability is very debated => no consensus Licensing of software based safety systems has become difficult \bullet (deterministic problem)
- It should be noted that many debatable questions are not actual software specific

Software modules:

- system software (operating system)
- application function modules
- library functions
- proprietary software modules
- data communication protocol
- data tables
- functional requirements specification (virtual software)

Approach to define failure modes and effects for software

- \bullet reasonable failure effects
- \bullet
 - postulated fault locations can be reduced to certain software modules \bullet
 - other cases are covered by these cases
 - •

In principle, we may assume a fault in any of the software module and then consider maximum,

Simplifications are needed to keep the number of fault-effect combinations reasonable

there is a simple way of defining failure effects which is not only sufficient but also exhaustive

Software fault cases for the reactor protection system with two diverse subsystems (RPS-A & RPS-B)

	Software fault lo			
Effects	System software	Data communication software	<i>A</i> app sof	
Loss of complete system	case 1	case 1		
Loss of one subsystem	case 2a	case 2b		
Loss of one group of redundant			00	
APU in one subsystem			La	
Loss of one group of redundant				
voters in one subsystem				
Loss of one function in all			ca	
divisions of one subsystem				
Loss of one function in one			00	
division of one subsystem				
	Eatal failure			

Fatal failure Fatal or Non-fatal

Approach to quantify software reliability

- Different approach depending on the type of software module
- \bullet running in processors)
- For application software use of operating experience is more questionable \bullet
 - Which data is representative? How to pool data? lacksquare
 - lacksquare
 - More complex => less reliable •
 - More V&V (higher safety class) => more reliable •

There can be a lot operational experience available for the system software (operational SW)

Alternatively use of indirect evidence such as complexity and V&V metrics has been studied

Further questions related to the software reliability

- Judgements on representativeness of operating experience \bullet
- Justification of the complexity and V&V metrics for application SW \bullet
- CCF between nearly identical SW modules
- Appropriate level of details in the modelling \bullet

Conclusions

- the design
- \bullet
- PSA can evalute risk criteria related to DiD levels 3-5 \bullet
 - probabilistic argumentation should be used to compare I&C design alternatives \bullet
 - PSA's logic model facilitates the analysis of failure criteria \bullet
- Software reliability assessment is an inherently challenging task
- International collaboration is needed to achieve a consensus approach \bullet

DiD is a multi-faceted safety principle, many interpretations, implies a lot of requirements for

Deterministically difficult to demonstrate complete fulfilment of all desired requirements

Jan-Erik Holmberg

jan-erik.holmberg@riskpilot.fi +358(0)40 827 6656

Sector 2

