

Addressing off-site criteria using Level 3 PSA

Andrew Wallin Caldwell, et. al. Nordic Nuclear Safety Research Seminar 2016 12-13 January, 2016 Stockholm Sweden

Working together for a safer world

Project funding and organisation

- Funding of the project is provided by:
 - Nordic PSA Group (NPSAG, <u>www.npsag.org</u>)
 - Stakeholders: Forsmark NPP, Ringhals NPP, Oskarshamn NPP, and Swedish Radiation Safety Authority
 - Nordic nuclear safety research (NKS, <u>www.nks.org</u>)
 - Finnish Research Programme on Nuclear Power Plant Safety (SAFIR, <u>http://safir2014.vtt.fi</u>)
 - Stakeholders: TVO, Fortum, Fennovoima, and STUK

Project funding and organisation (continued)

- Project working group consists of:
 - Lloyd's Register Consulting
 - RiskPilot
 - VTT
 - ÅF
 - Vattenfall

Organisation	Funded by			
Lloyd's Register Consulting				
Risk Pilot	NPSAG & NKS			
ÅF				
Vattenfall	NKS & Internal			
VTT	SAFIR & NKS			

Agenda

- The "levels" of PSA
- Project background
- What is Level 3 PSA
- Why Level 3 PSA / Why not Level 3 PSA?
- Guidance document
- Concluding remarks

"Levels" of PSA

Defense-in-depth and PSA

Initiating event		Safety functions	Safety functions	Consequence	
Level 1 PSA		Level 1 PSA	Level 2 PSA	Level 3 PSA	
abnormal operation	DID level 2 Control of abnormal operation and detection of failures	DID level 3 Control of accidents within the design basis	DID level 4 Severe accident management	DID level 5 Mitigation of the radiological consequences	Consequence

PSA overview

PSA overview – the "levels" of PSA

The Level 3 PSA project

Project background & objectives

- A need to explore the potential use Level 3 PSA has been identified in response to:
 - Fukushima disaster
 - International standard/guideline development
 - New builds in region
 - Development of new/updated regulation
- The project is defined as an enhanced scoping study with objective to explore questions such as:
 - What are the needs for Level 3 PSA?
 - For whom would a Level 3 PSA be beneficial?
 - What kind of results should then be used?
 - What is happening internationally with respect to Level 3 PSA guideline & standards?

Project organization

- The project is a 3 year R&D project
 - Industrial survey
 - Risk metrics study
 - Regulations guides and standards
 - Finnish and Swedish pilot studies
- The ultimate objective of the project is to develop a Nordic guidance document on how to perform a Level 3 PSA.

What is Level 3 PSA

Early part of the project focused around defining what is Level 3 PSA

- Level 3 PSA is a probabilistic offsite consequence assessment
 - Probabilities can be attributed to many different things
 - Weather
 - Source terms
 - Countermeasures
 - Important consequences/ considerations depend on stakeholder
- Level 3 PSA usually quantified by quantification of atmospheric spreading of a release source term
- Risk metrics study identified three primary categories of Level 3 PSA risk metrics:
 - Health effects
 - Environmental effects
 - Economic effects

Why/ why not Level 3 PSA

Why

- Direct assessment of health and safety risks, where Level 1 and 2 PSA criteria are surrogates
- Direct assessment of socio- economic risks
- Siting for new reactors
 - Compliment to traditional site evaluation
- Emergency planning
 - Countermeasures
 - Emergency Planning Zones (EPZ)

Why not

- Propagation of uncertainties
- Surrogate Level 1 and Level 2 PSA metrics likely to be more limiting
- Design improvements typically have indirect impact on Level 3 PSA, opposed to direct as in Level 1 and Level 2 PSA
- Level 3 PSA connected to site assessment/evaluation (siting for new reactors)
 - Operating sites already chosen

Results of case studies

Finnish pilot study

- Scope:
 - Atmospheric release from Fukushima accident w/o tsunami.
 - Weather conditions typical of Japan
- Conclusions
 - No early deaths
 - 16 expected cancers deaths
 - Evacuation has significant impact

Swedish pilot study

- Scope:
 - Atmospheric release below, near, and above Level 2 PSA regulatory limits.
 - UK EPR source terms.
 - Generic Nordic plant site
- Conclusions
 - Extremely low risk of early deaths, even with very pessimistic assumptions
 - "Manual analysis" provided significant insight into underlying methods

Need for Nordic guidance

- Little existing guidance on Level 3 PSA
 - IAEA Safety Series guide on Level 3 PSA (1996)
 - Large US studies (WASH-1400, NUREG-1150, SOARCA)
 - Countries that require Level 3 PSA are usually confidential
- Little Nordic experience prior to Level 3 PSA project
- Ongoing international work
 - IAEA TECDOC draft developed through (1 Technical Meeting, 3 Consultant Meetings)
 - ANS/ASME Level 3 PSA standard in nearing draft completion

Little current guidance, on-going international activities moving ahead slowly

Level 3 PSA guidance document

- Focus on Nordic Nuclear Safety
 - Guidance framed based on Level 2 PSA requirements as applied in Sweden and Finland
 - Nordic weather / topographical considerations
- Difference between this guidance and IAEA, ANS/ASME
 - Application specific considerations
 - Specific lessons from pilot projects
- Draft guidance document out for stakeholder comment
 - Chapter 1 introductory discussion on the purpose and need for Guidance
 - Chapter 2 outlook on the regulatory framework, guides and standards
 - Chapter 3 challenges, limitations and benefits with performing Level 3 PSA.
 - Chapter 4 describes the main elements for a Level 3 PSA.
 - Chapter 5 conclusions (to be completed after January seminar)

Closing remarks

- Level 3 PSA is a probabilistic offsite consequence assessment
- Project insights
 - Varied interests and opinions on Level 3 PSA
 - Modest amount of international work ongoing
 - Need for Nordic guidance
- Finnish pilot project and Swedish pilot project provide two unique perspectives in the development of the guidance document
- Final project seminar 28 January 2016
 - Presentation of pilot studies
 - Guidance document to be presented
 - Conclusions to be included in final guidance

Where do we go from here...

- 1-day project seminar January 28th, 2016
- Guidance document completion
- Completion of international activities
- Review of US NRC study
- Development of new regulations in Sweden
 - Possibly include Level 3 PSA
- Interfacing hot-issues
 - Multi-unit PSA
 - External events
- Continued collaboration between PSA & Radiological experts!

1-day project seminar January 28 2016!!

Andrew Wallin Caldwell Consultant T +46 722447313 E andy.wallin-caldwell@lr.org

Lloyd's Register Consulting www.lr.org/consulting

Working together for a safer world

Lloyd's Register and variants of it are trading names of Lloyd's Register Group Limited, its subsidiaries and affiliates. Copyright © Lloyd's Register Consulting. 2014. A member of the Lloyd's Register group.

Swedish pilot – scope of analysis

Cs Release Fraction/ Release Timing	<0.04%	≈0.04%	>0.04%	>>0.04%
Early (release starts < 10 hr post-CD)	No relevant case found	No relevant case found	RC 802b (Small, 9.17E-4) ⁺⁺	RC 202 (3.99E-3) RC 205 (1.16E-1)
Late (release starts > 10 hr post-CD)	RC 501 (5.72E-5) RC 503 (1.08E-4)	RC 504 (4.08E-4)	RC 502 (7.72E- 4)	RC 404 ⁺ (2.47E-2)

[†]: Release starts at 7.8 hr, however, since the release is of long duration it is judged adequately represented as a late release.

^{††}: The maximum of the CsI and CsOH MAAP isotopic group release fractions is listed.

Source term releases

Swedish pilot – scope of analysis

	Metrics	Health				Environment	Economic
Analysis Characteristics	Risk Measure/ Assumption	Maximum individual dose at 1 km (early effects)	Risk of (early) death to max- imum exposed individual	Collective Dose (late effects)	Number of Latent Cancers (late effects)		Estimate of value of lost land due to Cs contamination
Analysis Area	Up to 50 km	Х	Х	Х	Х	Х	Х
	Up to 100 km	-	-	Х	Х	Х	Х
Countermeasures	5 km eva- cuation zone	Х	Х	-	-	-	-
Cs [‡] ground con- tamination thres- hold	1000† kBq/m²	-	-	-	-	Х	Х
	100† kBq/m²	-	-	-	-	Х	Х

[†]: Cs ground contamination thresholds may need some iteration once radioactivity contour maps have been produced.

[‡]: Combined activity of ¹³⁴Cs and ¹³⁷Cs.

Maximum total individual dose @ 2 days (early releases)

Maximum total individual dose @ 2 days (late releases)

Contamination and population distribution RC 205

