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Abstract 
 
Mobile measurement systems are the backbone of most responses to cases 
of orphan sources. Conducting mobile measurement surveys, irrespective of 
the platform utilised, is a non-trivial task with respect to the nature of the data 
being accrued – large volumes of discrete, often highly variable, data points 
where the signal of interest may be weak, superimposed on a constantly fluc-
tuating background and only present for a tiny proportion of the overall data 
set. Principal Component Analysis (PCA), one of the most popular multivariate 
statistical technique, is a flexible statistical procedure that allows for the sum-
marizing of the information content in large data tables by means of a smaller 
set of “summary indices” that can be more easily visualized and analyzed in 
order to observe trends, jumps, clusters and outliers. The PRICOMOB project 
focussed on the application of PCA to mobile measurement and stationary 
scanning data to assess its performance in identifying source signals from a 
number of isotopes superimposed on a variable background signal typical of 
mobile measurement data. The PCA method implemented proved itself a vi-
able method to detect anomalies in spectral time series. A disadvantage of the 
method employed is that a training data set is needed containing all the fea-
tures and behavior that are not due to artificial radioactivity. Alternative ways 
to form the residuals used in deciding whether a measurement contains fea-
tures not previously seen included the Mahalanobis distance and a modified 
Euclidean distance. The modified Euclidean distance seemed to result in im-
proved sensitivity for radionuclides that produce peaks, but reduced sensitivity 
for sources that produce continuums (such as x-rays).  
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1. Introduction 
Car borne and related (helicopter, drone, static scanning etc.) deployments of measurement systems 

are, and are likely to remain, a mainstay in the response arsenal of many countries to incidents 

involving searches devoted to the localization of gamma-ray sources. While in principle similar to 

laboratory-based systems, the operation of mobile measurement-based systems differs in a number 

of important ways. Mobile measurement typically generates significant amounts of spectral data 

where the individual measurements are of short duration ( 1 or 2 seconds each). Mobile measurement 

systems often deploy gamma detectors of relatively low resolution such as NaI or similar. The context 

within which such systems are deployed often necessitates rapid real-time analysis of this data or, 

alternatively, post -processing of the data at some later time. Mobile measurement, while well 

established and a mature technique, has undergone some changes in recent months/years. These are 

in relation to context – where mobile measurement is an invaluable assistance measure where another 

country requests help in finding or controlling orphan sources such as evidenced by the ongoing 

situation in Ukraine – and in technology – whereby new detector technologies (CdZnTe, LaBr) are being 

mounted on ever more flexible platforms (drones, etc.). These detector technologies are also 

employed in environmental monitoring applications, where similar analysis techniques are used as in 

the mobile applications. Concomitant with these developments has been an increased focus on 

analysis procedures and approaches such that the maximum benefit may be accrued from this 

measurement method and the difficulties inherent in it may be overcome.  

Typically, mobile measurement and real-time monitoring systems have relied on data visualization 

systems involving the scrolling presentation of color-coded spectral data which, as the underlying 

principles are the same irrespective of specific implementations, are collectively referred to as 

“waterfall” displays (see Figure 1). While such systems function adequately for strong sources with 

emissions of some hundreds of keV and greater, displays of this type have some inherent 

disadvantages. Low level signals from artificial radionuclide sources can be difficult to separate from 

background variations, sources with emissions in the vicinity of strong background lines can be difficult 

to observe and gamma emitters where the emission is in the lower end of the energy spectrum can 

present difficulties. The display can be tiring to observe for long periods and is often unintuitive for 

inexperienced operators. Without other data handling procedures, the method is very operator 

dependent. Automatic identifiers of source signals, such as dose rates or count rates in “spectral 

windows” or Regions of Interest (ROI) are often vulnerable to Type I and Type II errors due to highly 

variable background signals upon which weak source signals may be superimposed or strong but highly 

localized sources of background due to geology etc.   
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Figure 1. Conventional waterfall type display and ancilliary information depictions for mobile 

measurement systems. 

1.1. Principal Component Analysis (PCA) 

Principal Component Analysis, or PCA, is a general term for a set of statistical approaches that allows 

for the summarizing of the information content in large data sets by means of a smaller set of 

“summary indices” that can be more easily visualized and analyzed. Principal component analysis is 

one of the most popular multivariate statistical techniques. The most important use of PCA is to 

represent a multivariate data table as smaller set of variables in order to observe trends, jumps, 

clusters and outliers. PCA is a very flexible tool and allows analysis of datasets that may contain, for 

example, multicollinearity, missing values, categorical data, and imprecise measurements. The goal is 

to extract the important information from the data and to express this information as a set of summary 

indices called principal components or to “axis” in the multi-dimensional dataset where the data show 

the most deviations. Statistically, PCA finds lines, planes and hyper-planes in the K-dimensional space 

that approximate the data as well as possible in the least squares sense. A line or plane that is the least 

squares approximation of a set of data points makes the variance of the coordinates on the line or 

plane as large as possible. 

Principal Component Analysis potentially offers several distinct advantages across a number of 

different fields including data analysis, machine learning and signal processing. PCA functions by 

transforming high-dimensional data into a lower-dimensional space which captures most of the 
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variability in the original data set. This reduction simplifies the dataset to some extent and can be 

advantageous in employing more efficient and faster computations. By identifying the most pertinent 

features of the data by focusing on the directions (principal components) in which the data set varies 

to the greatest extent, key information is retained while less important or redundant features of the 

data set are discarded or ignored. The reduced-dimensional representation derived by PCA facilitates 

easy visualization enabling the elucidation and understanding of patterns, relationships and clusters 

within the data set being analyzed 

As PCA focuses on capturing only the most significant sources of variability within the data, less 

important variations, which may be considered as noise, may be minimized or ignored ultimately 

producing a cleaner, more robust representation of the patterns inherent in the data. 

For datasets where variables exhibit high degrees of correlation, PCA can be of utility in decorrelating 

these variables which is of some value in regression analysis. The principal components obtained by 

PCA are uncorrelated, simplifying the interpretation of the transformed data and facilitating 

subsequent analyses. For large data sets where computational overheads may be onerous, producing 

and working with a lower-dimensional representation of the data can, for example, significantly speed 

up the training of machine learning algorithms and reduce the overhead. PCA finds applications in a 

variety of fields due to its versatility. These include machine learning, image analysis and processing, 

bioinformatics, genomics, economics and finance, chemometrics, spectroscopy, signals processing, 

geophysics, psychology and social sciences, marketing, facial recognition, remote sensing and medical 

imaging. Introductions to the theory and practice of PCA may be found in Jolliffe (2014) and James et 

al. (2014). 

PCA has been applied previously to certain aspects of the general gamma ray spectrometry field. 

Kishimoto et al. (2021) recently applied PCA to the optimization of search strategies for robot borne 

detectors, Pires de Lima and Marfurt (2018)   having previously used PCA for analysis of natural gamma 

signatures in airborne spectrometry. Reinhardt (2014) applied PCA to analysis of NaI(Tl) spectra, 

suggesting it as means to cope with time-varying background, and using it as a smoothener of the 

statistical fluctuation of channel contents.  Williams (2019) developed PCA methods for source 

localization using directional CdZnTe detectors while Minty and Hovgaard (2002) utilized PCA for 

reduction of noise in gamma ray spectra. Of most relevance to this proposal, PCA analysis has been 

used as a means of detection of anomalous spectra at radiation portal monitors – outperforming 

commercial solutions and functioning well with low count rate spectra (Boardman et al., 2012). 

Eriksson and Dowdall  (2021) recently demonstrated the application of PCA to categorization of 

spectral data sets in relation to special nuclear materials. 
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The PRICOMOB project focused primarily on the application of PCA to mobile measurement data to 

assess its performance in identifying source signals from a number of isotopes superimposed on a 

variable background signal typical of mobile measurement data. The application of PCA to this field 

brings a powerful statistical technique to bear on data sets that are, relative to laboratory based 

gamma ray spectrometry, somewhat complex and that present challenges on a number of fronts.  

1.2. Principal components and their geometric interpretation 

For a set of 𝑛 variables 𝑋𝑛, the 𝑘:th principal component  

𝑃𝐶𝑘 = 𝑎𝑘1𝑋1 + 𝑎𝑘2𝑋2 + ⋯ + 𝑎𝑘𝑛𝑋𝑛 

is a new variable formed as a linear combination of the original variables in such a way, that the first 

principal component contains the largest amount of variation in the data, the second principal 

component the second largest and so on. Additionally, the principal components will be uncorrelated. 

The above definition and formula are not very intuitive. A geometric interpretation is given and 

illustrated in two dimensions in the following.  

Consider a set of two dimensional datapoints drawn from a multivariate normal distribution. The 

distribution of the datapoints is characterized by mean vector 𝜇 and covariance matrix Σ (Figure 2).  

 

 

Figure 2.  Data points drawn from a two-dimensional multivariate normal distribution. The underlying 

distributions are characterised in a) 𝜇 = [5, 5], 𝛴 = [3 2; 2 3] in b) 𝜇 = [0, 0], 𝛴 = [8 − 5; −5  4] and 

in c) 𝜇 = [0, 0], 𝛴 = [5 0; 0 5]. 

 

For this two-dimensional case, the probability density function (PDF) of the underlaying distribution 

can be plotted (Figure 3). 

a) b) c) 
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Figure 3.  The data points from Figure 2 and the PDF of their underlying distribution. 

 

The location of the hump of the PDF is determined by the mean vector 𝜇. The width and rotation of 

the hump is determined by the covariance matrix Σ. Contours of constant density can also be plotted, 

and for the multivariate normal distribution they will be ellipses.  The principal components 

correspond to the principal axes of these ellipses. The principal axes are in the direction of the 

eigenvectors of the covariance matrix (Figure 4). The eigenvector corresponding to the largest 

eigenvalue is the first principal component and corresponds to a principal axis of the ellipsoid 

containing the data points. 

 

 

Figure 4. Contours of constant density (ellipses) and the eigenvectors of the covariance matrix for the 

data points of Figure 2. 

 

Thus, to determine the principal components for a given set of datapoints, it becomes necessary to 

estimate the mean vector and the covariance matrix of the distribution the data points were drawn 

from. The eigenvectors – and thereby the principal components - can then be obtained from the 

estimated sample covariance matrix. The principal components can be arranged into a matrix 𝑉, that 

can be used to project the datapoints onto the principal components. By forming the matrix 𝐵 = 𝑉𝑇𝑉, 

the projection matrix, the datapoints represented by the principal components are projected back to 

the original basis to reconstruct the data. The dimensionality of the data is reduced by using only few 

of the first principal components in the construction of 𝑉 (Figure ). 

a) b) c) 

a) b) c) 
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Figure 5. Top row: The data points of Figure 2 plotted with the principal axis corresponding to the 

eigenvector with the largest eigenvalue. Bottom row: The reconstruction of the datapoints in terms of 

the largest principal component. The dimensionality has been reduced from two to one. 

A reconstruction similar to Figure 5 (b) can be made with GNU Octave with the following code: 

pkg load statistics; 

mu = [0 0]; 

sigma = [8 -5;-5 4]; 

x = mvnrnd(mu, sigma, 120); 

[V l] = eigs(sigma); 

B = V(:,1) * V(:,1)' 

pr = (B*x')'; 

plot(pr(:,1),pr(:,2), "k."); 

 

The above intuition holds for dimensions greater than two, in which case the contours of constant 

probability are ellipsoids of appropriate dimension. The principal components then correspond to the 

principal axii of the ellipsoids. In practice, the number of dimensions is large (e.g. 512 in the algorithm 

of Section 2.3), and the reduction in dimensionality of data is done to facilitate further calculations. 

The number of principal components to select for representing the data can be made by considering 

the portion of total variance of the data that they explain. This is called the cumulative explained 

variance. Details on the theory of PCA relevant to spectrum analysis in the scope of this project are 

given in (Vikman 2023). 

a) b) c) 

a) b) c) 
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2. Methods 

2.1. The Data Sets 

A series of data sets were generated for the purposes of PRICOMOB. These can be conveniently divided 

into those based around an LaBr detector system and an NaI detector system. The data sets were 

based upon actual data into which synthetic data was then inserted. For the LaBr system, the base 

data was from a static scanning system and for the NaI base data, the data was obtained from a mobile 

measurement system. The LaBr detector was a 1.5” standard detector and the NaI detector was a 4 l 

standard detector. The LaBr detector accrued data over 2048 channels for 600 s interval with the NaI 

detector accruing data every second over 1024 channels. For the NaI data set, point sources of Xe-133, 

Cs-134, Ir-192, Am-241, Ra-226, Co-60, I-131 and Cs-137 were simulated as passing the detector at 

distances of 4 m, 8 m, 12 m, 16 m, 20 m, 24 m and 28 m resulting in steadily weaker signals. The 

passage of the source in front of the detector was over a time of 10 s.  The simulated data was then 

added to the actual data. For the LaBr data set, point sources of Ba-133, Xe-133, Cs-134, I-131, Am-

241, Co-60 and Cs-137 were simulated as passing in front of the detector at distances of 40 cm, 120 

cm, 200 cm, 280 cm, 360 cm and 480 cm resulting in decreasing signals with distance.  

 

Figure 6. Mobile track, from south Svanvik to north Kirkenes (blue line). Red dot  in the middle 

of the track indicate the radioactive source postion. Map produced by ustin the online service 

GPS Visualizer tool (https://www.gpsvisualizer.com/map_input). 
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Figure 7. Selection of spectral records from the LaBr base data set (channels 0 to 1000) with inserted 

Ba-133. 

 

Figure 8. Selection of spectral records from the NaI base data set (channels 0 to 600) with inserted Cs-

137. 
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Figure 9. Cs-137 signals in one channel as function of distance between channel 0 and 400 for the NaI 

detector.  

 

Figure 10. Ba-133 signals in one channel as function of distance between channel 0 and 400 for the NaI 

detector.  
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2.2 PCA approach I 

To apply the PCA theory into mobile gamma spectrometry it can be simplified as, the entire dataset to 

be analyzed can be seen as all the spectra recorded during one driven path, e.g. see Figure 6. Each 

channel in the spectra will be a variable of the dataset. The dataset can easily add more variables after 

the last energy channel, e.g., ROI:s of radionuclides, sum of all channels in the low energy region and 

high energy region, altitude, etc. It is of course also possible to exclude a particular part of the 

spectrum, e.g., noisy low energy channels where no interesting information might be recorded. The 

dataset must be normalized, i.e., this can be done by all channel’s being divided by the maximum 

number of counts in the spectra or normalized with live time, i.e. use counts per second instead of 

counts. It is important to normalize all spectra in the dataset the same way otherwise a biased PCA 

analysis will occur.  

In this approach we have used the NaI detector dataset described above with the inserted signals and 

these have been analyzed with the open-source program R Statistical Software (v4.3.1; R Core Team 

2021). The dataset contains 2678 recorded spectra with 1024 channels each. After the last energy 

channel, we have added the sum of counts in region of interest (ROI) for each radionuclide peak 

energy. For radionuclides emitting multiple gamma energies ROI over each energy was summarized to 

one ROI. The radionuclide ROI was background corrected by subtracting the sum of counts from similar 

ROIs above and below the radionuclide peak ROI. In total we added 9 ROI (in addition to the 8 

radionuclides listed in section 2.1. we have added 40K) variables into the dataset. First, we normalized 

the full dataset with the maxima count in the dataset, after this the ROI counts were analyzed and 

added to the dataset. These  background corrected ROIs were normalized as, a) if the value were below 

1 the ROI was set to 0 and b) for values higher than 1 the ROI number where multiplied a withing factor 

of 2 to enhance a possible detection of sources along the given path.  

In this approach we read in the simulated dataset, a, into R by the function “read.csv”, normalized the 

dataset “a<-a/max(a)”.  After this the ROIs where calculated as described below: 

Cs137ch<-(221-10):(221+10) # 137Cs peak ROI range in channels, 3Kev/ch, ch: 201-231 

HBkgCs137ch<-232:252 # 137Cs background ROI range in channels, high energy side 

LBkgCs137ch<-190:210 # 137Cs background ROI range in channels, high energy side 

Cs137ROI<-c(1:sp_n) # dummy vector to record all ROI for all spectra in the data set, 
sp_n=2678 

for (ii in 1:sp_n)Cs137ROI[ii]<-sum(a[ii,Cs137ch])-
(sum(a[ii,LBkgCs137ch])+sum(a[ii,HBkgCs137ch]))/2 # calculating net counts in ROI, tot-bkg 
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Cs137ROI[Cs137ROI<1]<-0 # if ROI value is below 1 its given a value 0  

Cs137ROI<-2*Cs137ROI # the ROI is multiplied by a weighting factor of 2 

 

After all ROIs have been calculated they are added to the dataset by the “cbind()” function, e.g. a<-

cbind(a,Cs137ROI). Finaly the PCA analysis of the dataset is performed with the “prcomp()” function, 

e.g. PCA<-prcomp(a). The results of the PCA analysis can be represented in may different ways, but we 

have choose to use the “biplot()” function that describes the results in an intuitive manner to 

understand the variations in the dataset.  We used this analyzing approach for all the simulated 

datasets.  

 

2.3 PCA based approach for monitoring measurements. 

A PCA based approach was studied for analysis of monitoring data, i.e., for data produced by stationary 

spectrometric measurements of the environment. The objective was to detect spectra containing 

peaks (or other responses) due to artificial radioactivity or radiation (Figure 11).  
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Figure 11.  Top left: Typical LaBr3(Ce) background spectra and their mean spectrum. Top right: Mean 

spectrum of background and a measurement of a Ba-133 radionuclide source. Bottom: Mean spectrum 

of background and a measurement of an x-ray source. 

 

The challenges in stationary monitoring arise from the effect of changing environmental conditions on 

the radiation situation. Such changes are, for example, rain events that flush airborne radon progeny 

down closer to the earth – and thereby closer to the detector. This causes an increase in the ambient 

dose rate – and the counting rate - at the detector location (Figure 12).  



 

16 
 

 

Figure 12.  Changes in the counting rate during rain events. The rain events show as peaks in the 

timeseries of the total count rate of the measured spectra, contrasted to another time series from a 

period of more stable environmental conditions. Each spectrum is acquired with a 10 minute 

integration time. 

 

The peaks corresponding to gamma emissions from radionuclides in the U-238 and Th-232 chains are 

also increased and become visible in the measured gamma spectra (Figure ). These peaks can be 

misinterpreted as peaks corresponding to emissions from artificial radioactivity.  An analysis algorithm 

should be able to adapt to this changing background somehow, and in so doing, be robust in the sense 

of not producing excessive false alarms due to environmental conditions. 

A review of literature provided promising candidate method for this purpose. The general method 

described in (Jolliffe 2014) and the method described in (Boardman et al. 2012) for NaI(Tl) provided 

the starting point for implementation. A similar method, also based on the reconstruction using PCs, 

is presented in (Reinhardt 2014). 
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Figure 13.  Peaks corresponding to gamma emissions from Radon progeny (grey) are visible 

during a rain event. The mean spectrum from background measurements (black) is from a 

period of no rain. 

 

A variant of the algorithm was implemented, as described in (Vikman 2023). The resulting algorithm is 

based on a so-called Fixed Feature Model (FFM). A FFM is a form of feature learning model, where the 

fixed features are extracted from a given data matrix as its principal components. The data matrix in 

this case is formed from a set of spectra of background measurements called the training data set. 

To obtain an alarm level, the statistical behavior of the extracted fixed features is examined by applying 

it on a set of spectra of background measurements called the validation data set. 

The spectra to be analysed are called the analysis data set and are analyzed for the presence of artificial 

radioactivity using a reconstruction based on the fixed features (principal components) obtained from 

the training data set. The intuition for this reconstruction is given in Section 1.2, and the details are 

found in (Vikman 2023). If the reconstruction based on these features does not explain the spectrum, 

then it is concluded that artificial radioactivity is present. 

More detail on how to form the FFM from the datasets (Figure 14) is given in the following section. 
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Figure 14.  Waterfall plot of the training, validation and analysis data sets. The training and validation 

data should contain only background measurements that exhibit natural variation. The analysis data 

set is then analysed for signs of artificial radioactivity 

 

2.4 The FFM algorithm in more detail. 

The spectral data of the environmental measurements are interpreted as data points. A dataset thus 

consists of a 2048  dimensional vectors (datapoints) for each measurement. 

The channel contents of each measurement are known to be Poisson distributed, suggesting that the 

multivariate normal distribution is a good representation of the underlaying distribution of the data 

points, provided that the number of counts in each channel is large enough to satisfy the Poisson – 

Normal approximation. 

The lowest channels of the spectra will usually exhibit noise. So only channels above a minimum 

channel are considered. To further ensure that the data points are multivariate normal distributed, the 

spectra are compacted by summing together two consecutive channel contents. This is done twice, 

resulting in 512 channel spectra. The resulting summed channel contents will be Poisson distributed, 

with summed intensity of the original channels. 

A scaling factor 𝛼 is determined using the method of least squares for each spectrum in the training, 

validation, and analysis data sets. A mean spectrum of the training data is first calculated. The 𝑖:th 

channel of the mean spectrum is the mean of the 𝑖:th channels of the 𝑛 spectra in the training data set 

Training 

Data 𝑡𝑣 

Validation 

Data 𝑣𝑤 

Analysis 

data 𝑥𝑖 
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𝜇𝑖 =
1

𝑛
∑ 𝑐𝑖

𝑖

. 

The scaling factor 𝛼𝑗  for the 𝑗:th spectrum is then 

𝛼𝑗 =
1

2
∑

𝑐𝑖𝜇𝑖

𝑐𝑖
2

𝑖

, 

where 𝑐𝑖 is counts in the 𝑖:th channel of the spectrum, and 𝜇𝑖 is the counts in the 𝑖:th channel of the 

mean spectrum as given above. By scaling each channel of the 𝑗:the spectra with the scaling factor 𝛼𝑗   

most spectra will be nearly identical. 

The compacted and scaled spectra are standardized by subtracting the mean of the training data set 

and scaling with the standard deviation of the training data for each channel of each spectrum. The 

spectra are now preprocessed for further use. The principal components are then extracted from the 

training data set using the singular value decomposition. A data matrix 𝑀 is formed, with the 

preprocessed training data points as its rows. The singular value decomposition for the data matrix 𝑀 

is 

𝑀 = 𝑈𝐿𝐴𝑇 . 

The matrix of right singular vectors 𝐴 contains the principal components of the training data as its 

columns. The principal components will capture the features contributing to the total variance of the 

training data set. The validation data set is then analyzed using the fixed features by comparing the 

difference of a data point and its reconstruction using the selected number of principal components.  

The selected number of principal components is used to form the columns of the matrix 𝑉. The 

reconstruction is made by forming the projection matrix 𝐵 = 𝑉𝑇𝑉. The difference between the original 

data point 𝑥 and its reconstruction 𝐵𝑥 is then the Euclidean distance 

‖𝐵𝑥 − 𝑥‖, 

and is here called the residual. 

It is shown in (Vikman 2023) that the theoretical distribution of the residuals for Hermitian matrices 𝐵 

and random vectors 𝑥 is a shifted Tracy – Windom distribution. The Tracy – Widom distribution can be 

approximated accurately using a shifted gamma distribution. By fitting the theoretical distribution onto 

a histogram of the residuals of the validation data, an alarm level can be established by finding the p-

value corresponding to the prescribed false alarm probability. 
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When the FFM is then applied on the analysis data, an alarm is raised if the alarm level is exceeded by 

a residual. This signals that the spectrum being analyzed contains something else than the fixed 

features extracted from the training data. 

2.5 The FFM algorithm summary 

The algorithm can be summarized as 

1. Preprocess the training (𝑡𝑣), validation (𝑣𝑤) and analysis (𝑥𝑖) data sets 

a. Remove channels under prescribed minimum channel. 

b. Compact (summation of adjacent channels) the spectra two times. 

c. Apply LSQ scaling to the spectra. 

d. Standardize the spectra (subtract mean and scale by standard deviation). 

 

2. Determine PCs from the training data (𝑡𝑣) using SVD. 

a. Form the data matrix 𝑀 from the preprocessed vectors 𝑡𝑣. 

b. Form 𝑉, the principal component matrix from a selected number of right singular 

vectors of 𝑀. 

c. Form 𝐵 = 𝑉𝑇𝑉, the projection matrix. 

 

3. Determine the alarm level from the validation data. 

a. Represent validation data using PCs (calculate 𝐵𝑣𝑤 for each validation data point 

𝑣𝑤). 

b. Histogram the Euclidean distances ‖𝐵𝑣𝑤 − 𝑣𝑤‖ 

c. Fit the gamma distribution to the histogram. 

d. Find the p-value corresponding to given probability of false positives. 

 

4. Analyze the spectra in the analysis data 

a. Represent validation data using PCs (calculate 𝐵𝑥𝑖 for each analysis data point 𝑥𝑖). 

b. Calculate the Euclidean distances ‖𝐵𝑥𝑖 − 𝑥𝑖‖. 

c. If the distance ‖𝐵𝑥𝑖 − 𝑥𝑖‖ exceeds alarm level, raise alarm. 

For each step, the details are given in (Vikman 2023). 

The source code of a java language implementation of the FFM algorithm is found in an appendix of 

(Vikman 2023), and will be made available at https://github.com/StukFi. 

 

3 Results and Discussion 
 

3.1 PCA analysis of NaI dataset, PCA approach I 

There are many ways to represent PCA results, and we present a way that we believe are intuitive and 

easy to use and understand. We are searching/looking for spectrum in the dataset that show some 

peculiar features not easy to detect by other means than PCA analysis, i.e. a “small” peak(s) origin from 

a source present along the path of the mobile track. In figures 15 and 16 an example of representation 

https://github.com/StukFi
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of the PCA analysis is given. In the appendix it can be found a complementary set of figures showing 

the PCA analysis for each simulated set, focused on the last detectable and also given example when 

the PCA code used in this project could not identify any source along the path. In table 1 the results 

are summarized for all datasets. In our analysis all cases with radionuclides placed up to 16 m from the 

road could be detected, and for the 134Cs source detection out to 28 m was possible, see Figure 15.  

 

Figure 15.  Example of PCA analysis using the biplot() function, black text gives the A followed 

with the spectra, rea number and arows gives the channels showing largest variation. To the 

left the mobile path (see figure 1) without any source, i.e. showing the variation of the 

background counts. To the right, the same path with a 137Cs placed 4 m from the road. It is 

easily seen which spectra where we have 137Cs (records A1301 to A1310). These analyses were 

done without any ROI applied.  

-0.10 -0.05 0.00 0.05

-0
.1

0
-0

.0
5

0
.0

0
0
.0

5

PC1

P
C

2

A1

A2

A3
A4

A5

A6A7

A8

A9

A10

A11

A12A13

A14
A15

A16

A17

A18A19

A20

A21

A22
A23

A24
A25

A26

A27

A28

A29

A30
A31

A32A33

A34
A35

A36

A37

A38

A39

A40
A41A42

A43
A44

A45

A46

A47

A48

A49

A50

A51

A52
A53

A54

A55
A56

A57

A58

A59

A60

A61

A62

A63

A64

A65

A66

A67

A68

A69

A70

A71

A72

A73

A74

A75

A76

A77

A78

A79A80

A81

A82

A83

A84

A85

A86

A87

A88

A89

A90

A91

A92

A93

A94

A95A96

A97

A98

A99

A100

A101

A102

A103

A104

A105
A106

A107

A108A109

A110

A111

A112

A113

A114

A115

A116
A117

A118

A119

A120

A121

A122

A123A124

A125

A126

A127

A128

A129

A130

A131

A132

A133

A134

A135

A136

A137

A138

A139

A140

A141

A142

A143

A144

A145

A146

A147

A148

A149

A150

A151

A152

A153

A154

A155

A156A157

A158

A159

A160

A161

A162A163

A164

A165

A166
A167

A168

A169

A170

A171

A172

A173

A174

A175
A176

A177

A178

A179

A180

A181
A182

A183

A184

A185

A186

A187

A188

A189

A190
A191

A192

A193

A194

A195

A196A197

A198

A199A200

A201

A202

A203

A204

A205

A206

A207

A208

A209

A210

A211

A212

A213
A214

A215

A216

A217

A218

A219

A220
A221

A222
A223

A224

A225

A226

A227

A228

A229

A230

A231

A232

A233

A234

A235

A236A237

A238

A239

A240

A241

A242

A243

A244

A245

A246

A247

A248

A249

A250

A251

A252

A253

A254

A255

A256

A257

A258

A259

A260A261

A262

A263

A264

A265

A266

A267

A268

A269

A270

A271

A272

A273

A274

A275

A276

A277

A278 A279

A280

A281

A282

A283

A284

A285

A286

A287

A288

A289

A290

A291

A292

A293

A294

A295

A296

A297

A298

A299

A300

A301

A302

A303

A304

A305

A306

A307

A308

A309

A310
A311

A312

A313

A314
A315

A316A317
A318A319

A320

A321

A322

A323

A324

A325

A326
A327

A328A329

A330

A331A332

A333

A334

A335

A336

A337A338

A339

A340

A341

A342

A343

A344

A345

A346A347
A348

A349

A350

A351

A352
A353

A354

A355

A356

A357

A358
A359

A360

A361

A362

A363

A364

A365

A366

A367A368

A369

A370

A371
A372

A373

A374

A375

A376

A377

A378

A379

A380

A381

A382

A383

A384

A385

A386

A387

A388

A389

A390

A391

A392

A393A394

A395

A396

A397

A398

A399

A400

A401

A402

A403

A404

A405

A406

A407A408

A409

A410

A411

A412

A413
A414

A415

A416

A417

A418

A419

A420A421

A422

A423

A424
A425

A426

A427
A428

A429

A430

A431

A432

A433

A434

A435

A436

A437
A438

A439

A440

A441

A442A443

A444

A445

A446

A447

A448

A449

A450

A451
A452

A453

A454

A455

A456

A457

A458

A459

A460A461

A462

A463

A464

A465

A466

A467

A468

A469

A470

A471

A472A473

A474

A475

A476A477

A478

A479

A480

A481

A482A483

A484

A485

A486

A487

A488

A489

A490

A491

A492
A493

A494A495

A496

A497

A498

A499

A500

A501

A502

A503

A504

A505

A506

A507

A508

A509

A510

A511

A512

A513

A514

A515

A516

A517

A518

A519

A520

A521

A522

A523

A524

A525

A526

A527

A528

A529

A530

A531

A532

A533

A534

A535

A536

A537

A538

A539

A540

A541

A542

A543
A544

A545

A546

A547 A548

A549

A550

A551

A552

A553

A554

A555

A556

A557

A558

A559

A560

A561
A562

A563

A564

A565

A566

A567

A568

A569

A570

A571

A572

A573

A574

A575

A576

A577

A578

A579

A580

A581

A582

A583

A584

A585

A586

A587

A588

A589

A590

A591

A592
A593

A594

A595

A596

A597

A598

A599

A600

A601A602

A603

A604

A605
A606

A607

A608

A609

A610

A611
A612

A613

A614

A615

A616

A617

A618

A619

A620

A621

A622

A623

A624

A625

A626

A627

A628

A629
A630

A631

A632

A633

A634

A635

A636

A637

A638

A639

A640
A641

A642A643

A644A645

A646

A647

A648

A649

A650

A651

A652

A653

A654

A655

A656

A657

A658

A659

A660

A661

A662

A663

A664

A665

A666

A667

A668

A669

A670

A671

A672

A673

A674

A675

A676

A677

A678

A679

A680

A681

A682

A683

A684

A685

A686A687

A688

A689

A690

A691

A692

A693

A694

A695

A696

A697

A698

A699

A700
A701

A702

A703
A704

A705

A706
A707

A708A709

A710

A711

A712

A713

A714

A715

A716

A717

A718

A719

A720

A721

A722

A723

A724

A725

A726

A727

A728

A729

A730

A731

A732

A733

A734

A735

A736

A737

A738

A739

A740

A741

A742A743

A744

A745

A746

A747A748
A749A750

A751

A752

A753
A754

A755
A756

A757

A758

A759

A760

A761

A762

A763

A764A765

A766

A767

A768

A769

A770

A771A772

A773

A774

A775

A776

A777

A778

A779

A780

A781

A782

A783
A784

A785

A786

A787A788

A789

A790

A791

A792

A793

A794
A795

A796

A797

A798

A799
A800

A801

A802

A803

A804

A805A806
A807

A808

A809

A810A811

A812

A813

A814
A815

A816

A817

A818

A819

A820

A821

A822A823

A824

A825

A826

A827

A828

A829

A830

A831

A832

A833

A834

A835

A836

A837
A838

A839

A840

A841

A842

A843

A844
A845

A846

A847

A848

A849

A850
A851

A852

A853

A854A855

A856

A857

A858

A859

A860

A861

A862

A863A864

A865

A866

A867

A868

A869

A870

A871

A872

A873

A874

A875

A876A877
A878
A879A880

A881

A882

A883

A884

A885

A886
A887

A888

A889

A890
A891

A892
A893

A894

A895

A896

A897A898

A899

A900

A901
A902

A903

A904 A905

A906

A907

A908

A909
A910

A911

A912

A913
A914

A915

A916 A917

A918

A919

A920

A921
A922

A923

A924

A925

A926

A927

A928A929

A930

A931
A932

A933

A934

A935

A936

A937

A938

A939

A940

A941

A942

A943

A944

A945

A946

A947

A948

A949

A950

A951

A952

A953

A954

A955

A956

A957

A958A959

A960A961

A962
A963

A964
A965

A966

A967

A968

A969

A970

A971

A972

A973

A974

A975

A976

A977

A978

A979

A980

A981

A982

A983

A984

A985

A986

A987

A988

A989A990

A991

A992

A993

A994

A995

A996

A997

A998
A999

A1000

A1001

A1002

A1003

A1004

A1005

A1006

A1007

A1008

A1009

A1010

A1011

A1012

A1013
A1014

A1015 A1016

A1017

A1018

A1019
A1020

A1021

A1022

A1023

A1024

A1025

A1026
A1027

A1028

A1029
A1030A1031

A1032
A1033

A1034

A1035
A1036

A1037A1038

A1039

A1040

A1041
A1042

A1043

A1044

A1045

A1046

A1047

A1048

A1049

A1050

A1051

A1052
A1053

A1054

A1055

A1056

A1057

A1058

A1059

A1060

A1061

A1062

A1063

A1064

A1065

A1066

A1067
A1068

A1069

A1070

A1071

A1072

A1073

A1074

A1075

A1076A1077

A1078

A1079

A1080
A1081

A1082

A1083A1084

A1085

A1086

A1087

A1088
A1089

A1090

A1091
A1092

A1093A1094

A1095

A1096

A1097

A1098

A1099

A1100A1101

A1102

A1103

A1104A1105

A1106
A1107

A1108

A1109A1110

A1111

A1112

A1113

A1114

A1115

A1116

A1117

A1118
A1119

A1120

A1121

A1122
A1123

A1124
A1125

A1126

A1127

A1128

A1129A1130A1131

A1132

A1133

A1134

A1135

A1136

A1137

A1138

A1139

A1140

A1141

A1142A1143
A1144

A1145
A1146

A1147
A1148

A1149

A1150

A1151

A1152
A1153

A1154

A1155

A1156

A1157

A1158

A1159

A1160

A1161

A1162

A1163

A1164

A1165

A1166

A1167

A1168

A1169

A1170

A1171

A1172

A1173

A1174

A1175

A1176
A1177

A1178

A1179

A1180

A1181

A1182

A1183

A1184
A1185

A1186

A1187

A1188
A1189

A1190

A1191

A1192

A1193A1194

A1195

A1196A1197

A1198

A1199

A1200

A1201

A1202

A1203A1204

A1205

A1206

A1207
A1208

A1209

A1210

A1211

A1212

A1213

A1214

A1215

A1216

A1217

A1218

A1219

A1220

A1221

A1222

A1223

A1224A1225

A1226

A1227

A1228

A1229

A1230

A1231

A1232
A1233

A1234
A1235

A1236
A1237

A1238
A1239

A1240

A1241

A1242

A1243

A1244

A1245

A1246

A1247
A1248

A1249

A1250

A1251

A1252 A1253
A1254

A1255

A1256

A1257

A1258

A1259
A1260

A1261

A1262

A1263

A1264

A1265

A1266

A1267

A1268

A1269

A1270

A1271

A1272

A1273

A1274

A1275

A1276

A1277

A1278
A1279

A1280

A1281

A1282

A1283

A1284

A1285

A1286

A1287

A1288

A1289A1290

A1291

A1292

A1293

A1294

A1295

A1296

A1297

A1298

A1299

A1300

A1301

A1302

A1303

A1304A1305
A1306

A1307

A1308

A1309

A1310

A1311

A1312A1313

A1314

A1315

A1316

A1317
A1318

A1319
A1320

A1321

A1322

A1323

A1324

A1325
A1326

A1327

A1328

A1329

A1330

A1331

A1332

A1333

A1334

A1335

A1336
A1337

A1338

A1339

A1340

A1341

A1342

A1343A1344

A1345A1346

A1347

A1348A1349

A1350

A1351
A1352

A1353

A1354

A1355A1356

A1357A1358A1359

A1360

A1361

A1362

A1363

A1364

A1365

A1366
A1367

A1368

A1369

A1370
A1371

A1372

A1373

A1374

A1375

A1376

A1377

A1378

A1379

A1380

A1381A1382

A1383

A1384
A1385

A1386
A1387

A1388

A1389

A1390

A1391
A1392

A1393

A1394

A1395

A1396
A1397

A1398

A1399

A1400

A1401

A1402

A1403

A1404A1405

A1406

A1407

A1408

A1409

A1410
A1411

A1412

A1413
A1414

A1415

A1416

A1417

A1418

A1419

A1420

A1421

A1422

A1423

A1424

A1425

A1426

A1427

A1428

A1429

A1430

A1431

A1432

A1433
A1434

A1435

A1436

A1437

A1438

A1439

A1440

A1441

A1442
A1443

A1444

A1445

A1446

A1447

A1448

A1449

A1450

A1451

A1452

A1453

A1454

A1455

A1456

A1457

A1458

A1459

A1460

A1461

A1462

A1463

A1464

A1465A1466

A1467

A1468

A1469

A1470

A1471A1472

A1473

A1474

A1475

A1476

A1477

A1478

A1479A1480

A1481A1482

A1483

A1484A1485

A1486

A1487

A1488

A1489

A1490

A1491

A1492

A1493

A1494A1495A1496

A1497

A1498

A1499

A1500

A1501

A1502

A1503

A1504

A1505A1506

A1507

A1508

A1509

A1510
A1511

A1512

A1513
A1514

A1515

A1516

A1517
A1518

A1519

A1520

A1521

A1522

A1523

A1524
A1525

A1526

A1527

A1528

A1529
A1530

A1531

A1532

A1533

A1534

A1535

A1536

A1537

A1538

A1539

A1540

A1541

A1542

A1543

A1544

A1545

A1546

A1547

A1548

A1549

A1550

A1551

A1552

A1553

A1554
A1555

A1556

A1557

A1558A1559

A1560

A1561

A1562

A1563

A1564

A1565

A1566

A1567

A1568

A1569

A1570

A1571

A1572

A1573

A1574

A1575

A1576

A1577

A1578

A1579

A1580

A1581

A1582

A1583

A1584

A1585

A1586
A1587

A1588

A1589

A1590
A1591

A1592

A1593

A1594

A1595A1596
A1597

A1598

A1599

A1600A1601

A1602

A1603A1604

A1605

A1606
A1607

A1608

A1609

A1610

A1611

A1612

A1613

A1614

A1615

A1616

A1617

A1618

A1619

A1620

A1621

A1622

A1623

A1624

A1625

A1626

A1627

A1628

A1629

A1630

A1631

A1632

A1633A1634

A1635

A1636

A1637

A1638

A1639

A1640

A1641A1642

A1643A1644
A1645

A1646

A1647

A1648

A1649

A1650A1651
A1652

A1653A1654

A1655

A1656

A1657A1658A1659
A1660

A1661

A1662

A1663

A1664

A1665
A1666

A1667

A1668

A1669

A1670

A1671

A1672

A1673

A1674

A1675

A1676

A1677

A1678A1679

A1680
A1681

A1682

A1683

A1684

A1685

A1686

A1687

A1688

A1689

A1690

A1691

A1692

A1693

A1694

A1695

A1696

A1697

A1698

A1699

A1700

A1701

A1702

A1703

A1704

A1705

A1706

A1707

A1708

A1709

A1710

A1711

A1712

A1713

A1714

A1715

A1716

A1717

A1718

A1719
A1720

A1721

A1722

A1723

A1724

A1725A1726

A1727

A1728

A1729

A1730

A1731

A1732
A1733

A1734

A1735

A1736

A1737

A1738

A1739

A1740
A1741

A1742
A1743

A1744

A1745

A1746

A1747

A1748

A1749

A1750A1751

A1752

A1753

A1754A1755

A1756

A1757

A1758

A1759

A1760

A1761

A1762

A1763A1764

A1765

A1766

A1767

A1768A1769

A1770

A1771

A1772

A1773

A1774

A1775

A1776

A1777

A1778

A1779

A1780

A1781

A1782

A1783

A1784
A1785

A1786

A1787

A1788A1789

A1790

A1791

A1792

A1793

A1794

A1795

A1796

A1797

A1798

A1799

A1800

A1801

A1802A1803

A1804

A1805

A1806

A1807

A1808

A1809A1810

A1811

A1812

A1813

A1814

A1815

A1816

A1817

A1818

A1819

A1820

A1821

A1822

A1823
A1824

A1825
A1826

A1827A1828

A1829

A1830

A1831A1832

A1833A1834

A1835
A1836

A1837

A1838

A1839
A1840
A1841

A1842
A1843

A1844

A1845

A1846

A1847

A1848

A1849

A1850

A1851
A1852

A1853

A1854

A1855

A1856

A1857

A1858

A1859

A1860

A1861

A1862

A1863

A1864

A1865

A1866

A1867

A1868
A1869

A1870

A1871

A1872

A1873

A1874

A1875

A1876

A1877

A1878

A1879

A1880

A1881

A1882

A1883

A1884

A1885

A1886
A1887

A1888

A1889

A1890

A1891
A1892A1893

A1894

A1895

A1896

A1897A1898

A1899

A1900

A1901
A1902

A1903

A1904

A1905

A1906

A1907

A1908

A1909A1910

A1911

A1912

A1913

A1914

A1915

A1916

A1917

A1918

A1919
A1920

A1921
A1922A1923

A1924

A1925

A1926

A1927

A1928

A1929

A1930A1931

A1932

A1933

A1934

A1935

A1936
A1937

A1938

A1939

A1940

A1941

A1942

A1943

A1944

A1945

A1946

A1947

A1948

A1949

A1950
A1951

A1952

A1953A1954

A1955

A1956

A1957
A1958

A1959

A1960
A1961

A1962

A1963

A1964

A1965

A1966

A1967

A1968

A1969
A1970

A1971

A1972

A1973

A1974

A1975

A1976

A1977

A1978

A1979

A1980

A1981

A1982
A1983

A1984

A1985

A1986

A1987

A1988

A1989

A1990

A1991A1992A1993
A1994

A1995

A1996

A1997

A1998

A1999

A2000

A2001

A2002

A2003

A2004

A2005

A2006

A2007

A2008

A2009

A2010

A2011

A2012

A2013

A2014

A2015

A2016

A2017

A2018

A2019

A2020

A2021

A2022

A2023

A2024

A2025

A2026

A2027

A2028

A2029

A2030

A2031

A2032

A2033

A2034

A2035

A2036

A2037

A2038

A2039A2040

A2041

A2042

A2043

A2044

A2045

A2046

A2047
A2048

A2049

A2050

A2051

A2052

A2053

A2054

A2055A2056

A2057

A2058

A2059

A2060

A2061

A2062

A2063

A2064

A2065

A2066
A2067

A2068

A2069

A2070

A2071

A2072

A2073

A2074

A2075
A2076

A2077

A2078

A2079

A2080

A2081

A2082A2083

A2084

A2085

A2086

A2087

A2088

A2089

A2090

A2091
A2092

A2093

A2094

A2095
A2096

A2097

A2098

A2099

A2100

A2101

A2102

A2103

A2104

A2105

A2106

A2107

A2108

A2109

A2110

A2111

A2112

A2113

A2114

A2115

A2116

A2117

A2118

A2119

A2120

A2121A2122

A2123

A2124

A2125A2126

A2127

A2128

A2129

A2130

A2131

A2132

A2133

A2134

A2135

A2136A2137

A2138

A2139

A2140

A2141
A2142

A2143

A2144

A2145

A2146

A2147

A2148

A2149

A2150

A2151

A2152

A2153

A2154

A2155

A2156

A2157

A2158

A2159

A2160

A2161

A2162

A2163

A2164

A2165

A2166

A2167

A2168

A2169

A2170

A2171
A2172

A2173

A2174

A2175

A2176

A2177

A2178

A2179

A2180

A2181

A2182

A2183

A2184

A2185

A2186

A2187

A2188

A2189

A2190

A2191

A2192

A2193

A2194
A2195

A2196

A2197

A2198

A2199

A2200

A2201

A2202

A2203

A2204

A2205

A2206

A2207

A2208
A2209

A2210

A2211

A2212

A2213

A2214

A2215

A2216
A2217

A2218

A2219

A2220

A2221

A2222

A2223

A2224

A2225

A2226

A2227

A2228

A2229

A2230

A2231

A2232

A2233A2234

A2235

A2236

A2237

A2238

A2239

A2240

A2241

A2242

A2243

A2244

A2245

A2246

A2247A2248

A2249

A2250

A2251

A2252

A2253

A2254

A2255

A2256

A2257

A2258

A2259

A2260

A2261A2262

A2263

A2264

A2265

A2266
A2267

A2268

A2269

A2270

A2271

A2272

A2273

A2274

A2275

A2276

A2277

A2278

A2279

A2280A2281A2282

A2283

A2284

A2285

A2286

A2287

A2288

A2289

A2290

A2291

A2292

A2293

A2294

A2295

A2296

A2297

A2298

A2299

A2300

A2301

A2302

A2303A2304

A2305

A2306

A2307

A2308

A2309
A2310

A2311

A2312

A2313

A2314

A2315

A2316

A2317

A2318

A2319

A2320

A2321

A2322
A2323

A2324

A2325

A2326

A2327
A2328

A2329

A2330

A2331

A2332

A2333

A2334A2335

A2336

A2337

A2338

A2339
A2340

A2341

A2342

A2343

A2344

A2345

A2346

A2347

A2348

A2349

A2350

A2351

A2352

A2353

A2354

A2355

A2356

A2357

A2358

A2359

A2360
A2361

A2362

A2363

A2364

A2365

A2366

A2367

A2368

A2369

A2370

A2371

A2372

A2373

A2374

A2375

A2376

A2377

A2378

A2379

A2380

A2381

A2382

A2383

A2384

A2385

A2386

A2387

A2388

A2389

A2390

A2391
A2392

A2393

A2394
A2395

A2396

A2397A2398

A2399

A2400

A2401

A2402

A2403

A2404

A2405

A2406

A2407
A2408

A2409

A2410

A2411

A2412

A2413

A2414

A2415A2416

A2417

A2418

A2419A2420

A2421

A2422

A2423

A2424

A2425

A2426A2427

A2428

A2429

A2430

A2431

A2432

A2433

A2434

A2435

A2436

A2437
A2438

A2439

A2440

A2441

A2442

A2443

A2444

A2445

A2446

A2447

A2448

A2449

A2450

A2451

A2452

A2453

A2454
A2455

A2456

A2457

A2458

A2459

A2460
A2461

A2462

A2463

A2464

A2465

A2466

A2467

A2468A2469
A2470

A2471

A2472

A2473

A2474A2475

A2476

A2477

A2478

A2479

A2480

A2481

A2482

A2483

A2484

A2485

A2486

A2487

A2488

A2489

A2490

A2491

A2492

A2493

A2494

A2495

A2496

A2497

A2498

A2499

A2500

A2501

A2502

A2503

A2504A2505

A2506

A2507

A2508
A2509

A2510

A2511

A2512

A2513

A2514

A2515

A2516

A2517

A2518

A2519

A2520

A2521

A2522

A2523

A2524

A2525

A2526

A2527

A2528

A2529

A2530

A2531

A2532

A2533

A2534

A2535

A2536

A2537

A2538

A2539

A2540

A2541

A2542

A2543

A2544

A2545

A2546

A2547

A2548A2549

A2550

A2551

A2552

A2553

A2554

A2555
A2556

A2557

A2558

A2559

A2560

A2561

A2562

A2563

A2564

A2565

A2566

A2567

A2568

A2569

A2570

A2571

A2572
A2573

A2574A2575

A2576

A2577

A2578
A2579

A2580

A2581

A2582

A2583

A2584
A2585

A2586

A2587
A2588

A2589

A2590

A2591

A2592

A2593

A2594

A2595

A2596

A2597

A2598

A2599

A2600

A2601

A2602

A2603

A2604

A2605

A2606

A2607

A2608A2609

A2610

A2611

A2612

A2613

A2614

A2615

A2616

A2617

A2618

A2619

A2620

A2621

A2622

A2623

A2624

A2625
A2626

A2627

A2628

A2629

A2630A2631

A2632

A2633

A2634

A2635

A2636

A2637

A2638

A2639

A2640

A2641

A2642

A2643

A2644

A2645

A2646

A2647

A2648

A2649

A2650

A2651

A2652A2653

A2654

A2655

A2656

A2657

A2658

A2659

A2660
A2661

A2662

A2663

A2664

A2665

A2666

A2667

A2668

A2669

A2670

A2671

A2672

A2673

A2674

A2675

A2676

A2677

A2678

A2679

-4 -2 0 2

-4
-2

0
2

Ch_00Ch_01Ch_02Ch_03Ch_04Ch_05Ch_06Ch_07
Ch_08

Ch_09Ch_10Ch_11
Ch_12

Ch_13Ch_14Ch_15

Ch_16
Ch_17

Ch_18

Ch_19

Ch_20

Ch_21

Ch_22
Ch_23

Ch_24
Ch_25

Ch_26

Ch_27

Ch_28

Ch_29

Ch_30

Ch_31

Ch_32

Ch_33

Ch_34

Ch_35

Ch_36
Ch_37Ch_38Ch_39

Ch_40

Ch_41

Ch_42

Ch_43Ch_44
Ch_45

Ch_46

Ch_47Ch_48

Ch_49
Ch_50Ch_51

Ch_52
Ch_53

Ch_54Ch_55

Ch_56

Ch_57
Ch_58

Ch_59
Ch_60

Ch_61
Ch_62Ch_63
Ch_64

Ch_65Ch_66

Ch_67

Ch_68

Ch_69Ch_70Ch_71

Ch_72
Ch_73

Ch_74Ch_75
Ch_76Ch_77
Ch_78

Ch_79
Ch_80Ch_81Ch_82
Ch_83Ch_84Ch_85Ch_86Ch_87

Ch_88

Ch_89Ch_90
Ch_91

Ch_92
Ch_93Ch_94
Ch_95

Ch_96Ch_97Ch_98
Ch_99Ch_100Ch_101Ch_102Ch_103

Ch_104Ch_105Ch_106
Ch_107
Ch_108Ch_109Ch_110Ch_111Ch_112

Ch_113Ch_114Ch_115
Ch_116

Ch_117Ch_118Ch_119Ch_120Ch_121Ch_122Ch_123
Ch_124
Ch_125Ch_126
Ch_127Ch_128Ch_129Ch_130Ch_131
Ch_132Ch_133Ch_134Ch_135Ch_136Ch_137Ch_138Ch_139Ch_140Ch_141Ch_142Ch_143Ch_144Ch_145Ch_146Ch_147Ch_148Ch_149

Ch_150Ch_151Ch_152
Ch_153Ch_154Ch_155Ch_156Ch_157

Ch_158
Ch_159Ch_160Ch_161Ch_162Ch_163Ch_164Ch_165Ch_166Ch_167Ch_168Ch_169Ch_170Ch_171Ch_172Ch_173Ch_174Ch_175Ch_176Ch_177Ch_178Ch_179Ch_180

Ch_181Ch_182Ch_183
Ch_184
Ch_185Ch_186Ch_187Ch_188Ch_189Ch_190Ch_191Ch_192Ch_193Ch_194Ch_195Ch_196Ch_197Ch_198Ch_199
Ch_200

Ch_201Ch_202Ch_203Ch_204Ch_205Ch_206Ch_207Ch_208Ch_209Ch_210Ch_211
Ch_212Ch_213Ch_214Ch_215Ch_216
Ch_217Ch_218Ch_219
Ch_220Ch_221Ch_222Ch_223Ch_224Ch_225
Ch_226Ch_227Ch_228
Ch_229Ch_230Ch_231Ch_232Ch_233Ch_234Ch_235Ch_236Ch_237Ch_238Ch_239Ch_240
Ch_241
Ch_242Ch_243Ch_244Ch_245Ch_246Ch_247Ch_248Ch_249Ch_250Ch_251Ch_252Ch_253Ch_254Ch_255
Ch_256
Ch_257
Ch_258Ch_259Ch_260Ch_261Ch_262Ch_263Ch_264Ch_265Ch_266Ch_267Ch_268Ch_269Ch_270Ch_271Ch_272Ch_273
Ch_274
Ch_275Ch_276Ch_277Ch_278
Ch_279Ch_280Ch_281Ch_282Ch_283Ch_284Ch_285Ch_286Ch_287Ch_288Ch_289Ch_290Ch_291Ch_292Ch_293Ch_294Ch_295Ch_296Ch_297Ch_298Ch_299Ch_300Ch_301Ch_302Ch_303Ch_304Ch_305Ch_306Ch_307Ch_308Ch_309Ch_310Ch_311Ch_312Ch_313Ch_314Ch_315Ch_316Ch_317Ch_318Ch_319Ch_320Ch_321Ch_322Ch_323Ch_324Ch_325Ch_326Ch_327Ch_328Ch_329Ch_330Ch_331Ch_332Ch_333Ch_334Ch_335Ch_336Ch_337Ch_338Ch_339Ch_340Ch_341Ch_342Ch_343Ch_344Ch_345Ch_346Ch_347Ch_348Ch_349Ch_350Ch_351Ch_352Ch_353Ch_354Ch_355Ch_356Ch_357Ch_358Ch_359Ch_360Ch_361Ch_362Ch_363Ch_364Ch_365Ch_366Ch_367Ch_368Ch_369Ch_370Ch_371Ch_372Ch_373Ch_374Ch_375Ch_376Ch_377Ch_378Ch_379Ch_380Ch_381Ch_382Ch_383Ch_384Ch_385Ch_386Ch_387Ch_388Ch_389Ch_390Ch_391Ch_392Ch_393Ch_394Ch_395Ch_396Ch_397Ch_398Ch_399Ch_400Ch_401Ch_402Ch_403Ch_404Ch_405Ch_406Ch_407Ch_408Ch_409Ch_410Ch_411Ch_412Ch_413Ch_414Ch_415Ch_416Ch_417Ch_418Ch_419Ch_420Ch_421Ch_422Ch_423Ch_424Ch_425Ch_426Ch_427Ch_428Ch_429Ch_430Ch_431Ch_432Ch_433Ch_434Ch_435Ch_436Ch_437Ch_438Ch_439Ch_440Ch_441Ch_442Ch_443Ch_444Ch_445Ch_446Ch_447Ch_448Ch_449Ch_450Ch_451Ch_452Ch_453Ch_454Ch_455Ch_456Ch_457Ch_458Ch_459Ch_460Ch_461Ch_462Ch_463Ch_464Ch_465Ch_466Ch_467Ch_468Ch_469Ch_470Ch_471Ch_472Ch_473Ch_474Ch_475Ch_476Ch_477Ch_478Ch_479Ch_480Ch_481Ch_482Ch_483Ch_484Ch_485Ch_486Ch_487Ch_488Ch_489Ch_490Ch_491Ch_492Ch_493Ch_494Ch_495Ch_496Ch_497Ch_498Ch_499Ch_500Ch_501Ch_502Ch_503Ch_504Ch_505Ch_506Ch_507Ch_508Ch_509Ch_510Ch_511Ch_512Ch_513Ch_514Ch_515Ch_516Ch_517Ch_518Ch_519Ch_520Ch_521Ch_522Ch_523Ch_524Ch_525Ch_526Ch_527Ch_528Ch_529Ch_530Ch_531Ch_532Ch_533Ch_534Ch_535Ch_536Ch_537Ch_538Ch_539Ch_540Ch_541Ch_542Ch_543Ch_544Ch_545Ch_546Ch_547Ch_548Ch_549Ch_550Ch_551Ch_552Ch_553Ch_554Ch_555Ch_556Ch_557Ch_558Ch_559Ch_560Ch_561Ch_562Ch_563Ch_564Ch_565Ch_566Ch_567Ch_568Ch_569Ch_570Ch_571Ch_572Ch_573Ch_574Ch_575Ch_576Ch_577Ch_578Ch_579Ch_580Ch_581Ch_582Ch_583Ch_584Ch_585Ch_586Ch_587Ch_588Ch_589Ch_590Ch_591Ch_592Ch_593Ch_594Ch_595Ch_596Ch_597Ch_598Ch_599Ch_600Ch_601Ch_602Ch_603Ch_604Ch_605Ch_606Ch_607Ch_608Ch_609Ch_610Ch_611Ch_612Ch_613Ch_614Ch_615Ch_616Ch_617Ch_618Ch_619Ch_620Ch_621Ch_622Ch_623Ch_624Ch_625Ch_626Ch_627Ch_628Ch_629Ch_630Ch_631Ch_632Ch_633Ch_634Ch_635Ch_636Ch_637Ch_638Ch_639Ch_640Ch_641Ch_642Ch_643Ch_644Ch_645Ch_646Ch_647Ch_648Ch_649Ch_650Ch_651Ch_652Ch_653Ch_654Ch_655Ch_656Ch_657Ch_658Ch_659Ch_660Ch_661Ch_662Ch_663Ch_664Ch_665Ch_666Ch_667Ch_668Ch_669Ch_670Ch_671Ch_672Ch_673Ch_674Ch_675Ch_676Ch_677Ch_678Ch_679Ch_680Ch_681Ch_682Ch_683Ch_684Ch_685Ch_686Ch_687Ch_688Ch_689Ch_690Ch_691Ch_692Ch_693Ch_694Ch_695Ch_696Ch_697Ch_698Ch_699Ch_700Ch_701Ch_702Ch_703Ch_704Ch_705Ch_706Ch_707Ch_708Ch_709Ch_710Ch_711Ch_712Ch_713Ch_714Ch_715Ch_716Ch_717Ch_718Ch_719Ch_720Ch_721Ch_722Ch_723Ch_724Ch_725Ch_726Ch_727Ch_728Ch_729Ch_730Ch_731Ch_732Ch_733Ch_734Ch_735Ch_736Ch_737Ch_738Ch_739Ch_740Ch_741Ch_742Ch_743Ch_744Ch_745Ch_746Ch_747Ch_748Ch_749Ch_750Ch_751Ch_752Ch_753Ch_754Ch_755Ch_756Ch_757Ch_758Ch_759Ch_760Ch_761Ch_762Ch_763Ch_764Ch_765Ch_766Ch_767Ch_768Ch_769Ch_770Ch_771Ch_772Ch_773Ch_774Ch_775Ch_776Ch_777Ch_778Ch_779Ch_780Ch_781Ch_782Ch_783Ch_784Ch_785Ch_786Ch_787Ch_788Ch_789Ch_790Ch_791Ch_792Ch_793Ch_794Ch_795Ch_796Ch_797Ch_798Ch_799Ch_800Ch_801Ch_802Ch_803Ch_804Ch_805Ch_806Ch_807Ch_808Ch_809Ch_810Ch_811Ch_812Ch_813Ch_814Ch_815Ch_816Ch_817Ch_818Ch_819Ch_820Ch_821Ch_822Ch_823Ch_824Ch_825Ch_826Ch_827Ch_828Ch_829Ch_830Ch_831Ch_832Ch_833Ch_834Ch_835Ch_836Ch_837Ch_838Ch_839Ch_840Ch_841Ch_842Ch_843Ch_844Ch_845Ch_846Ch_847Ch_848Ch_849Ch_850Ch_851Ch_852Ch_853Ch_854Ch_855Ch_856Ch_857Ch_858Ch_859Ch_860Ch_861Ch_862Ch_863Ch_864Ch_865Ch_866Ch_867Ch_868Ch_869Ch_870Ch_871Ch_872Ch_873Ch_874Ch_875Ch_876Ch_877Ch_878Ch_879Ch_880Ch_881Ch_882Ch_883Ch_884Ch_885Ch_886Ch_887Ch_888Ch_889Ch_890Ch_891Ch_892Ch_893Ch_894Ch_895Ch_896Ch_897Ch_898Ch_899Ch_900Ch_901Ch_902Ch_903Ch_904Ch_905Ch_906Ch_907Ch_908Ch_909Ch_910Ch_911Ch_912Ch_913Ch_914Ch_915Ch_916Ch_917Ch_918Ch_919Ch_920Ch_921Ch_922Ch_923Ch_924Ch_925Ch_926Ch_927Ch_928Ch_929Ch_930Ch_931Ch_932Ch_933Ch_934Ch_935Ch_936Ch_937Ch_938Ch_939Ch_940Ch_941Ch_942Ch_943Ch_944Ch_945Ch_946Ch_947Ch_948Ch_949Ch_950Ch_951Ch_952Ch_953Ch_954Ch_955Ch_956Ch_957Ch_958Ch_959Ch_960Ch_961Ch_962Ch_963Ch_964Ch_965Ch_966Ch_967Ch_968Ch_969Ch_970Ch_971Ch_972Ch_973Ch_974Ch_975Ch_976Ch_977Ch_978Ch_979Ch_980Ch_981Ch_982Ch_983Ch_984Ch_985Ch_986Ch_987Ch_988Ch_989Ch_990Ch_991Ch_992Ch_993Ch_994Ch_995Ch_996Ch_997Ch_998Ch_999Ch_1000Ch_1001Ch_1002Ch_1003Ch_1004Ch_1005Ch_1006Ch_1007Ch_1008Ch_1009Ch_1010Ch_1011Ch_1012Ch_1013Ch_1014Ch_1015Ch_1016Ch_1017Ch_1018Ch_1019Ch_1020Ch_1021Ch_1022

-0.1 0.0 0.1 0.2 0.3 0.4

-0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

PC1

P
C

2

A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18A19A20A21A22A23A24A25A26A27A28A29A30A31A32A33A34A35A36
A37A38A39A40A41A42A43A44A45A46A47A48A49A50A51A52A53A54A55A56A57A58A59A60
A61

A62A63A64
A65A66A67A68A69A70A71A72A73A74A75A76A77A78A79A80A81A82A83A84A85
A86A87A88A89A90A91A92A93A94A95A96A97A98A99A100A101A102

A103
A104A105A106A107A108A109A110A111A112A113A114A115A116A117A118A119A120A121A122A123A124A125A126A127
A128
A129A130A131A132A133A134A135A136A137A138A139A140A141

A142A143A144A145A146A147A148A149A150A151A152A153A154A155A156A157A158A159A160A161A162A163A164A165A166A167A168A169A170A171A172A173A174A175A176A177A178A179A180A181A182A183A184A185A186A187A188A189A190A191A192A193A194A195A196A197A198A199A200A201A202A203A204A205A206A207A208A209A210A211A212A213A214A215A216A217A218A219A220A221A222A223A224A225A226A227A228A229A230A231A232A233A234A235A236A237A238A239A240A241A242A243A244A245A246A247A248A249A250
A251
A252A253
A254A255A256A257A258A259A260A261A262A263A264A265A266A267A268A269A270A271A272A273A274A275A276A277A278A279A280A281A282A283A284

A285
A286A287A288A289A290A291A292A293A294A295A296A297A298A299

A300A301A302A303A304A305A306A307A308A309A310A311A312A313A314A315A316A317A318A319A320A321A322A323A324A325A326A327
A328A329A330A331A332A333A334A335A336A337A338A339A340A341A342A343A344A345A346A347A348A349A350A351A352A353A354

A355A356A357
A358A359A360A361A362A363A364A365A366A367A368
A369A370A371A372A373A374A375A376A377A378A379A380A381A382A383A384A385A386A387A388A389A390A391A392A393A394A395A396
A397

A398A399A400
A401A402A403

A404A405A406A407A408A409
A410

A411A412A413A414A415A416A417A418A419A420A421A422A423A424A425A426A427A428A429A430A431A432A433A434A435A436A437A438A439A440A441A442
A443A444A445A446A447A448A449A450A451A452A453A454A455A456A457A458A459A460A461A462A463A464A465A466A467A468A469A470A471A472A473A474A475A476A477A478
A479A480A481A482A483A484A485A486A487A488A489A490A491

A492A493A494A495A496A497A498A499A500A501A502A503A504A505A506A507A508A509A510A511A512A513A514A515A516A517A518A519A520A521A522A523A524A525A526A527A528A529A530A531A532A533
A534

A535A536A537A538A539A540
A541A542A543
A544A545A546A547A548A549A550A551A552A553A554A555A556A557A558A559A560A561A562A563A564A565A566A567A568A569A570A571A572A573A574A575A576

A577
A578A579A580A581A582A583A584A585A586A587A588A589A590A591A592A593A594A595A596A597A598A599A600A601A602A603A604A605
A606A607A608A609A610A611A612A613A614A615A616

A617A618A619A620A621
A622A623A624A625A626A627A628A629A630A631A632A633A634A635A636A637

A638A639A640A641A642A643A644A645A646
A647

A648A649A650A651A652A653A654A655A656
A657A658A659A660A661A662A663A664A665A666A667A668A669A670A671
A672

A673A674A675A676A677A678A679A680A681A682A683A684A685A686A687A688A689A690
A691A692A693A694A695A696A697A698A699A700
A701
A702A703A704A705A706A707A708A709A710A711A712A713A714A715A716A717A718

A719A720A721A722A723A724A725A726A727
A728A729A730A731A732A733A734A735A736A737

A738A739A740A741A742A743A744A745A746A747A748A749A750A751A752A753A754A755A756A757A758A759A760A761A762A763A764A765A766A767A768A769
A770A771A772A773A774A775A776A777A778A779A780A781A782A783A784A785A786A787A788A789A790A791A792A793A794A795A796A797A798A799A800A801A802A803A804A805A806A807A808A809A810A811A812A813A814A815A816A817A818A819A820A821A822A823A824A825A826A827A828A829A830A831

A832
A833A834A835A836A837A838A839A840A841A842A843A844A845A846A847A848A849A850A851A852A853A854A855A856A857A858A859A860A861A862A863A864A865A866A867 A868A869A870A871

A872A873A874A875A876A877A878A879A880A881A882A883A884A885A886A887A888A889A890A891A892A893A894A895A896A897
A898A899A900A901

A902A903A904A905A906A907A908A909A910A911A912A913
A914A915A916A917A918A919A920A921A922A923A924

A925A926A927A928A929A930A931A932A933A934A935A936A937A938A939A940A941A942A943A944A945A946A947A948A949A950
A951A952A953A954A955A956A957A958A959A960A961A962A963A964A965A966A967A968A969A970A971A972A973A974

A975A976A977A978A979A980A981A982A983A984
A985
A986A987A988A989A990
A991A992A993A994A995A996A997A998A999A1000A1001A1002A1003A1004A1005A1006A1007A1008A1009A1010A1011A1012A1013A1014A1015A1016A1017

A1018
A1019A1020A1021A1022A1023A1024A1025A1026A1027A1028A1029A1030A1031A1032A1033A1034A1035A1036A1037A1038

A1039A1040A1041A1042A1043A1044A1045A1046A1047A1048A1049A1050A1051A1052A1053A1054A1055A1056A1057A1058A1059A1060A1061A1062A1063A1064A1065A1066A1067A1068A1069A1070
A1071A1072A1073A1074A1075A1076A1077A1078A1079A1080A1081A1082A1083A1084A1085A1086A1087A1088A1089A1090A1091A1092A1093A1094A1095A1096A1097A1098A1099A1100A1101A1102A1103A1104A1105A1106A1107A1108A1109A1110A1111A1112A1113A1114A1115A1116A1117A1118
A1119A1120A1121A1122A1123A1124A1125A1126A1127A1128

A1129A1130A1131A1132A1133A1134A1135A1136A1137A1138A1139A1140A1141A1142A1143A1144A1145A1146A1147A1148A1149A1150A1151A1152A1153A1154A1155A1156A1157A1158A1159A1160A1161A1162A1163A1164A1165A1166A1167A1168A1169A1170A1171A1172A1173A1174A1175
A1176

A1177A1178A1179A1180A1181A1182A1183A1184A1185A1186
A1187A1188A1189A1190A1191A1192

A1193A1194A1195A1196A1197A1198A1199A1200A1201A1202A1203A1204A1205A1206A1207A1208A1209A1210A1211A1212A1213A1214A1215A1216A1217A1218A1219A1220A1221A1222A1223A1224A1225A1226A1227A1228A1229A1230A1231A1232
A1233A1234A1235A1236A1237A1238A1239
A1240A1241A1242A1243A1244A1245A1246A1247A1248A1249A1250A1251A1252A1253A1254A1255

A1256
A1257A1258A1259A1260A1261A1262A1263A1264A1265A1266A1267A1268A1269A1270A1271A1272A1273A1274A1275A1276A1277A1278A1279A1280A1281

A1282
A1283A1284A1285A1286

A1287A1288A1289A1290A1291A1292
A1293

A1294A1295A1296A1297A1298A1299A1300

A1301

A1302

A1303

A1304

A1305A1306

A1307

A1308

A1309

A1310

A1311A1312A1313A1314A1315A1316A1317A1318A1319A1320A1321A1322A1323A1324A1325A1326A1327A1328A1329A1330A1331A1332A1333A1334A1335A1336A1337A1338A1339A1340A1341A1342A1343A1344A1345A1346A1347A1348A1349A1350A1351A1352A1353A1354A1355A1356A1357A1358A1359
A1360A1361A1362A1363A1364A1365A1366A1367A1368A1369A1370A1371A1372A1373A1374A1375A1376A1377A1378A1379A1380A1381A1382A1383A1384A1385A1386A1387A1388A1389A1390A1391A1392A1393A1394A1395A1396A1397A1398A1399A1400A1401A1402A1403A1404A1405A1406A1407A1408A1409A1410A1411A1412A1413A1414A1415

A1416
A1417
A1418A1419A1420A1421A1422A1423A1424A1425

A1426A1427A1428A1429A1430A1431A1432A1433A1434A1435A1436A1437A1438A1439A1440A1441A1442A1443A1444A1445A1446A1447A1448
A1449A1450A1451A1452A1453A1454A1455A1456A1457A1458A1459A1460A1461A1462A1463A1464A1465A1466A1467A1468A1469A1470

A1471A1472A1473A1474A1475A1476
A1477A1478A1479A1480A1481A1482A1483A1484A1485A1486

A1487A1488A1489A1490A1491A1492A1493A1494A1495A1496A1497A1498
A1499A1500A1501A1502A1503A1504A1505A1506A1507A1508A1509A1510A1511

A1512
A1513A1514A1515A1516A1517

A1518A1519A1520A1521A1522A1523
A1524A1525A1526A1527

A1528A1529A1530A1531A1532A1533A1534A1535A1536A1537A1538A1539A1540A1541
A1542

A1543A1544A1545A1546A1547A1548
A1549A1550A1551A1552A1553A1554A1555

A1556A1557A1558A1559A1560
A1561
A1562

A1563A1564A1565
A1566A1567A1568
A1569


A1677
A1678A1679A1680A1681A1682A1683A1684A1685A1686A1687

A1688A1689A1690A1691A1692A1693A1694A1695A1696A1697A1698A1699A1700
A1701A1702A1703 A1704 A1705A1706A1707A1708A1709A1710A1711A1712A1713A1714

A1715A1716A1717A1718
A1719

A1720A1721A1722A1723A1724A1725A1726A1727A1728A1729A1730A1731A1732A1733A1734A1735A1736A1737A1738A1739
A1740

A1741A1742A1743A1744A1745
A1746A1747
A1748A1749A1750A1751A1752A1753A1754A1755A1756A1757A1758A1759A1760A1761A1762A1763A1764A1765A1766A1767A1768A1769A1770A1771A1772A1773A1774A1775A1776A1777A1778A1779A1780A1781A1782A1783A1784A1785A1786A1787A1788A1789A1790A1791A1792A1793A1794A1795A1796A1797A1798A1799A1800A1801A1802A1803A1804A1805A1806A1807A1808A1809

A1810A1811A1812A1813A1814A1815A1816A1817A1818A1819A1820A1821A1822
A1823A1824A1825A1826

A1827A1828A1829A1830A1831A1832A1833A1834A1835A1836
A1837
A1838A1839A1840A1841A1842A1843A1844A1845A1846A1847A1848A1849A1850A1851A1852A1853A1854A1855

A1856A1857A1858A1859A1860A1861A1862A1863A1864A1865A1866A1867A1868A1869A1870A1871A1872A1873A1874A1875A1876A1877A1878A1879A1880A1881A1882A1883A1884A1885A1886A1887A1888
A1889

A1890A1891A1892A1893
A1894

A1895A1896A1897A1898
A1899A1900A1901A1902A1903A1904A1905A1906A1907A1908A1909A1910A1911A1912A1913A1914A1915A1916A1917A1918A1919A1920A1921A1922A1923A1924A1925

A1926A1927A1928A1929A1930A1931A1932A1933A1934A1935A1936A1937A1938A1939A1940A1941A1942A1943A1944A1945A1946A1947A1948
A1949A1950A1951A1952A1953A1954A1955A1956A1957A1958A1959A1960A1961A1962A1963A1964

A1965A1966A1967A1968A1969A1970A1971
A1972A1973A1974A1975A1976A1977A1978A1979A1980A1981A1982A1983A1984A1985A1986A1987A1988A1989A1990A1991
A1992

A1993A1994A1995A1996A1997A1998A1999A2000A2001A2002A2003A2004A2005A2006A2007A2008A2009A2010A2011A2012
A2013A2014A2015A2016A2017A2018
A2019A2020A2021A2022A2023A2024A2025A2026A2027A2028A2029A2030A2031A2032A2033A2034A2035A2036A2037A2038A2039A2040
A2041A2042A2043A2044A2045A2046A2047

A2048A2049A2050A2051A2052A2053A2054
A2055A2056A2057A2058A2059A2060A2061A2062A2063A2064A2065A2066A2067A2068A2069A2070A2071A2072A2073

A2074
A2075A2076A2077A2078

A2079A2080A2081A2082A2083A2084A2085A2086A2087A2088A2089A2090A2091A2092A2093A2094A2095A2096A2097A2098A2099A2100A2101A2102A2103A2104A2105A2106A2107A2108A2109A2110A2111A2112
A2113A2114A2115A2116A2117A2118A2119A2120A2121A2122A2123A2124A2125A2126A2127A2128A2129A2130

A2131A2132A2133A2134A2135A2136A2137A2138A2139A2140A2141A2142A2143A2144
A2145A2146A2147A2148A2149A2150A2151A2152

A2153A2154
A2155A2156A2157A2158A2159A2160

A2161A2162A2163A2164A2165A2166A2167A2168
A2169A2170A2171A2172A2173A2174A2175A2176A2177A2178A2179A2180A2181A2182A2183A2184A2185A2186A2187A2188A2189A2190A2191A2192A2193A2194A2195A2196A2197A2198A2199A2200A2201A2202A2203A2204A2205A2206A2207A2208

A2209
A2210

A2211A2212A2213A2214A2215A2216A2217A2218A2219A2220A2221A2222A2223A2224A2225A2226A2227A2228A2229A2230A2231A2232A2233A2234A2235A2236A2237A2238A2239A2240A2241A2242A2243A2244A2245A2246A2247
A2248A2249A2250A2251A2252

A2253
A2254A2255A2256
A2257A2258A2259A2260A2261

A2262A2263A2264A2265A2266A2267A2268A2269A2270A2271A2272A2273A2274A2275A2276A2277A2278A2279A2280A2281A2282A2283
A2284A2285
A2286A2287
A2288A2289A2290A2291A2292

A2293
A2294A2295A2296

A2297A2298A2299A2300A2301A2302A2303A2304A2305A2306A2307A2308A2309
A2310

A2311A2312
A2313

A2314A2315A2316A2317
A2318

A2319A2320A2321A2322A2323A2324A2325A2326
A2327A2328A2329A2330A2331A2332A2333A2334A2335A2336

A2337
A2338A2339A2340
A2341A2342A2343A2344A2345A2346A2347A2348A2349A2350A2351A2352A2353A2354A2355A2356A2357A2358A2359A2360A2361A2362

A2363
A2364A2365A2366A2367A2368

A2369A2370A2371A2372A2373A2374A2375A2376A2377A2378
A2379A2380A2381A2382A2383

A2384A2385A2386A2387A2388A2389A2390A2391A2392A2393A2394A2395A2396A2397A2398A2399A2400A2401A2402A2403A2404A2405A2406A2407A2408A2409A2410A2411A2412
A2413A2414A2415A2416A2417A2418

A2419A2420A2421A2422A2423A2424A2425A2426A2427A2428A2429A2430A2431A2432A2433A2434A2435
A2436A2437A2438A2439A2440A2441A2442A2443A2444A2445A2446A2447
A2448A2449A2450A2451A2452A2453A2454A2455A2456A2457A2458A2459A2460A2461A2462A2463A2464A2465A2466A2467
A2468A2469A2470A2471A2472A2473A2474A2475A2476
A2477A2478A2479A2480A2481A2482A2483
A2484A2485A2486A2487A2488A2489A2490A2491A2492A2493A2494A2495A2496A2497A2498
A2499A2500A2501A2502A2503A2504A2505A2506A2507A2508A2509A2510A2511A2512A2513A2514A2515A2516A2517A2518A2519

A2520A2521A2522A2523A2524A2525A2526A2527A2528A2529A2530A2531A2532A2533A2534A2535A2536A2537A2538A2539
A2540A2541A2542A2543A2544A2545A2546A2547A2548A2549A2550

A2551A2552A2553A2554A2555A2556A2557A2558A2559A2560A2561
A2562A2563A2564A2565

A2566A2567A2568A2569A2570A2571A2572A2573A2574A2575A2576A2577A2578A2579A2580A2581A2582A2583A2584A2585A2586A2587A2588
A2589A2590A2591A2592A2593A2594A2595A2596A2597A2598A2599A2600A2601A2602A2603A2604A2605A2606A2607A2608
A2609A2610A2611A2612A2613A2614A2615A2616A2617A2618A2619

A2620A2621A2622A2623A2624A2625A2626A2627A2628
A2629
A2630A2631A2632A2633A2634A2635A2636

A2637A2638A2639A2640A2641A2642A2643A2644A2645A2646A2647A2648A2649
A2650A2651A2652A2653A2654
A2655A2656

A2657A2658A2659A2660A2661A2662
A2663
A2664A2665A2666A2667A2668A2669A2670A2671
A2672

A2673A2674A2675A2676A2677A2678A2679

-2 0 2 4 6 8

-2
0

2
4

6
8

Ch_00Ch_01Ch_02Ch_03Ch_04Ch_05Ch_06Ch_07Ch_08Ch_09Ch_10Ch_11
Ch_12Ch_13Ch_14Ch_15Ch_16Ch_17Ch_18Ch_19Ch_20Ch_21Ch_22Ch_23

Ch_24Ch_25Ch_26Ch_27Ch_28Ch_29Ch_30Ch_31Ch_32Ch_33Ch_34Ch_35Ch_36Ch_37Ch_38Ch_39
Ch_40

Ch_41Ch_42
Ch_43
Ch_44Ch_45
Ch_46Ch_47Ch_48Ch_49Ch_50Ch_51

Ch_52Ch_53Ch_54Ch_55Ch_56Ch_57Ch_58Ch_59Ch_60Ch_61Ch_62Ch_63Ch_64Ch_65Ch_66Ch_67Ch_68Ch_69Ch_70Ch_71Ch_72Ch_73Ch_74Ch_75Ch_76Ch_77Ch_78Ch_79Ch_80Ch_81Ch_82Ch_83Ch_84Ch_85Ch_86Ch_87Ch_88
Ch_89Ch_90Ch_91Ch_92Ch_93Ch_94Ch_95Ch_96Ch_97Ch_98Ch_99Ch_100Ch_101Ch_102Ch_103Ch_104Ch_105Ch_106Ch_107Ch_108Ch_109Ch_110Ch_111Ch_112Ch_113Ch_114Ch_115Ch_116Ch_117Ch_118Ch_119Ch_120Ch_121Ch_122Ch_123Ch_124Ch_125Ch_126Ch_127Ch_128Ch_129Ch_130Ch_131Ch_132Ch_133Ch_134Ch_135Ch_136Ch_137Ch_138Ch_139Ch_140Ch_141Ch_142Ch_143Ch_144Ch_145Ch_146Ch_147Ch_148Ch_149Ch_150Ch_151Ch_152Ch_153Ch_154Ch_155Ch_156Ch_157Ch_158Ch_159Ch_160Ch_161Ch_162Ch_163Ch_164Ch_165Ch_166Ch_167Ch_168Ch_169Ch_170Ch_171Ch_172Ch_173Ch_174Ch_175Ch_176Ch_177Ch_178Ch_179Ch_180Ch_181Ch_182Ch_183Ch_184Ch_185Ch_186Ch_187Ch_188Ch_189Ch_190Ch_191Ch_192Ch_193Ch_194Ch_195Ch_196Ch_197Ch_198Ch_199Ch_200Ch_201Ch_202Ch_203Ch_204

Ch_205
Ch_206Ch_207
Ch_208Ch_209

Ch_210Ch_211

Ch_212Ch_213Ch_214

Ch_215
Ch_216
Ch_217
Ch_218Ch_219Ch_220Ch_221
Ch_222
Ch_223
Ch_224Ch_225Ch_226

Ch_227Ch_228
Ch_229
Ch_230Ch_231Ch_232Ch_233Ch_234Ch_235Ch_236Ch_237Ch_238Ch_239Ch_240Ch_241Ch_242Ch_243Ch_244Ch_245Ch_246Ch_247Ch_248Ch_249Ch_250Ch_251Ch_252Ch_253Ch_254Ch_255Ch_256Ch_257Ch_258Ch_259Ch_260Ch_261Ch_262Ch_263Ch_264Ch_265Ch_266Ch_267Ch_268Ch_269Ch_270Ch_271Ch_272Ch_273Ch_274Ch_275Ch_276Ch_277Ch_278Ch_279Ch_280Ch_281Ch_282Ch_283Ch_284Ch_285Ch_286Ch_287Ch_288Ch_289Ch_290Ch_291Ch_292Ch_293Ch_294Ch_295Ch_296Ch_297Ch_298Ch_299Ch_300Ch_301Ch_302Ch_303Ch_304Ch_305Ch_306Ch_307Ch_308Ch_309Ch_310Ch_311Ch_312Ch_313Ch_314Ch_315Ch_316Ch_317Ch_318Ch_319Ch_320Ch_321Ch_322Ch_323Ch_324Ch_325Ch_326Ch_327Ch_328Ch_329Ch_330Ch_331Ch_332Ch_333Ch_334Ch_335Ch_336Ch_337Ch_338Ch_339Ch_340Ch_341Ch_342Ch_343Ch_344Ch_345Ch_346Ch_347Ch_348Ch_349Ch_350Ch_351Ch_352Ch_353Ch_354Ch_355Ch_356Ch_357Ch_358Ch_359Ch_360Ch_361Ch_362Ch_363Ch_364Ch_365Ch_366Ch_367Ch_368Ch_369Ch_370Ch_371Ch_372Ch_373Ch_374Ch_375Ch_376Ch_377Ch_378Ch_379Ch_380Ch_381Ch_382Ch_383Ch_384Ch_385Ch_386Ch_387Ch_388Ch_389Ch_390Ch_391Ch_392Ch_393Ch_394Ch_395Ch_396Ch_397Ch_398Ch_399Ch_400Ch_401Ch_402Ch_403Ch_404Ch_405Ch_406Ch_407Ch_408Ch_409Ch_410Ch_411Ch_412Ch_413Ch_414Ch_415Ch_416Ch_417Ch_418Ch_419Ch_420Ch_421Ch_422Ch_423Ch_424Ch_425Ch_426Ch_427Ch_428Ch_429Ch_430Ch_431Ch_432Ch_433Ch_434Ch_435Ch_436Ch_437Ch_438Ch_439Ch_440Ch_441Ch_442Ch_443Ch_444Ch_445Ch_446Ch_447Ch_448Ch_449Ch_450Ch_451Ch_452Ch_453Ch_454Ch_455Ch_456Ch_457Ch_458Ch_459Ch_460Ch_461Ch_462Ch_463Ch_464Ch_465Ch_466Ch_467Ch_468Ch_469Ch_470Ch_471Ch_472Ch_473Ch_474Ch_475Ch_476Ch_477Ch_478Ch_479Ch_480Ch_481Ch_482Ch_483Ch_484Ch_485Ch_486Ch_487Ch_488Ch_489Ch_490Ch_491Ch_492Ch_493Ch_494Ch_495Ch_496Ch_497Ch_498Ch_499Ch_500Ch_501Ch_502Ch_503Ch_504Ch_505Ch_506Ch_507Ch_508Ch_509Ch_510Ch_511Ch_512Ch_513Ch_514Ch_515Ch_516Ch_517Ch_518Ch_519Ch_520Ch_521Ch_522Ch_523Ch_524Ch_525Ch_526Ch_527Ch_528Ch_529Ch_530Ch_531Ch_532Ch_533Ch_534Ch_535Ch_536Ch_537Ch_538Ch_539Ch_540Ch_541Ch_542Ch_543Ch_544Ch_545Ch_546Ch_547Ch_548Ch_549Ch_550Ch_551Ch_552Ch_553Ch_554Ch_555Ch_556Ch_557Ch_558Ch_559Ch_560Ch_561Ch_562Ch_563Ch_564Ch_565Ch_566Ch_567Ch_568Ch_569Ch_570Ch_571Ch_572Ch_573Ch_574Ch_575Ch_576Ch_577Ch_578Ch_579Ch_580Ch_581Ch_582Ch_583Ch_584Ch_585Ch_586Ch_587Ch_588Ch_589Ch_590Ch_591Ch_592Ch_593Ch_594Ch_595Ch_596Ch_597Ch_598Ch_599Ch_600Ch_601Ch_602Ch_603Ch_604Ch_605Ch_606Ch_607Ch_608Ch_609Ch_610Ch_611Ch_612Ch_613Ch_614Ch_615Ch_616Ch_617Ch_618Ch_619Ch_620Ch_621Ch_622Ch_623Ch_624Ch_625Ch_626Ch_627Ch_628Ch_629Ch_630Ch_631Ch_632Ch_633Ch_634Ch_635Ch_636Ch_637Ch_638Ch_639Ch_640Ch_641Ch_642Ch_643Ch_644Ch_645Ch_646Ch_647Ch_648Ch_649Ch_650Ch_651Ch_652Ch_653Ch_654Ch_655Ch_656Ch_657Ch_658Ch_659Ch_660Ch_661Ch_662Ch_663Ch_664Ch_665Ch_666Ch_667Ch_668Ch_669Ch_670Ch_671Ch_672Ch_673Ch_674Ch_675Ch_676Ch_677Ch_678Ch_679Ch_680Ch_681Ch_682Ch_683Ch_684Ch_685Ch_686Ch_687Ch_688Ch_689Ch_690Ch_691Ch_692Ch_693Ch_694Ch_695Ch_696Ch_697Ch_698Ch_699Ch_700Ch_701Ch_702Ch_703Ch_704Ch_705Ch_706Ch_707Ch_708Ch_709Ch_710Ch_711Ch_712Ch_713Ch_714Ch_715Ch_716Ch_717Ch_718Ch_719Ch_720Ch_721Ch_722Ch_723Ch_724Ch_725Ch_726Ch_727Ch_728Ch_729Ch_730Ch_731Ch_732Ch_733Ch_734Ch_735Ch_736Ch_737Ch_738Ch_739Ch_740Ch_741Ch_742Ch_743Ch_744Ch_745Ch_746Ch_747Ch_748Ch_749Ch_750Ch_751Ch_752Ch_753Ch_754Ch_755Ch_756Ch_757Ch_758Ch_759Ch_760Ch_761Ch_762Ch_763Ch_764Ch_765Ch_766Ch_767Ch_768Ch_769Ch_770Ch_771Ch_772Ch_773Ch_774Ch_775Ch_776Ch_777Ch_778Ch_779Ch_780Ch_781Ch_782Ch_783Ch_784Ch_785Ch_786Ch_787Ch_788Ch_789Ch_790Ch_791Ch_792Ch_793Ch_794Ch_795Ch_796Ch_797Ch_798Ch_799Ch_800Ch_801Ch_802Ch_803Ch_804Ch_805Ch_806Ch_807Ch_808Ch_809Ch_810Ch_811Ch_812Ch_813Ch_814Ch_815Ch_816Ch_817Ch_818Ch_819Ch_820Ch_821Ch_822Ch_823Ch_824Ch_825Ch_826Ch_827Ch_828Ch_829Ch_830Ch_831Ch_832Ch_833Ch_834Ch_835Ch_836Ch_837Ch_838Ch_839Ch_840Ch_841Ch_842Ch_843Ch_844Ch_845Ch_846Ch_847Ch_848Ch_849Ch_850Ch_851Ch_852Ch_853Ch_854Ch_855Ch_856Ch_857Ch_858Ch_859Ch_860Ch_861Ch_862Ch_863Ch_864Ch_865Ch_866Ch_867Ch_868Ch_869Ch_870Ch_871Ch_872Ch_873Ch_874Ch_875Ch_876Ch_877Ch_878Ch_879Ch_880Ch_881Ch_882Ch_883Ch_884Ch_885Ch_886Ch_887Ch_888Ch_889Ch_890Ch_891Ch_892Ch_893Ch_894Ch_895Ch_896Ch_897Ch_898Ch_899Ch_900Ch_901Ch_902Ch_903Ch_904Ch_905Ch_906Ch_907Ch_908Ch_909Ch_910Ch_911Ch_912Ch_913Ch_914Ch_915Ch_916Ch_917Ch_918Ch_919Ch_920Ch_921Ch_922Ch_923Ch_924Ch_925Ch_926Ch_927Ch_928Ch_929Ch_930Ch_931Ch_932Ch_933Ch_934Ch_935Ch_936Ch_937Ch_938Ch_939Ch_940Ch_941Ch_942Ch_943Ch_944Ch_945Ch_946Ch_947Ch_948Ch_949Ch_950Ch_951Ch_952Ch_953Ch_954Ch_955Ch_956Ch_957Ch_958Ch_959Ch_960Ch_961Ch_962Ch_963Ch_964Ch_965Ch_966Ch_967Ch_968Ch_969Ch_970Ch_971Ch_972Ch_973Ch_974Ch_975Ch_976Ch_977Ch_978Ch_979Ch_980Ch_981Ch_982Ch_983Ch_984Ch_985Ch_986Ch_987Ch_988Ch_989Ch_990Ch_991Ch_992Ch_993Ch_994Ch_995Ch_996Ch_997Ch_998Ch_999Ch_1000Ch_1001Ch_1002Ch_1003Ch_1004Ch_1005Ch_1006Ch_1007Ch_1008Ch_1009Ch_1010Ch_1011Ch_1012Ch_1013Ch_1014Ch_1015Ch_1016Ch_1017Ch_1018Ch_1019Ch_1020Ch_1021Ch_1022



 

22 
 

 

Figure 16.  The 137Cs data set with the source 4 m from the road. To the left the total counts in each 

spectrum along the track showing how the background count are changing with factor of more than 3. 

Middle the PCA component 1, i.e. the component explaining most of the variation in the data set, in 

this case clear inverse relationship between background and PCA comp 1 can be seen and its not easy 

to detect the 137Cs source. To the right the PCA component 2 that show the deviation in the spectra 

A1301 to A1310 clearly the presence of the source. 

 

 

Table 1.  PCA analysis of source identification using NaI detector. Table contains the 56 (8 different 

radionuclides at 7 distances datasets simulated. Green means that the PCA analysis found the right 

radionuclide and identified in which spectra detections was done. Light green indicates that a week 

signal could be detected but in a clear identification in which spectra. White square means that the 

PCA in this setup could not be detected. 
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Figure 17. Biplot of the PCA analysis of the dataset containing a 134Cs source placed 28 m from the road. 

The spectra A637 is a false positive result, however the records A1301-A1309 are correct identified. 

 

3.2 Results on the FFM algorithm on monitoring data 

The FFM algorithm of section 2.3 was tested by Vikman (2023) on monitoring data from two 

spectrometric dose rate monitoring stations – Nuorgam and Rovaniemi. The Rovaniemi station is an 

air sampling station, and the spectrometer monitors the sample while its being collected. The Nuorgam 

station is an in-situ spectrometer making direct measurements of the environment. The spectrometer 

used at both stations is a 1.5” LaBr3(Ce) scintillator. Both spectrometers produce 2048 channel pulse 

height distributions. The integration time of the measurements is 10 minutes. 
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 The data from these stations were used as is to form the training data set and the validation data set. 

The analysis data set was formed from another portion of the measurement data by adding synthetic 

spectral responses of selected radionuclides to the measurements. The data set sizes used are given 

in Table  2. The parameters for the algorithm used in the testing are given in Table 3. The number of 

principal components to use in the reconstruction was selected based on the cumulative explained 

variance. 

 

Station Training data size Validation data size Analysis data size 

Rovaniemi 19 716 8 451 28 168 

Nuorgam 19 841 8504 28 346 

 

Table 2. Data set sizes for the testing of the FFM algorithm. 

 

Parameter value Comment 

Number of compactions 2 Results in a 512 channel 

spectrum 

Number of principal 

components 

9 Increase in cumulative 

explained variance is negligible 

beyond 9 of the largest PCs 

(Error! Reference source not 

found.). 

False alarm probability 7.7e-6 Corresponds to one false alarm 

per month from 30 stations. 

Minimum channel 44 Corresponds to energy of ~46 

keV. 

 

Table 3.  Parameters used in the testing of the FFM algorithm. 
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Figure 18. Variance of the PCs as the function of the PC number for the Nuorgam validation 

data. Figure from (Vikman 2023). 

The activities for the synthetic spectral responses added to the validation data set are given in Table 

4. Ten responses of each activity were added to background measurements, to study the effect of the 

background on the detection. 

The synthetic responses were generated by adding Gaussian peaks and Compton continuums 

corresponding to radionuclide emissions onto the spectra. The Gaussian peaks were generated based 

on a reference area specified for one peak corresponding to given emission. The sizes of the other 

peaks of the response are then calculated based on nuclide data – gamma and x-ray yields – and the 

efficiency calibration. The efficiency calibration used in generating the spectral responses is the 

computational calibration presented in Dowdall et. al (2022). The Compton continuum shape is formed 

using the Klein – Nishina equation as described in Kudomi (1999). The area of the continuum was 

calculated using the reference peak area and an empirically determined peak-to-compton ratio. 

For both the Rovaniemi and Nuorgam data, the Tracy – Widom distribution is an excellent fit for the 

histograms of the residuals (Error! Reference source not found. 19). It is therefore believed that the 

prescribed false alarm rate is realized in the tests. Synthetically generated responses of the test 

radionuclides could be detected from the analysis data sets of both stations. The results are shown in 

Tables 4 and 5.  
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Table 4. The activities and detections of the synthetic spectral responses for the Rovaniemi data. 

 

 

  

Figure 19.  Left: Approximation of the Tracy – Widom (TW) distribution fitted to the histogram of 

standardised residuals of Nuorgam validation data. Right: TW approximation fitted to the histrogram 

of standardised residuals of Rovaniemi validation data. Figures from (Vikman 2023). 

Radionuclide Activity (Bq / m3) Detections (out of 10) 

Am-241 50.2 0 

100.4 2 

150.6 7 

Co-60 30.0 0 
60.0 8 

90.0 10 

Cs-134 20.9 0 
41.9 1 

62.8 10 

Cs-137 25.3 0 
50.6 0 

76.0 4 

I-131 18.1  0 
36.2 0 

54.4 4 

Xe-133 40.0  0 
80.0  0 

120.0 9 

Xe-135 13.7 0 
27.5  1 

41.2 8 
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Table 5. The activities and detections of the synthetic spectral responses for the Nuorgam data. 

 

 

The activities of the radionuclides are quite close to the detection limits of the method for the 

prescribed false alarm rate, as can be seen from the fact that the detections increase from 0 / 0 at the 

lowest activity level to almost 10/10 at the highest activity level. In the tests both datasets caused no 

false positive alarms (Figure 20). 

Radionuclide Activity (Bq / m3) Detections (out of 10) 

Am-241 49.4 0 

98.8 0 

148.2 6 

Co-60 29.5 0 
59.0 9 

88.5 10 

Cs-134 20.6 0 
41.2 0 

61.8 5 

Cs-137 24.9 0 
49.8 0 

74.7 6 

I-131 17.8  0 
35.7 0 

53.5 1 

Xe-133 39.3  0 
78.7  2 

118.1 3 

Xe-135 13.5  0 
27.0  0 

40.5 3 
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Figure 20.  Left: Standardised residuals of the Nuorgam analysis data set. Right: Standardised residuals 

of the Rovaniemi analysis data set. In both cases the synthetic responses were added to the end of the 

dataset. The alarm limit is shown as a red line. Figures from (Vikman 2023). 

4. Conclusions 

The FFM method implemented for analysis of monitoring data sets is a viable method to detect 

anomalies in spectral time series. Synthetic spectra were detected in the data sets used to test the 

method. 

The fixed features extracted from the training data, rain events and other contributions of 

environmental conditions, were taken into account by the nature of the algorithm, and false alarms 

were not produced in the tests. 

A disadvantage of the method is that a training data set is needed prior to use. The training data set 

should contain all the features and behavior that is not due to artificial radioactivity. Thus, taking the 

algorithm to use requires that an already extensive data set is available. 

Alternative ways to form the residuals used in deciding whether a measurement contains features not 

previously seen were studied only briefly. These methods were: the Mahalanobis distance and a 

modified Euclidean distance. In the modified Euclidean distance, the difference of an original channel 

content and the reconstruction only contributes to the residual if the former is higher than the latter. 

This method seemed to result in improved sensitivity for radionuclides that produce peaks, but 

reduced sensitivity for sources that produce continuums (such as x-rays). The usual Euclidean distance 

has the important advantage that the distribution of the residuals could be found. This allows the 

trade-off between false alarm rate and sensitivity to be controlled. 
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The algorithm could provide useful also for mobile data sets. Especially in a case where a background 

study is made of the area where radiation surveillance should be carried out. The underlaying 

assumptions, especially of the near normality of the channel contents, have to be fulfilled however. 
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behavior that are not due to artificial radioactivity. Alternative 

ways to form the residuals used in deciding whether a 

measurement contains features not previously seen included 

the Mahalanobis distance and a modified Euclidean distance. 

The modified Euclidean distance seemed to result in improved 

sensitivity for radionuclides that produce peaks, but reduced 

sensitivity for sources that produce continuums (such as x-
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