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Abstract 
 
This project investigates the feasibility of performing reactor physics calcu-
lations for nuclear cores using a hybrid neutron transport methodology, by 
combining deterministic and probabilistic modelling techniques. In the pre-
sented implementation, a deterministic response matrix method was de-
veloped in Matlab. The necessary probabilities appearing in the response 
matrix method were estimated in advance using a probabilistic solver – the 
Monte Carlo code Serpent2. Ultimately, the hybrid framework will combine 
the advantages of the deterministic approach (fast running calculations) 
with the ones of the probabilistic approach (high flexibility in modelling any 
geometry and high accuracy). In the response matrix method, two grids 
are used: one fine grid for estimating the scalar neutron flux and a coarse 
grid for computing the neutron currents on this grid. In this second phase 
of the project, the framework was verified and new procedures to estimate 
the required probabilities were developed. Several two-dimensional test 
cases were then developed for benchmarking the computation of such 
probabilities and for benchmarking the response matrix framework itself. 
Compared to the earlier phase of the project, the framework now provides 
very good results, with a deviation of the dominant eigenvalue smaller than 
typically 50 pcm. Concerning the spatial distribution of the flux, some ac-
ceptable agreement was also obtained, with relative deviations generally 
smaller than 5%. In some cases, though, higher discrepancies were no-
ticed. Additional investigations are necessary to identify the root cause of 
the larger observed deviations in such cases, in order to further increase 
the fidelity of the simulations. 
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1 Introduction 
 
The modelling of neutron transport problems for radiation transport purposes and nuclear 
reactor systems has long been divided into two types of approaches: the deterministic 
approach and the probabilistic approach. 
 
In the deterministic approach, the neutron transport equation is solved explicitly after reducing 
the complexity of the task at hand (typically using space-homogenization, energy-
condensation, and angular discretization techniques) (Demazière, 2013). The problem is first 
solved in a very small part of the computational domain using proper boundary conditions, 
and the solution then computed is used for transforming the problem into a problem 
encompassing a larger computational domain, at the expense of a simplification of the true 
complexity of the system. Typically, three to four of such “bottom-up” simplifications are 
used to model a full reactor core. Nevertheless, the validity of the approximations used in each 
of the computational steps are never corrected by the results of the calculations performed at 
the following computational step when a better (i.e. taking a larger computational domain into 
account) solution has been computed. Such methods are fast-running methods originally 
developed when the computing resources were limited. 
 
In the probabilistic approach, also referred to as Monte Carlo, no equation as such is solved. 
Rather, the probability of occurrence of a nuclear reaction/process of a given type on a given 
species at a given energy for a given incoming particle (which can still exist after the nuclear 
interaction) is used to sample neutron life histories throughout the system (Lux and Koblinger, 
1991). Using a very large number of such histories, the true behaviour of neutrons in the 
system can be reproduced. Due to the size and complexity of the systems usually modelled, 
Monte Carlo techniques are extremely expensive computing techniques, originally used for 
reference and shielding calculations. 
 
With the development of cheap computing resources, both the deterministic approach and the 
probabilistic approach are currently being used on massively parallel clusters to circumvent 
the limitations mentioned above. In the deterministic case, the process of averaging (“bottom-
up”) is now being complemented by a de-averaging process (“top-down”) in an interactive 
manner, so that a better modelling of the boundary conditions can be achieved using the 
information available from the coarser mesh. The modelling of full cores in one 
computational step only is also being attempted. In the probabilistic case, the use of large 
clusters allows modelling full reactor cores, and efforts are being pursued to include the 
effects induced by changes in the composition and/or density of the materials. Due to the 
complexity and level of details in the deterministic approach based on the averaging/de-
averaging process, the deterministic route has become as computationally expensive as the 
probabilistic route for high-fidelity simulations. 
 
The present project proposes to combine deterministic methods with probabilistic methods. 
The main advantage of such a hybrid route would be to lower the computational cost of the 
calculations (thanks to the use of deterministic methods) while still guaranteeing a high level 
of details and of reliability of the calculations (thanks to the use of probabilistic methods). 
A promising candidate for such a hybrid route is to use the so-called response matrix method, 
also known as the interface current method (Stacey, 2001; Stamm’ler & Abbate, 1983). This 
method is essentially a deterministic method, where two computational grids are used: one 
coarse grid for resolving the neutron currents between the thus-defined cells (assuming that 
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the neutron emission densities are known within the cells), and one finer grid for resolving 
within each cell the neutron emission densities (assuming that the neutron currents between 
cells are known). The solutions of the two grids are iteratively updated until convergence is 
reached. The application of such a method requires the prior determination of some specific 
probabilities within each cell. The prior determination of the necessary probabilities is a very 
difficult task, because of the three-dimensional nature of the problem at hand and of the 
possible geometrical complexity of the system. 
 
The feasibility of a hybrid route was investigated in a previous NKS-funded project (contract 
AFT/NKS-R(16)120/7). This project concluded that (Carbol et al., 2017): 
• It was possible to determine, using the Serpent2 Monte Carlo code (Leppänen et al., 2015), 

the collision probabilities required for applying the response matrix method. 
• A hybrid framework relying on the response matrix method could be properly developed 

and used as a workbench for further development and testing. 
Because of the large efforts developing a new computational framework represents and 
because such a developmental work is error-prone, it was decided in the first phase of the 
project to keep the system as simple as possible. With the objectives to lower the 
computational time and to have a tractable system, only two-dimensional systems 
representative of fuel assemblies having a regular lattice of fuel pins surrounded by coolant 
were thus considered during the feasibility study. This also means that the fine grid was 
chosen as made of a fuel pin and its associated coolant and the coarse grid was 
correspondingly made of the juxtaposition of such cells. 
 
The feasibility study nevertheless also demonstrated that the implementation carried out for a 
simplified two-dimensional model of a BWR fuel assembly did not lead to physically-sound 
results for the infinite multiplication factor of the system. Likewise, the space-dependence of 
the neutron flux was somehow counter-intuitive. The reason of this unexpected behaviour had 
not been found at the time of the writing of the previous report (Carbol et al., 2017). 
 
In the work performed for this contract period and reported hereafter, efforts were thus spent 
on verifying the developed framework, on correspondingly correcting possible errors, and on 
consolidating the framework. Two main actions were undertaken accordingly: 
• A single fuel assembly in an infinite lattice was considered, for which the fine grid was 

chosen as made of a fuel pin and its associated coolant and the coarse grid was 
correspondingly made of the juxtaposition of such cells. A verification of the 
implementation earlier made was carried out, together with some improvements in the 
determination of the probabilities. An assessment of various ways of estimating the 
probabilities was then performed, and some corresponding benchmarking of the computed 
probabilities executed. The solution obtained from the hybrid route was also compared to 
the full Monte Carlo solution. 

• The scalability of the hybrid method was then investigated. For that purpose, a new way to 
estimate the probabilities was developed, so that the associated computational cost could 
be lowered. Thereafter, the revised method was applied on a system of 2x2 fuel assemblies 
in an infinite lattice, for which the fine grid was either made of one fuel pin and its 
associated coolant or made of four fuel pins and their surrounding coolant regions. In both 
cases, the coarse grid was correspondingly made of the juxtaposition of such cells, and the 
hybrid solutions were compared to the full Monte Carlo solution. 
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This report is structured as follows. The essence of the hybrid solution strategy relying on the 
response matrix method is first recalled. The improvement of the hybrid method for test 
systems involving one fuel pin and one coolant region as fine meshes is then presented, 
together with the corresponding benchmark cases. Thereafter, the refinement of the method 
for test systems involving more regions as fine meshes is described, again together with a set 
of benchmark exercises. Finally, some conclusions and recommendations are given.  
 
2 Reminder about the proposed hybrid method 
 
As earlier indicated, the proposed hybrid method relies on the response matrix method or 
interface current method, which is a deterministic method (Stamm’ler and Abbate, 1983). 
Using standard notations in multi-energy group theory and using a classical transport 
correction of the total and scattering macroscopic cross-sections, the steady-state transport 
equation in its integral form written for the energy group g  reads as: 

      0
,0 0

, exp , ,
s

g T g g
s E ds q s ds

  
        

   r r r      (1) 

where the emission density is given by: 

        ,0
0,

1

1
,

4

G
f g

g s g g g g
g eff

q
k


 




 


     
  


r

r r r   (2) 

Partitioning the volume V  of the system into sub-volumes i
V , such that 

i
i

V V


, and 

partitioning the outer surface S   of the system into sub-surfaces a
S , such that 

a
a

S S


, 

multiplying Eq. (1) by the transport-corrected total cross-section, assuming a homogeneous 
emission density on each sub-volume and integrating on one of the sub-volumes i

V  lead to: 

 0
, , , , , , , ,T g j g j j a in g a g a j i g i g i j

a i

V S J P VQ P        (3) 

where the emission density in energy group g  and region i  is given by: 

 , , ,0
, 0, , ,

1

1
4

[ ]
G

g i f g i
g i s g g i g i

g eff

Q
k

 



 

 



     (4) 

Taking again Eq. (1) this time at the outer boundary of the system, multiplying this equation 
by  n  where n  is the outward unit vector normal to the considered surface, assuming a 

homogeneous emission density on each sub-volume and integrating on a given surface S  and 
for solid angles such that 0 n  lead to: 

 
, , , , , , ,a out g a b in g b g b a i i g g i a

b i

S J S J P VQ P      (5) 



 4 

In the previous two equations, the different quantities have the following meaning: 

• 
, ,in g a

J   and 
, ,out g a

J  represent the averaged incoming, outgoing respectively, neutron 

currents on the surface area a
S . 

• 
,g i j

P 
 represents the probability for a neutron emitted in the volume i

V  in an isotropic 

manner and having a given emission density to have its first collision in the volume 

j
V . 

• 
,g a j

P 
 represents the probability for a neutron entering through the surface a

S  to have 

its first collision in the volume 
j

V . 

• 
,g i a

P 
 represents the probability for a neutron emitted in the volume i

V  in an isotropic 

manner and having a given emission density to escape without interaction through the 
surface a

S  . 

• 
,g b a

P 
 represents the probability for a neutron entering through the surface b

S  to 

escape without interaction through the surface a
S . 

The above system of equations has nevertheless very limited practical usefulness since for a 
large system, the number of probabilities to be computed would be enormous. The essence of 
the response matrix method is thus to use two computational grids. If one considers that the 
system to be studied contains 1,...,I N  sub-systems, each having respectively a volume I

V   

delimited by a surface I
S , Eqs. (3) and (5) can be written on each of the sub-systems as: 

 0
, , , , , , , , ,

I I

T g j g j j a in g a g a j i g i g i j
a S i V

V S J P VQ P  
 

     for I
j V  (6) 

 
, , , , , , ,

I I

a out g a b in g b g b a i g i g i a
b S i V

S J S J P VQ P 
 

   for I
a S  (7) 

If I
out

J  represents the vector having for components each of the currents 
,out a

J   on all sub-

surfaces belonging the boundary of the sub-system I , if I
in

J   represents the vector having for 

components each of the currents 
,in a

J  on all sub-surfaces belonging to the boundary of the 

sub-system I , and if I
source

J   represents the vector having for components the contribution to 

the current 
,out a

J   due to volumetric sources inside the sub-system I , the set of equations (6) 

can be recast in the following vector equation: 

 I I I I
out in source

  J R J J   (8) 

where IR  is referred to as the response matrix for the sub-system I . Such a vector equation 
can be written for any sub-system I of the computational domain, and thus one can write: 
 out in source

  J R J J   (9) 
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for the entire system being modelled. In this equation, R  is referred to as the response matrix 
for the entire system. Since the outgoing current from a given sub-system is equal to the 
incoming current to its neighbouring sub-system, a topographical relationship exists between 

in
J  and out

J  which can be generically written as: 

 in out
 J P J   (10) 

where P  is a matrix defined for the entire system being considered. Combining Eqs. (9) and  
(10) leads to: 

 in in source
    J P R J P J   (11) 

This equation represents the global problem, i.e. the problem defined for the entire 
computational domain. Likewise, Eq. (6) can also be recast into the following vector equation: 

 I I I I
in source

  S J    (12) 

This equation represents the local problem, i.e. the problem defined for the sub-system I . 
This means that two different computational grids are used: a coarse grid to resolve the 
neutron currents and the associated coupling between the coarse regions, and a fine grid to 
resolve the neutron flux within each region, as illustrated in Fig.  1. 

The probabilities 
,g a j

P 
, 

,g i j
P 

, 
,g b a

P 
, and 

,g i a
P 

 need to be calculated prior to the 

application of the response matrix method. Nevertheless, compared to the original formulation 
of the transport problem as given by Eqs. (3) and (5), only probabilities within each sub-
system need to be evaluated when two computational grids (i.e. a global problem and a local 
problem) are used. Once the different probabilities have been evaluated, the solution 
procedure goes as follows. From a known distribution of the emission densities for the entire 
computational domain, the global problem is solved, i.e. the neutron currents between each 
sub-system are computed using Eq. (11). Once the currents have been determined, the local 
problem is solved for each of the sub-systems, i.e. the scalar neutron fluxes within each sub-
system are determined using Eq. (12). The calculated neutron fluxes within each sub-system 
are then used to calculate an updated distribution of the emission densities for the next inner 
iteration. 

As in the previous contract period, the Monte Carlo tool Serpent2 was used to evaluate the 
probabilities within each of the sub-systems for each of the local problems (Leppänen et al., 
2015).  

The update of the effective multiplication factor of the system is calculated on-the-fly by the 
deterministic solution procedure, using a classical power iteration method (Stamm’ler and 
Abbate, 1983): 

 
( 1) ( )

( ) ( 1)

( 1) ( 1)

p p
p p

p p
k k




 





 
 

  (13) 
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where p  represents the outer iteration number, k  is the dominant eigenvalue of the system, 
and the vector   represents a vector having as elements the flux values in each of the 
modelled regions. 

In the hybrid implementation, the computational burden of estimating the probabilities are left 
to the Monte Carlo tool. Because of the small sizes of the sub-systems, estimating such 
probabilities is comparatively much faster than determining the probabilities for the entire 
system. Furthermore, the estimation of the probabilities represents independent tasks, and 
parallel computing techniques could be used to distribute the required calculations when large 
scale systems would have to be considered. 

 
Fig.  1 Example of a coarse and a fine mesh computational grids that could be used in the response matrix 

method. 
 
3 Improvement of the hybrid method for local problems representing 1x1 fuel pin cell 
 
In the first phase of this contract period, the hybrid framework previously developed was 
carefully checked. Special attention was paid to the estimation of the probabilities. 
 
3.1 Description of the test system 
 
The problem considered hereafter is representative of a two-dimensional axial cross-section of 
a fuel assembly. The system is made of a lattice of 10x10 fuel pins. The local mesh is made of 
two regions per fuel cell: a fuel region and a moderator region. The global mesh is thus made 
of the juxtaposition of such elementary fuel cells to create the 10x10 fuel pin lattice. 
 



 7 

For the sake of simplicity, the water gaps, cladding and fuel box were disregarded, resulting in 
a regular lattice of fuel pins for the system considered, as illustrated in Fig.  2. The fuel pin 
pitch is 1.295 cmp   and the fuel rod radius is 0.4335 cm

f
R  . The fuel density is set to 

10.424 g/cm3. The moderator, assumed to be made of H2O, has a density of 0.444 g/cm3. 
 
 

 

2 2 3 5 5 5 5 3 2 2

2 3 5 6 6 6 6 5 3 2

3 5 6 6 6 6 6 6 5 3

5 6 6 6 6 6 6 6 6 5

5 6 6 6 6 6 6 6 6 5

5 6 6 6 6 6 6 6 6 5

5 6 6 6 6 6 6 6 6 5

3 5 6 6 6 6 6 6 5 3

2 3 5 6 6 6 6 5 3 2

2 2 3 5 5 5 5 3 2 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
  

 Fuel pin 
number 

U-235 [1] U-238 [1] O-16 [1] 

 1 0.015867 0.86563 0.1185 

 2 0.018512 0.86299 0.1185 

 3 0.022919 0.85858 0.1185 

 4 0.026445 0.85505 0.1185 

 5 0.029971 0.85153 0.1185 

 6 0.032615 0.84888 0.1185 

 
Fig.  2 Radial layout of the modelled fuel assembly (left) with the corresponding fuel pin types (right) and their 

respective compositions (mass fractions of materials in the fuel pins). 
 
In the work reported in this report, the implementation of the hybrid method and all tests were 
performed using a two-group formalism. The required macroscopic cross-sections are thus the 
total cross-section 

,T g
 , the group-to-group isotropic scattering cross-section 

0,s g g   and the 

fission “production” cross-section 
,f g

  for each of the 1,2g   and 1,2g    energy groups. 
All fission neutrons are assumed to be emitted in the fast energy group only. The two-group 
cross-sections are generated from Serpent2 for the fuel and moderator regions, respectively, 
for all fuel pin types. 
 
For the scattering cross-sections, two kinds of scattering matrices are given by Serpent2. The 
first kind is the scattering matrix where the  ,2n n  ,  , 3n n  , etc. reactions are not included. 
The second kind is the scattering matrix where such reactions are accounted for as: 
        0, , 0, ,2 0, ,3 0, ,3 0,

2 3 4
s g g n n g g n n g g n n g g n n g g            

           (14) 
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Since most notably the  ,2n n   reactions have an appreciable effect in light water reactors, 

the use of the scattering matrix including the  ,2n n  ,  , 3n n  , etc. reactions in the hybrid 
method was tested. The absorption cross-section, although not used in the hybrid method, 
would be adjusted according to: 

      

2 2 2

, , ,2 0, ,3 0, ,4 0,
1 1 1

2 3
a g a g n n g g n n g g n n g g

g g g
       

    

             (15) 

so that the total cross-section 
,T g

  is conserved. 
 
Irrespective of the inclusion or non-inclusion of inelastic scattering reactions, only isotropic 
scattering was considered in the cross-section used in the hybrid framework. 
 
The Serpent2 calculations, in addition to provide the necessary cross-section data and 
probabilities, are also used in the following as a reference solution for the spatial distribution 
of the two-energy group neutron flux in each of the regions defined in the local problems and 
for the effective multiplication factor of the system. In order to obtain results with a high 
accuracy, 10000 source neutrons per cycle, 5000 cycles with 500 inactive cycles were used for 
the Serpent2 calculations. The corresponding running time was approximately 80 min. 
 
3.2 Procedures for estimating the required probabilities 
 
Compared to the first contract period, the procedure for estimating the probabilities required 
in the hybrid method was revised. 
 
The determination of the probabilities is carried out on the local mesh, as defined in Fig.  3. 
 

 north  

west 

 

east 

 south  

Fig.  3 Representation of an elementary subsystem (fuel region in red and coolant region in blue). Each 
subsystem has 4 surfaces defining its outer boundary (north, east, south, and west). 

 
The probabilities for neutrons emitted in the fuel and moderator, respectively are calculated 
separately using two separate input files. The seed (i.e. random numbers) is nevertheless set to 
be the same in both cases. The reason for separating the two sets of calculations is twofold. 
First, for each set of probabilities, the number of detectors used is large. Second, the sequence 
for defining the detectors in the input might sometimes have an impact of the results, since the 
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determination of the probabilities requires defining many “detectors” in Serpent2 to keep track 
of the neutrons. 
 
Neutrons emitted from the fuel 
 
Neutrons emitted in the fuel will either first interact in the fuel, in the moderator or escape 
through any of the four surfaces. With the following definitions: 

 

,

,

mod,

:  Neutrons in group  emitted from fuel

:  Neutrons in group  emitted from fuel to first interact in fuel

:  Neutrons in group  emitted from fuel to first interact in moder

fuel g

fuel fuel g

fuel g

N g

R g

R g
→

→

,

,

,

ator

:  Neutrons in group  emitted from fuel to escape through west surface

:  Neutrons in group  emitted from fuel to escape through east surface

:  Neutrons in group  emitted

fuel w g

fuel e g

fuel s g

R g

R g

R g

→

→

→

,

 from fuel to escape through south surface

:  Neutrons in group  emitted from fuel to escape through north surface
fuel n g

R g→

  

the following relationship should be fulfilled: 
 

, , mod, , , , ,fuel g fuel fuel g fuel g fuel w g fuel e g fuel s g fuel n g
N R R R R R R→ → → → → →= + + + + +   (16) 

The probabilities corresponding to each of the terms on the right-hand side of Eq. (16) are 
obtained by dividing each term by the left-hand side of Eq. (16). 
 
In order to determine the first term on the right-hand side of Eq. (16), an additional equation is 
nevertheless required. The neutrons having their first interaction in the fuel region can 
originate from the fuel, the moderator or any of the four surfaces. Using the following 
definitions 

 

, ,

mod ,

,

:  Neutrons in group  having any kind of interaction in the fuel

:  Neutrons in group  emitted from moderator to first interact in fuel

:  Neutrons in group  entering fr

fuel total g

fuel g

w fuel g

R g

R g

R g




,

,

om west surface to first interact in fuel

:  Neutrons in group  entering from east surface to first interact in fuel

:  Neutrons in group  entering from south surface to first interact
e fuel g

s fuel g

R g

R g




,

 in fuel

:  Neutrons in group  entering from north surface to first interact in fuel
n fuel g

R g

  

the following balance equation can be written: 
 

, , , mod , , , , ,fuel fuel g fuel total g fuel g w fuel g e fuel g s fuel g n fuel g
R R R R R R R→ → → → → →= − − − − −   (17) 

The following procedure is then used to determine the different terms in Eq. (17): 
• The total number of any kind of interaction occurring in the fuel region is directly 

determined in Serpent2.  
• For the surface-to-fuel reactions, taking one surface as an example, a flag, number 10 for 

instance, is set if the neutron enters the surface. The surface flag number 10 is removed if 
the neutron travels to any other surface or has interaction in the moderator. Then the 
neutrons with flag 10 still set represent the neutrons interacting in the fuel. Such neutrons 
are thus counted, and the flag 10 is thereafter removed. 

• For the moderator-to-fuel reactions, since no fission occurs in the moderator region, one 
considers that neutrons emitted from the moderator can only be due to scattering. In 
Serpent2, reactions of the type  ,2n n  ,  , 3n n  , etc. are also modelled. Nevertheless, 
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such reactions are highly unlikely in the moderator and can thus be neglected – this 
assumption was verified. A flag 31 is set if a neutron is scattered in the moderator. The 
flag is removed if this neutron escapes through any of the surfaces. Then the neutrons with 
flag 31 still set represent the neutrons interacting in the fuel. Such neutrons are thus 
counted, and the flag 31 is thereafter removed. 

 
To determine the second to the sixth terms on the right-hand side of Eq. (16), the following 
method is used. A surface detector is set at the cylindrical fuel boundary to detect neutrons 
entering the fuel region through its surface, and flag 40 is set if this occurs. Flag 40 is 
removed if the neutron has thereafter an interaction in the fuel. For neutrons leaving the fuel 
region, a surface current detector for outgoing current at the cylindrical fuel boundary is set. 
This detector is scored if and only if flag 40 is not set, and flag 41 is set if the outgoing current 
detector is scored. By doing this, neutrons entering the fuel region and crossing the fuel region 
without interacting can be excluded from the outgoing current from the fuel region. If 
neutrons have flag 41 set and then interact in the moderator, they represent neutrons that are 
emitted from fuel and that first interact in the moderator. Such neutrons are thus counted, and 
flag 41 is thereafter removed. If neutrons have flag 41 set and escape through any of the 
surfaces, they represent neutrons that are emitted from the fuel and that escape through any of 
the surfaces. Such neutrons are thus counted, and flag 41 is thereafter removed. 
 
The above procedure is repeated for both the fast and thermal energy groups and for each fuel 
pin type in a single run. Each run takes approximately 30 min without using any parallel 
computing option. 
 
Neutrons emitted from the moderator 
 
As earlier indicated, the set of probabilities for neutrons emitted from the moderator is 
calculated via a different input file, so that the detectors used to estimate the neutrons emitted 
from the fuel cannot erroneously influence the tracking of the neutrons in the moderator 
region. 
 
Similar to the counting of neutrons emitted from the fuel region, a balance equation for the 
moderator region is established as: 
 

, , , , , , ,mod g mod mod g mod fuel g mod w g mod e g mod s g mod n g
N R R R R R R             (18) 

with the different terms defined as: 

,

,

,

:  Neutrons in group  emitted from moderator

:  Neutrons in group  emitted from moderator to first interact in moderator

:  Neutrons in group  emitted from moderator to first 

mod g

mod mod g

mod fuel g

N g

R g

R g




,

,

,

interact in fuel

:  Neutrons in group  emitted from moderator to escape through west surface

:  Neutrons in group  emitted from moderator to escape through east surface

:  Neutrons

mod w g

mod e g

mod s g

R g

R g

R







,

 in group  emitted from moderator to escape through south surface

:  Neutrons in group  emitted from moderator to escape through north surface
mod n g

g

R g

  
In order to determine the first term on the right-hand side of Eq. (18), an additional equation is 
nevertheless required. The neutrons having their first interaction in the moderator region can 
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originate from the moderator, the fuel or any of the four surfaces. Using the following 
definitions: 

, ,

,

,

:  Neutrons in group  having any kind of interaction in the moderator

:  Neutrons in group  emitted from moderator to first interact in moderator

:  Neutrons in group  ent

mod total g

fuel mod g

w mod g

R g

R g

R g




,

,

ering from west surface to first interact in moderator

:  Neutrons in group  entering from east surface to first interact in moderator

:  Neutrons in group  entering from south surface t
e mod g

s mod g

R g

R g




,

o first interact in moderator

:  Neutrons in group  entering from north surface to first interact in moderator
n mod g

R g

the following balance equation can be written: 
 

, , , , , , , ,mod mod g mod total g fuel mod g w mod g e mod g s mod g n mod g
R R R R R R R             (19) 

The following procedure is then used to determine the different terms in Eq. (19): 
• The total number of any kind of interaction occurring in the moderator region is directly 

determined in Serpent2. 
• For the surface-to-moderator reactions, a similar implementation as the one used for the 

surface-to-fuel reactions is followed. Taking one surface as an example, a flag, number 10 
for instance, is set if the neutron enters the surface. The surface flag number 10 is removed 
if the neutron travels to any other surface or has interaction in the fuel. Then the neutrons 
with flag 10 still set represent the neutrons interacting in the moderator. Such neutrons are 
thus counted, and the flag 10 is thereafter removed. 

• For fuel-to-moderator reactions, a similar implementation as the one used for the fuel 
region is also followed. A surface detector is set at the cylindrical fuel boundary to detect 
neutrons entering the fuel through its surface, and flag 40 is set if this occurs. Flag 40 is 
removed if the neutron has thereafter an interaction in the fuel. For neutrons leaving the 
fuel region, a surface current detector for outgoing current at the cylindrical fuel boundary 
is set. This detector is scored if and only if flag 40 is not set, and flag 41 is set if the 
outgoing current detector is scored. By doing this, neutrons entering the fuel region and 
crossing the fuel region without interacting can be excluded from the outgoing current 
from the fuel region. If neutrons have flag 41 set and then escape through any of the 
surfaces, flag 41 is removed. If neutrons have flag 41 set and interacts in the moderator, 
they represent neutrons that are emitted from the fuel and that first interact in the 
moderator. Such neutrons are thus counted, and flag 41 is thereafter removed. 

 
To determine the second to the sixth term on the right-hand side of Eq. (18), it is again 
assumed that the neutrons emitted from the moderator region are only due to scattering and 
that reactions of the type  ,2n n  ,  , 3n n  , etc. can be neglected. A flag 31 is set if a neutron 
is scattered in the moderator. Neutrons with flag 31 set and having any kind of interaction in 
the fuel represent neutrons that are emitted from moderator and that first interact in the fuel 
region. Such neutrons are thus counted, and flag 31 is removed. Neutrons with flag 31 set and 
escaping through any of the surfaces represent neutrons that are emitted from the moderator 
and that directly escape through any of the outer surfaces. Such neutrons are also counted, and 
flag 31 is thereafter removed. 
 
The above procedure is repeated for both the fast and thermal energy groups and for each fuel 
pin type in a single run. Each run takes approximately 32 min without using any parallel 
computing option. 
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It should also be pointed out that the method for calculating the probabilities, as described 
above, is not general, since the system being considered is only allowed to contain one fuel 
region and one moderator region surrounding the fuel region. Furthermore, the input cards are 
quite lengthy due to the relatively large number of detectors used, which in itself results in 
many neutrons being tracked in the Monte Carlo calculations and leads to a higher computing 
cost. 
 
With the procedure highlighted above, the probabilities were evaluated. Table 1 gives the 
probabilities for neutrons emitted from the fuel,  Table 2 gives the probabilities for neutrons 
emitted from the moderator and Table 3 gives the probabilities for neutrons entering through 
any of outer boundaries of the pin system. In the last case, the probabilities are only given for 
one pin type (pin type #1). 
 

Table 1 Probabilities for neutrons emitted from the fuel region. 
  

Pin 
fuel fuel

P →  
fuel mod

P →  
fuel w

P →  
fuel e

P →  
fuel s

P →  
fuel n

P →  Sum 

 
 
Fast 

1 0.20675 0.12699 0.16645 0.16669 0.16651 0.16662 1.00000 
2 0.20698 0.12708 0.16644 0.16656 0.16647 0.16647 1.00000 
3 0.20736 0.12658 0.16633 0.16648 0.16643 0.16681 1.00000 
4 0.20713 0.12619 0.16668 0.16651 0.16668 0.16680 1.00000 
5 0.20743 0.12617 0.16680 0.16648 0.16655 0.16657 1.00000 
6 0.20753 0.12569 0.16681 0.16675 0.16678 0.16643 1.00000 

 
 
Thermal 

1 0.24482 0.27405 0.12030 0.12063 0.12016 0.12004 1.00000 
2 0.25166 0.26911 0.12029 0.11986 0.11956 0.11951 1.00000 
3 0.26138 0.26339 0.11859 0.11903 0.11871 0.11890 1.00000 
4 0.26781 0.25791 0.11875 0.11906 0.11828 0.11819 1.00000 
5 0.27508 0.25369 0.11730 0.11790 0.11756 0.11847 1.00000 
6 0.28124 0.24980 0.11717 0.11782 0.11714 0.11683 1.00000 

 
 

Table 2 Probabilities for neutrons emitted from the moderator. 
  

Pin 
mod mod

P →  
mod fuel

P →  
mod w

P →  
mod e

P →  
mod s

P →  
mod n

P →  Sum 

 
 
 
Fast 

1 0.22830 0.08148 0.17248 0.17259 0.17270 0.17245 1.00000 
2 0.22816 0.08162 0.17275 0.17260 0.17255 0.17231 1.00000 
3 0.22797 0.08224 0.17240 0.17245 0.17252 0.17242 1.00000 
4 0.22775 0.08220 0.17262 0.17245 0.17245 0.17253 1.00000 
5 0.22735 0.08233 0.17257 0.17257 0.17252 0.17266 1.00000 
6 0.22750 0.08268 0.17255 0.17266 0.17215 0.17246 1.00000 

 
 
 
Thermal 

1 0.38662 0.07995 0.13336 0.13337 0.13335 0.13334 1.00000 
2 0.38373 0.08242 0.13337 0.13356 0.13361 0.13331 1.00000 
3 0.37992 0.08584 0.13339 0.13377 0.13334 0.13374 1.00000 
4 0.37693 0.08868 0.13334 0.13375 0.13346 0.13383 1.00000 
5 0.37431 0.09133 0.13347 0.13355 0.13353 0.13381 1.00000 
6 0.37207 0.09313 0.13363 0.13386 0.13384 0.13347 1.00000 
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Table 3 Probabilities for neutrons emitted from surfaces. 
  

To → fuel moderator west east south north sum 
From↓ 

 
fast 

west 0.12558 0.23916 0 0.21601 0.20964 0.20961 1.00000 
east 0.12554 0.23923 0.21588 0 0.20974 0.20960 1.00000 
south 0.12531 0.23914 0.20983 0.20954 0 0.21618 1.00000 
north 0.12536 0.23931 0.20944 0.20962 0.21627 0 1.00000 

 
thermal 

west 0.12233 0.50323 0 0.10782 0.13320 0.13342 1.00000 
east 0.12195 0.50284 0.10789 0 0.13352 0.13380 1.00000 
south 0.12187 0.50316 0.13356 0.13361 0 0.10780 1.00000 
north 0.12199 0.50299 0.13338 0.13354 0.10810 0 1.00000 

 
As can be seen from the results given in Table 1 and Table 2, for each type of fuel pin and for 
each energy group, the region-to-surface probabilities are different depending on the surface 
being considered. Similarly, Table 3 shows that the surface-to-fuel probabilities for each type 
of fuel pin and each energy group are different depending on the emitting surface being 
considered. Due to the symmetry of the system, the region-to-surface and the surface-to-region 
probabilities should be identical, respectively, irrespective of the surface being considered. 
This can be achieved by improving the accuracy of the Monte Carlo calculations, i.e. by 
simulating more cycles and/or adding more source neutrons. The number of source neutrons 
per cycle, the number of cycles and the number of skipped cycles were thus doubled compared 
to the previous calculations reported in Table 1, Table 2 and Table 3. The results 
corresponding to the increased accuracy of the Monte Carlo simulations are reported in Table 
4. In this table, only the probabilities for neutrons emitted from the fuel region for the first pin 
type are given. The difference between the largest and smallest values of the fuel-to-surface 
probabilities were, in the previous calculations, 0.00024 and 0.00059 for fast and thermal 
groups, respectively (see Table 1). The improved accuracy in the Monte Carlo simulations 
results in differences of 0.0018 and 0.00028, for the fast and thermal groups, respectively (see 
Table 4). A significant improvement is seen in the thermal group. The differences cannot, 
nevertheless, be fully eliminated.  
 
 

Table 4 Probabilities for neutrons emitted from the fuel region for increased accuracy of the Monte Carlo 
simulations. 

  
Pin 

fuel fuel
P →  

fuel mod
P →  

fuel w
P →  

fuel e
P →  

fuel s
P →  

fuel n
P →  Sum 

Fast 1 0.20700 0.12729 0.16650 0.16645 0.16632 0.16645 1.00000 
Thermal 1 0.24523 0.27327 0.12029 0.12057 0.12030 0.12034 1.00000 

 
3.3 Benchmarking of the computed probabilities 
 
The probabilities estimated according to the procedure explained in Section 4.1 were 
benchmarked against probabilities evaluated in a deterministic sense using Carlvik’s method 
(Carlvik, 1965). 
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In this method, the squared-shape of the outer boundary of the system being modelled is 
replaced by a circular outer boundary using the Wigner-Seitz cell approximation, according to 
which the outer radius of the moderator region is given as: 
 

m
R p    (20) 

White boundary conditions are then applied on the outer surface and the albedo is set to unity. 
The deterministic probabilities are calculated as detailed hereafter. 
 
First, the region-to-region probabilities 

,i j g
P

 are estimated according to the following 
expression: 

 
, , 1, , 1 1, 10

, ,

2
i j g ij i j i j i j i j

T i g i

P S S S S
A

    
       

  (21) 

where 
 

    , 3 , 3 ,
0

Ki Ki
iR

i j i j i j
S dy         (22) 

In the equations above, isotropic emissions in the laboratory reference system are assumed. 
The indexes i  and j  denote the region where neutrons are emitted and the region where those 
neutrons first interact, respectively, and 

i
A  is the area of the corresponding emitting region i . 

In the present case, the fuel region is labelled as region 1, whereas the moderator region is 
labelled as region 2. With the numbering chosen, Eq. (21) is only valid for j i . In Eq. (22), 

,i j
  represents the optical path associated to the distance 

,i j
T   represented in Fig.  4, and 

3
Ki  is 

the third-order Bickley function, defined as: 

    
2

2

3
0

Ki cos exp
cos

x
x d



 


         (23) 
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Fig.  4 Representation of the two-region system being modelled. The plot shows the distances 
,i j

T   along a line 

being away from the origin by a distance y . 
 
Since Eq. (21) is only valid for j i , the following reciprocity relationship is used to 
estimate all remaining region-to-region probabilities: 
 0 0

, , , , , ,T i g i i j g T j g j j i g
AP A P      (24) 

Then the region-to-outer moderator surface probabilities are calculated using the following 
complementarity relationship: 
 

, ,
1

i S g i j g
j

P P     (25) 

Thereafter, the surface-to-region probabilities, using the reciprocity of the probabilities, are 
calculated as: 

 
0

, ,
, ,

4

2
i T i g

S i g i S g
m

A
P P

R 


   (26) 

Finally, the surface-to-surface probability is given, using again the property of 
complementarity of the probabilities, as: 
 

, ,
1

S S g S i g
i

P P     (27) 

As can be seen above, the region-to-surface, surface-to-region and surface-to-surface 
probabilities are given for one single outer boundary of the moderator region assumed to be 
circular. In the actual geometry, the outer boundary is made of four distinct parts representing 
a square, as depicted in Fig.  3.  Even in a circularly-equivalent formulation, a post-processing 
of the probabilities determined above is thus required, so that probabilities with respect to the 
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circularly-equivalent west, east, south and north faces of each elementary fuel cell can be 
recovered. 
 
Due to the symmetry of the problem, one has for the region-to-surface probabilities: 

 ,
, , , , 4

i S g
i w g i e g i s g i n g

P
P P P P 

         (28) 

and for the surface-to-region probabilities: 
 

, , , , ,w i g e i g s i g n i g S i g
P P P P P          (29) 

It should be noticed that in Eq. (28), the region-to-surface probabilities are obtained by 
dividing 

,i S g
P

 by four, since a neutron has a one fourth probability to reach each of the 
circularly-equivalent surfaces. In Eq. (29), on the other hand, the surface-to-region 
probabilities are all equal to 

,S i g
P 

, since the probabilities are estimated by renormalizing the 
interaction rates in the region i  with the surface emission density, furthermore assumed to be 
uniform and isotropic on the emitting surfaces. 
 
For the surface-to-surface probabilities, there is no simple way to recover the surface-to-
surface probabilities for each of the four circularly-equivalent west, east, south and north 
surfaces. The surface-to-same surface probability should nevertheless be set to zero, since a 
neutron emitted from a surface cannot cross the same surface without first interacting. For the 
surfaces not corresponding to the emitting surface, the probabilities estimated from the Monte 
Carlo procedure highlighted in Section 4.1 are used to estimate, in an approximative manner, 
a corresponding weighting factor. More specifically, the relative weight of a surface-to-
another surface probability from the Monte Carlo procedure is used to determine the 
corresponding fraction in 

,S S g
P 

. For instance, 
,w e g

P 
 is calculated according to: 

 ,
, ,

, , ,

MC
w e g

w e g S S gMC MC MC
w e g w s g w n g

P
P P

P P P


 
  


 

  (30) 

where the superscript MC  denotes the probabilities estimated from the Monte Carlo 
procedure detailed in Section 4.1. 
 
The probabilities estimated according to the procedure detailed above are given in Table 5 for 
neutrons emitted from the fuel, in Table 6 for neutrons emitted from the moderator, and in 
Table 7 for neutrons emitted from the surfaces. For the last case, the probabilities are only 
given for one fuel pin type (fuel pin type #1). 
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Table 5 Probabilities for neutrons emitted from the fuel region. 

  
Pin 

fuel fuel
P →  

fuel mod
P →  

fuel w
P →  

fuel e
P →  

fuel s
P →  

fuel n
P →  Sum 

 
 
 
Fast 

1 0.19289 0.13563 0.16787 0.16787 0.16787 0.16787 1.00000 
2 0.19307 0.13535 0.16790 0.16790 0.16790 0.16790 1.00000 
3 0.19342 0.13487 0.16793 0.16793 0.16793 0.16793 1.00000 
4 0.19358 0.13454 0.16797 0.16797 0.16797 0.16797 1.00000 
5 0.19382 0.13427 0.16798 0.16798 0.16798 0.16798 1.00000 
6 0.19398 0.13406 0.16799 0.16799 0.16799 0.16799 1.00000 

 
 
 
Thermal 

1 0.24570 0.28912 0.11629 0.11629 0.11629 0.11629 1.00000 
2 0.25215 0.28476 0.11577 0.11577 0.11577 0.11577 1.00000 
3 0.26238 0.27805 0.11489 0.11489 0.11489 0.11489 1.00000 
4 0.27014 0.27312 0.11418 0.11418 0.11418 0.11418 1.00000 
5 0.27743 0.26864 0.11348 0.11348 0.11348 0.11348 1.00000 
6 0.28292 0.26533 0.11294 0.11294 0.11294 0.11294 1.00000 

 
 

Table 6 Probabilities for neutrons emitted from the moderator region. 
  

Pin 
mod mod

P →  
mod fuel

P →  
mod w

P →  
mod e

P →  
mod s

P →  
mod n

P →  Sum 

 
 
 
Fast 

1 0.18389 0.07665 0.18486 0.18486 0.18486 0.18486 1.00000 
2 0.18356 0.07673 0.18493 0.18493 0.18493 0.18493 1.00000 
3 0.18303 0.07689 0.18502 0.18502 0.18502 0.18502 1.00000 
4 0.18264 0.07698 0.18510 0.18510 0.18510 0.18510 1.00000 
5 0.18235 0.07708 0.18514 0.18514 0.18514 0.18514 1.00000 
6 0.18211 0.07715 0.18519 0.18519 0.18519 0.18519 1.00000 

 
 
 
Thermal 

1 0.38186 0.08066 0.13437 0.13437 0.13437 0.13437 1.00000 
2 0.37912 0.08281 0.13452 0.13452 0.13452 0.13452 1.00000 
3 0.37495 0.08620 0.13471 0.13471 0.13471 0.13471 1.00000 
4 0.37192 0.08876 0.13483 0.13483 0.13483 0.13483 1.00000 
5 0.36922 0.09114 0.13491 0.13491 0.13491 0.13491 1.00000 
6 0.36724 0.09294 0.13496 0.13496 0.13496 0.13496 1.00000 

 
 

Table 7 Probabilities for neutrons emitted from surfaces. 
  

To → fuel moderator west east south north sum 
From↓ 

 
fast 

west 0.14613 0.28478 0 0.19351 0.18781 0.18777 1.00000 
east 0.14613 0.28478 0.19341 0 0.18790 0.18778 1.00000 
south 0.14613 0.28478 0.18789 0.18763 0 0.19357 1.00000 
north 0.14613 0.28478 0.18760 0.18776 0.19372 0 1.00000 

 
thermal 

west 0.13714 0.56797 0 0.08491 0.10490 0.10507 1.00000 
east 0.13714 0.56797 0.08479 0 0.10494 0.10516 1.00000 
south 0.13714 0.56797 0.10503 0.10507 0 0.08478 1.00000 
north 0.13714 0.56797 0.10488 0.10501 0.08500 0 1.00000 



 18 

 
The deviation between the probabilities P  estimated as above and the ones MCP  estimated 
from the Monte Carlo procedure as detailed in Section 4.1 is characterized in relative terms 
(%) using the following expression: 

 100
MC

MC

P P
P

P


    (31) 

The relative deviations are summarized in Table 8 for neutrons emitted from the fuel, in Table 
9 for neutrons emitted from the moderator, and in Table 10 for neutrons emitted from the 
surfaces. For the last case, the probabilities are only given for one fuel pin type (fuel pin type 
#1). 
 

Table 8 Relative difference for the probabilities for neutrons emitted from the fuel region. 
  

Pin 
fuel fuel

P →∆  
fuel mod

P →∆  
fuel w

P →∆  
fuel e

P →∆  
fuel s

P →∆  
fuel n

P →∆  
 
 
 
Fast 

1 -6.7% 6.8% 0.9% 0.7% 0.8% 0.8% 
2 -6.7% 6.5% 0.9% 0.8% 0.9% 0.9% 
3 -6.7% 6.5% 1.0% 0.9% 0.9% 0.7% 
4 -6.5% 6.6% 0.8% 0.9% 0.8% 0.7% 
5 -6.6% 6.4% 0.7% 0.9% 0.9% 0.8% 
6 -6.5% 6.7% 0.7% 0.7% 0.7% 0.9% 

 
 
 
Thermal 

1 0.4% 5.5% -3.3% -3.6% -3.2% -3.1% 
2 0.2% 5.8% -3.8% -3.4% -3.2% -3.1% 
3 0.4% 5.6% -3.1% -3.5% -3.2% -3.4% 
4 0.9% 5.9% -3.8% -4.1% -3.5% -3.4% 
5 0.9% 5.9% -3.3% -3.7% -3.5% -4.2% 
6 0.6% 6.2% -3.6% -4.1% -3.6% -3.3% 

 
 

Table 9 Relative difference for the probabilities for neutrons emitted from the moderator region. 
  

Pin 
mod mod

P →∆  
mod fuel

P →∆  
mod w

P →∆  
mod e

P →∆  
mod s

P →∆  
mod n

P →∆  

 
 
 
Fast 

1 -19.5% -5.9% 7.2% 7.1% 7.0% 7.2% 
2 -19.5% -6.0% 7.0% 7.1% 7.2% 7.3% 
3 -19.7% -6.5% 7.3% 7.3% 7.2% 7.3% 
4 -19.8% -6.4% 7.2% 7.3% 7.3% 7.3% 
5 -19.8% -6.4% 7.3% 7.3% 7.3% 7.2% 
6 -20.0% -6.7% 7.3% 7.3% 7.6% 7.4% 

 
 
 
Thermal 

1 -1.2% 0.9% 0.8% 0.7% 0.8% 0.8% 
2 -1.2% 0.5% 0.9% 0.7% 0.7% 0.9% 
3 -1.3% 0.4% 1.0% 0.7% 1.0% 0.7% 
4 -1.3% 0.1% 1.1% 0.8% 1.0% 0.7% 
5 -1.4% -0.2% 1.1% 1.0% 1.0% 0.8% 
6 -1.3% -0.2% 1.0% 0.8% 0.8% 1.1% 
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Table 10 Relative difference for the probabilities for neutrons emitted from surfaces. 

  
To → fuel moderator west east south north 
From↓ 

 
fast 

west 16.4% 19.1% 0.0% -10.4% -10.4% -10.4% 
east 16.4% 19.0% -10.4% 0.0% -10.4% -10.4% 
south 16.6% 19.1% -10.5% -10.5% 0.0% -10.5% 
north 16.6% 19.0% -10.4% -10.4% -10.4% 0.0% 

 
thermal 

west 12.1% 12.9% 0.0% -21.2% -21.2% -21.2% 
east 12.5% 13.0% -21.4% 0.0% -21.4% -21.4% 
south 12.5% 12.9% -21.4% -21.4% 0.0% -21.4% 
north 12.4% 12.9% -21.4% -21.4% -21.4% 0.0% 

 
As compared with the probabilities estimated from the Monte Carlo procedure explained in 
Section 4.1, the following trends for the probabilities estimated in the procedure explained 
above are observed: 
• 

mod mod
P 

 is underestimated for the fast neutrons. 

• 
mod surface

P 
 are overestimated for the fast neutrons. 

• 
surface mod

P 
 are overestimated for the fast neutrons. 

• 
surface surface

P 
 are underestimated for both the fast and thermal neutrons. 

The probabilities above also show somewhat larger discrepancies compared to the other 
probabilities. Since the surface-related probabilities and moderator-related probabilities 
heavily rely on the outer region and surface, which are modelled in a different manner 
between the Monte Carlo-based probabilities (see Section 4.1) and the ones estimated above, 
the possible influence of the modelling of the outer boundary onto the probabilities was 
examined. 
 
There are several factors that might influence the observed discrepancies: 
• The modelling of the entry of neutrons via the outer surface is assumed to be isotropic and 

uniform on the outer surface in the deterministic estimation of the probabilities, whereas 
there is no such any assumption in the Monte Carlo procedure for estimating the 
probabilities. 

• The outer square-shaped boundary, which is correctly modelled in the Monte Carlo 
procedure, is replaced by an outer boundary having a circular shape in the deterministic 
evaluation of the probabilities. 

Intuitively, it is thus expected that changing the size of the outer region only might lead to a 
significant variation of the discrepancies between the deterministic and Monte Carlo-based 
probabilities related to the outer surface and moderator region, without changing much the 
ones related to the fuel region. 
 
The pin pitch p  was thus increased and the different probabilities recomputed accordingly. 
These recalculations were only performed for the fuel pin type #1. The variations in relative 
differences as a function of the fuel pin pitch are given in Table 11 for neutrons emitted from 
the fuel region and in Table 12 for neutrons emitted from the moderator region. The relative 
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differences for the probabilities for neutrons emitted from surfaces are given in Table 13 for a 
fuel pin pitch of 1.8 cm and in Table 14 for a fuel pin pitch of 3.6 cm. 
 

Table 11 Relative difference for the probabilities for neutrons emitted from the fuel region when changing the 
fuel pin pitch. 

  
Pin Pitch 
[cm] 

fuel fuel
P →∆  

fuel mod
P →∆  

fuel w
P →∆  

fuel e
P →∆  

fuel s
P →∆  

fuel n
P →∆  

 
Fast 

1.295 -6.7% 6.8% 0.9% 0.7% 0.8% 0.8% 
1.8 -3.2% 16.4% -4.6% -4.1% -4.5% -4.5% 
3.6 9.1% 44.2% -31.8% -32.3% -31.9% -31.8% 

 
Thermal 

1.295 0.4% 5.5% -3.3% -3.6% -3.2% -3.1% 
1.8 -2.1% 3.0% -2.6% -3.0% -2.4% -2.0% 
3.6 -3.0% 2.1% -6.5% -6.6% -6.9% -7.2% 

 
 
Table 12 Relative difference for the probabilities for neutrons emitted from the moderator region when changing 

the fuel pin pitch. 
  

Pin Pitch 
[cm] 

mod mod
P →∆  

mod fuel
P →∆  

mod w
P →∆  

mod e
P →∆  

mod s
P →∆  

mod n
P →∆  

 
Fast 

1.295 -19.5% -5.9% 7.2% 7.1% 7.0% 7.2% 
1.8 -16.6% -3.3% 9.8% 10.0% 9.9% 10.0% 
3.6 -10.3% 3.3% 14.2% 14.1% 14.3% 14.1% 

 
Thermal 

1.295 -1.2% 0.9% 0.8% 0.7% 0.8% 0.8% 
1.8 -2.2% 1.9% 2.9% 2.8% 2.8% 2.8% 
3.6 -1.0% 6.5% 3.2% 3.1% 3.1% 3.2% 

 
  

Table 13 Relative difference for the probabilities for neutrons emitted from surfaces and a fuel pin pitch of 
1.8 cm. 

  
To → fuel moderator west east south north 
From↓ 

 
fast 

west 16.9% 24.2% 0.0% -12.5% -20.0% -20.0% 
east 17.1% 24.2% -12.6% 0.0% -20.0% -19.9% 
south 16.9% 24.3% -20.0% -20.2% 0.0% -12.4% 
north 16.9% 24.2% -20.1% -20.1% -12.3% 0.0% 

 
thermal 

west 12.8% 10.1% 0.0% -2.6% -38.6% -38.3% 
east 12.4% 10.1% -2.8% 0.0% -38.4% -38.4% 
south 12.4% 10.1% -38.4% -38.2% 0.0% -2.8% 
north 13.0% 10.1% -38.7% -38.5% -2.2% 0.0% 
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Table 14 Relative difference for the probabilities for neutrons emitted from surfaces and a fuel pin pitch of 

3.6 cm. 
  

To → fuel moderator west east south north 
From↓ 

 
fast 

west 10.1% 29.1% 0.0% -41.1% -41.1% -41.1% 
east 10.0% 29.1% -41.2% 0.0% -41.2% -41.2% 
south 9.6% 29.2% -41.2% -41.2% 0.0% -41.2% 
north 10.3% 29.0% -41.1% -41.1% -41.1% 0.0% 

 
thermal 

west 11.5% 7.3% 0.0% -60.8% -60.8% -60.8% 
east 11.0% 7.3% -60.7% 0.0% -60.7% -60.7% 
south 11.3% 7.3% -60.7% -60.7% 0.0% -60.7% 
north 10.9% 7.3% -60.8% -60.8% -60.8% 0.0% 

  
As can be seen in the tables above, the largest relative differences previously observed for the 
moderator-to-moderator probabilities are decreased with the fuel pin pitch is increasing. 
However, the relative differences for the moderator-to-surface and fuel-to-region or surface 
are increased with a larger fuel pin pitch. By comparing the probabilities for neutrons emitted 
from surfaces at the nominal fuel pin pitch (Table 10), at a fuel pin pitch of 1.8 cm (Table 13) 
and at a fuel pin pitch of 3.6 cm (Table 14), it can be seen that the relative differences for 
surface-to-moderator probabilities in the fast group and for the surface-to-surface probabilities 
increase, while the relative differences for the surface-to-moderator probabilities in the 
thermal group decrease. 
 
Although the above trends might indicate that the reasons of the discrepancies are indeed 
related to the different modelling of the outer boundary and the emission of neutrons on those, 
more intricate inter-related phenomena prevent from drawing clear conclusions. 
 
It should nevertheless be mentioned that, for the original fuel pin pitch, the probabilities 
evaluated in a deterministic manner and the ones estimated from Monte Carlo seem to 
qualitatively agree with each other. This demonstrates that the probabilities estimated from the 
Monte Carlo procedure developed in this project seem to be “sufficiently well” evaluated, 
despite some differences noted with the deterministically-based probabilities determined using 
different approximations. 
 
3.4 Flux and eigenvalue calculations 
 
With the probabilities evaluated from Monte Carlo (see Section 4.2) or in a “deterministic” 
sense (see Section 4.3), the hybrid framework was used to estimate the spatial distribution of 
the fast and thermal neutron flux throughout the system, as well as the eigenvalue. Those 
calculations are also directly compared with the pure Monte Carlo solution. In the hybrid 
framework, the convergence criteria for both the flux and eigenvalue was set to 10-10 in 
relative difference between two consecutive iterations. 
 
The results in term of eigenvalue are summarized in Table 15. Two types of calculations were 
performed, either not including the  ,2n n  ,  , 3n n  , etc. reactions in the scattering matrices 
used in the hybrid method or by including such reactions. As can be seen in this table, 
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including the  ,2n n  ,  , 3n n  , etc. reactions in the scattering matrices used in the hybrid 
method leads to a much better agreement with the reference Monte Carlo solution. In addition, 
using the probabilities evaluated from Monte Carlo leads to a difference between the hybrid 
solution and the reference Monte Carlo solution of only +5 pcm. This demonstrates that the 
hybrid framework is properly implemented and that the probabilities determined from Monte 
Carlo method explained in Section 4.2 are correctly estimated. The correct implementation of 
the hybrid framework is further demonstrated by the fact that using the “deterministic” 
probabilities leads to a difference between the hybrid solution and the reference Monte Carlo 
solution of only +109 pcm. 
 
Table 15 Evaluation of the dominant eigenvalue of the modelled system for the reference Monte Carlo solution 

and the hybrid solutions. 
 

Case 

Scattering matrices not including the 
 ,2n n  ,  , 3n n  , etc. reactions in 

the hybrid calculations 

Scattering matrices including the 
 ,2n n  ,  , 3n n  , etc. reactions in 

the hybrid calculations 

eff
k    [pcm] eff

k    [pcm] 
Reference 

Monte Carlo 
solution 

1.27003±0.00007 Reference 1.27003±0.00007 Reference 

Hybrid 
solution with 
Monte Carlo 
probabilities 

1.26744 -259 1.27008 5 

Hybrid 
solution with 

“deterministic” 
probabilities 

1.26849 -154 1.27112 109 

 
The spatial distribution of the fast and thermal fluxes along the diagonal of the lattice are 
given for the reference Monte Carlo solution and the hybrid solution using the Monte Carlo 
probabilities in Fig.  5. Both solutions are renormalized as: 

    

   
2

, ' '
' 1

gnormalized
g

f g g
g




 





r
r

r r
  (32) 

The flux obtained from Serpent2 was calculated using lattice detectors for both the fuel and 
moderator regions. The lattice detector creates a bin for each lattice position (100 in the 
current case), for both the fuel and moderator regions at each lattice position. As an 
illustrative example, a sample lattice detector used for estimating the fast flux integrated on 
the moderator region can be defined, for every lattice position, as: 
 det 1 dm cool dl 10 de 2gfast dv 1.0866   (33) 

For a detector defined by Eq. (12), the flux is integrated in the moderator region for every 
lattice position and for the fast group. In order to have similar space-homogenized fluxes in 
each moderator region, the integrated flux is normalized, using the “dv” option, by the area 
occupied by each moderator region, which is 1.0866 cm2 in the present case and in the two-
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dimensional representation chosen for the modelled system. Similarly, the integrated flux in 
the fuel region is normalized by 0.5904, which is the area in cm2 occupied by each fuel region.  
 
As can be seen in Fig.  5, the shape of both the thermal and fast fluxes is correctly reproduced 
by the hybrid method, as compared to the reference Monte Carlo solution. The agreement is 
particularly good for the thermal group. For the fast group, the overall buckling of the flux is 
different. 
 

 
 
Fig.  5 Spatial distribution of the fast and thermal neutron flux along the diagonal of the lattice for the reference 

Monte Carlo solution (in red) and for the hybrid solution using the Monte Carlo probabilities (in blue). 
 
4 Extension of the hybrid method for local problems representing 2x2 fuel pin cells 
 
4.1 Procedure for estimating the required probabilities 
 
When the local problem contains more than one fuel pin cell, the number of probabilities to be 
determined by the Monte Carlo code Serpent2 significantly increases. In order to decrease the 
computational time associated with the computation of those probabilities, the method used to 
determine those is revised. 
 
Within each cell, the probabilities to be determined are the ones related to the neutrons 
emitted from the fuel, the neutrons emitted from the moderator, and the neutrons entering the 
cell through the outer surfaces, respectively. Only the methods for the first two types are 
modified and reported hereafter. The methods for the probabilities related to the neutrons 
entering through the outer surfaces are identical to the ones earlier described in Section 4.2. 
 
For the sake of simplicity and of comparison with the method presented in Section 4.2, the 
revised version of the computation of the probabilities is described hereafter for a 1x1 fuel pin 
cell system. 
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Neutrons emitted from the moderator 
 
Denoting as: 
 

,

,

,

:  Neutrons in group  emitted from moderator

:  Neutrons in group  emitted from moderator to first interact in moderator

:  Neutrons in group  emitted from moderator to first 

mod g

mod mod g

mod fuel g

N g

R g

R g




,

interact in fuel

:  Neutrons in group  emitted from moderator to escape through surfaces
mod surfaces g

R g

  (34) 

the following relationship should be fulfilled: 
 

, , , ,mod g mod mod g mod fuel g mod surfaces g
N R R R       (35) 

The probabilities corresponding to each of the terms on the right-hand side of Eq. (35) are 
obtained by dividing each term by the left-hand side of Eq. (35).  
 
For determining the first term on the right-hand side of Eq. (35), the following detectors are 
defined in Serpent2 as follows: 
• The thermal neutrons interacting in the moderator and that were thermal before the 

interaction are counted with a cell detector labelled detector 1 – “modtt”, whereas the 
thermal neutrons interacting in the moderator and that were fast before the interaction are 
counted with a cell detector labelled detector 2 – “modft”. 

• The fast neutrons interacting in the moderator and that were fast before the interaction are 
counted with a cell detector labelled detector 3 – “modff”, whereras the fast neutrons 
interacting in the moderator and that were thermal before the interaction are counted with 
a cell detector labelled detector 4 – “modtf”. 

• All fast neutrons interacting in the moderator are counted with a cell detector, labelled 
detector 5. Likewise, all thermal neutrons interacting in the moderator are counted with a 
cell detector, labelled detector 6. 

 
For neutrons emitted from the moderator and interacting in the fuel region or crossing outer 
surfaces, sets of two detectors corresponding to either fast or thermal reaction rates, 
respectively, are used for each region other than the moderator region and for each outer 
surface. Counts in those detectors are recorded if the flag for detector 5 or detector 6 is set, 
and removed after interaction in those regions or after crossing those surfaces. 
 
The above procedure could be simplified, as briefly explained hereafter. The simplification 
comes from the fact that tracking the energy of the incident neutrons is superfluous. Only 
neutrons scattered from the moderator, irrespective of their initial energy, need to be tracked. 
As a result, and taking as an illustrative example neutrons emitted from the moderator and 
first interacting in the moderator, detectors 5 and 6 can be combined, as well as detectors 1 
and 2 together, and detectors 3 and 4 together. The same simplifications could be applied to 
neutrons emitted from the moderator and first interacting in the fuel region or escaping 
through the outer surfaces. This simplified procedure makes it easier to evaluate the required 
probabilities when more than two energy groups are considered. This simplified procedure 
was successfully tested in two energy groups. 
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Neutrons emitted from the fuel 
 
The procedure described above cannot be applied to the neutrons emitted from the fuel. This 
is because neutrons emitted from the moderator are due to scattering reactions, for which 
detector flagging is kept after a scattering event. However, for neutrons emitted from the fuel 
by fission reactions, the flagging information from the parent neutron is not retained after the 
fission event. Another procedure is thus required, as detailed below. 
 
Denoting as: 

 

,

,

,

:  Neutrons in group  emitted from fuel

:  Neutrons in group  emitted from fuel to first interact in fuel

:  Neutrons in group  emitted from fuel to first interact in moder

fuel g

fuel fuel g

fuel mod g

N g

R g

R g




,

ator

:  Neutrons in group  emitted from fuel to escape through surfaces
fuel surfaces g

R g

 

 (36) 

the following relationship should be fulfilled: 
 , , , ,fuel g fuel fuel g fuel mod g fuel surfaces gN R R R→ → →= + +   (37) 

The probabilities corresponding to each of the terms on the right-hand side of Eq. (37) are 
obtained by dividing each term by the left-hand side of Eq. (37).  
 
The neutron-induced interactions in the fuel region are caused by neutrons emitted from the 
fuel region, from the moderator region, or from the outer surfaces. Thus, the number of 
neutrons emitted from the fuel region and first interacting in the fuel region is determined by: 
 ( ), , , , ,fuel fuel g fuel total g mod fuel g surfaces fuel gR R R R→ → →= − +   (38) 

where 

 
, ,

,

,

:  Neutrons in group  having any kind of interaction in the fuel

:  Neutrons in group  emitted from moderator to first interact in fuel

:  Neutrons in group  ente

fuel total g

mod fuel g

surfaces fuel g

R g

R g

R g


 ring from surfaces to first interact in fuel

 

 (39) 

The terms at the right hand side of Eq. (38) are determined using detectors defined in Serpent2 
as follows: 
• The total number of reactions in the fuel region is determined using one cell detector, 

labelled detector 1. Detector 1 thus determines the term , ,fuel total gR .  

• A surface current detector, labelled detector 2, defined on the surface of the fuel region is 
used to flag all neutrons entering the fuel region. 

• A cell detector, labelled detector 3, is used to count all reactions in the fuel region with the 
previous flag set, i.e. for neutrons entering the fuel region. Detector 3 thus determines the 
terms , ,mod fuel g surfaces fuel gR R→ →+ . 

Detectors 1 and 3 thus allow determining ,fuel fuel gR →  according to Eq. (38).  
 
An additional surface current detector, labelled detector 4, counting the number of neutrons 
crossing the fuel surface if the flag defined in detector 2 is not set, is also defined. Detector 4 
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excludes neutrons entering the surface of the fuel region, crossing the fuel region without 
interaction and leaving through the surface of the fuel region. Detector 4 thus counts the 
number of neutrons emitted from the fuel region. Several additional detectors are then defined 
so that they can be used to determine neutrons emitted from the fuel region (i.e. neutrons with 
flag set in detector 4) and either interacting in the moderator region (i.e. ,fuel mod gR → ) or 

crossing the outer surfaces (i.e. ,fuel surfaces gR → ). 
 
Table 16 gives the maximum relative difference for the probabilities obtained between the 
method earlier developed (described in Section 4.2) and revised method presented above for 
the same test system as the one described in Section 4.1. The table also shows the significant 
reduction in computational time for the revised method as compared to the original method. 
The calculations with the original and revised methods were both performed with 2000 source 
neutrons per cycle, 500 active and 50 inactive cycles.  
 
The dominant eigenvalue for the hybrid method based on the revised probabilities is 1.27014, 
whereas the reference Monte Carlo solution is 1.27007±0.00007 . The 
spatial distribution of the flux calculated remains unchanged between the original and revised 
methods to compute the probabilities in the hybrid method. This demonstrates that the revised 
method correctly computes the probabilities with a much lower computational cost.  
 

Table 16 Comparison between the original method for evaluating the Monte Carlo probabilities (see Section 4.2) 
and the revised method. 

 
Type of probabilities Maximum relative 

difference in 
probabilities 

[%] 

Computational time 
for the original 

method 
[min] 

Computational time 
for the revised 

method 
[min] 

Emitted from fuel 0.9 30 9 

Emitted from 
moderator 

0.3 44 6 

 

Even if the number of detectors defined in the Serpent2 input files decreases significantly, as 
compared to the earlier method described in Section 4.2, different input files are used to 
estimate the probabilities for neutrons emitted from the fuel, for neutrons emitted from the 
moderator, and for neutrons emitted from the outer surfaces, respectively. Since many 
detectors need to be defined in Serpent2, splitting the calculation of the probabilities in three 
input files allows avoiding possible errors associated with the possible interdependence of so 
many detectors used for each case. 
 
4.2 Description of the test system 
 
Two configurations are solved. The first configuration is a single assembly containing 10x10 
fuel pins and corresponds to the one already presented in Fig.  2. The second one corresponds 
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to 2x2 assemblies with 17x17 fuel pins per assembly and is represented in Fig.  6. Five kinds 
of fuel pins exist in the 2x2 configuration. The differences between the various fuel pins are 
only related to the enrichments of each kind of pin. The cladding and the gap are not 
modelled. Each fuel pin is thus only surrounded by moderator. The labelling of the pins (from 
one to six) is made according to the enrichment in U-235, with the fuel pin type one having 
the lowest enrichment. 
 

  
 

 Fuel pin 
number 

U-235 [1] U-238 [1] O-16 [1] 

 1 0.015867 0.86563 0.1185 

 2 0.018512 0.86299 0.1185 

 3 0.022919 0.85858 0.1185 

 4 0.026445 0.85505 0.1185 

 5 0.029971 0.85153 0.1185 

 
Fig.  6 Radial layout of the modelled fuel assemblies (left) in the 2x2 configuration with the corresponding fuel 
pin types (right) and their respective compositions (mass fractions of materials in the fuel pins). The main and 

secondary diagonals along which the spatial distribution of the fluxes will be plotted are also indicated. 
 
Both configurations are solved using pure Monte Carlo calculations (reference calculations) 
and using the hybrid method. In the latter case, the hybrid method relies on either 1x1 fuel pin 
cell/local problem (as represented in Fig.  3) or 2x2 fuel pin cells/local problem (as 
represented in Fig.  7). The revised procedure presented in Section 4.1 for estimating the 
probabilities can be easily extended to local systems made of more than 1x1 fuel cell. 
 

Primary diagonal 

Secondary diagonal 
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Fig.  7 Representation of an elementary subsystem (fuel region in green and coolant region in blue) made of 2x2 
fuel pin cells. The numbers represent the labelling of the different regions later used to plot the variation of the 

flux along the diagonal. 
 

4.3 Flux and eigenvalue calculations 
 
The number of source neutrons per cycle (npop), the number of active cycles (cycles) and the 
number of inactive cycles (skip) used in the Monte Carlo calculations (for the reference Monte 
Carlo calculations and for the estimation of the probabilities required in the hybrid framework, 
respectively) are listed in Table 17. 
 

Table 17 Computational set-up used in the Monte Carlo calculations. 
  

npop cycles skip 

Monte Carlo reference calculations 
(one fuel assembly) 

10000 5000 100 

Monte Carlo reference calculations 
(2x2 fuel assemblies) 

20000 5000 100 

Monte Carlo probability calculations 
(1x1 fuel pin cell/local problem) 

2000 500 50 

Monte Carlo probability calculations 
(2x2 fuel pin cells/local problem) 

4000 500 50 
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When using 1x1 fuel pin cell/local problem, the calculations of the probabilities have to be 
performed for each of the six fuel pin types. When using 2x2 fuel pin cells/local problem, the 
calculations have to be performed for the following combinations of the five fuel pin types: 

1  1 1  3 3  3 3  3 1  11   2   3   4   51  1 1  3 4  4 4  3 1  2

4  4 4  4 2  4 4  2 4  46   7   8   9   104  4 2  4 5  5 5  5 5  5

2  4 411   125  4

         
                  
         
                  
 
  

： ： ： ： ：

： ： ： ： ：

： ：   5 5  5 5  5 4  4  13   14   155  5 2  5 5  5 5  2

4  5 1  316   172  4 3  1

       
              

   
      

： ： ：

： ：

 

All the other 2x2 combinations can be obtained by rotating the basic cells given above by 90 
degrees clockwise, 90 degrees anticlockwise and 180 degrees (anti)clockwise. Such 
combinations thus do not require any new calculation of probabilities. As an illustrative 
example, the rotation of the 9th basic cell type given above gives the following patterns: 

 

5  490 degrees clockwise: 5  2

2  590 degrees anticlockwise: 4  5

5  5180 degrees (anti)clockwise: 2  4

 
  

 
  
 
  

 

 
The computed eigenvalues for the 1x1 fuel assembly configuration and for the 2x2 fuel 
assembly configuration are reported in Table 18 and Table 19, respectively 
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Table 18 Evaluation of the dominant eigenvalue for the reference Monte Carlo solution and the hybrid solutions 
and for the 1x1 fuel assembly configuration. 

 
Method 

eff
k   pcm       

Reference Monte Carlo 
solution 

1.27007±0.00007 Reference 

Hybrid solution 

(1x1 fuel pin cell/local 
problem) 

1.27014 +7 

Hybrid solution 

(2x2 fuel pin cell/local 
problem) 

1.26975 -32 

 
 

Table 19 Evaluation of the dominant eigenvalue for the reference Monte Carlo solution and the hybrid solutions 
and for the 2x2 fuel assembly configuration. 

 
Method 

eff
k   pcm       

Reference Monte Carlo 
solution 

1.20512±0.00005 Reference 

Hybrid solution 

(1x1 fuel pin cell/local 
problem) 

1.20950 +438 

Hybrid solution 

(2x2 fuel pin cell/local 
problem) 

1.20467 -45 

 
In order to make the comparisons easier, the spatial distributions of the neutron fluxes along 
the diagonal through the modelled systems were normalized according to: 

 
,1, 1, ,2, 2,

1
1normalized normalized

f i i f i i
i D eff

k
   



         (40) 

where the subscript i  denotes the regions along the diagonal of the system being modelled 
containing along this diagonal D  regions. An example of the labeling of the regions along the 
diagonal of the 2x2 fuel pin cells/local problem is for instance given in Fig.  7 as an 
illustrative example. Since the moderator for each fuel pin cell is treated as one region, the 
fluxes in node numbers 1 and 3 in that figure are identical. The same applies to the node 
numbers 4 and 6. 
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The spatial distributions of the fluxes for the hybrid solution and reference Monte Carlo 
solution and for the 1x1 fuel assembly configuration are given in Fig.  8 when using 1x1 fuel 
pin cell/local mesh and in Fig.  9 when using a 2x2 fuel pin cells/local mesh. The spatial 
distributions of the fluxes for the hybrid solution and reference Monte Carlo solution and for 
the 2x2 fuel assembly configuration are given in Fig.  10 when using 1x1 fuel pin cell/local 
mesh and in Fig.  11 when using a 2x2 fuel pin cells/local mesh along the primary diagonal. 
The spatial distributions of the fluxes for the hybrid solution and reference Monte Carlo 
solution and for the 2x2 fuel assembly configuration are given in Fig.  12 when using 1x1 fuel 
pin cell/local mesh and in Fig.  13 when using a 2x2 fuel pin cells/local mesh along the 
secondary diagonal. 
 
For the 1x1 fuel assembly configuration, it can be seen from Table 18, Fig.  8 and Fig.  9 that 
the agreement between the hybrid solution and the reference Monte Carlo solution is very 
good for both 1x1 and 2x2 fuel pin cells/local mesh. The agreement in fast neutron flux is best 
for the 2x2 case, whereas the agreement is thermal neutron flux is best for the 1x1 case. The 
best agreement in the dominant eigenvalue is obtained for the 1x1 case. It should be observed 
that a slight difference in the buckling of the fast neutron flux is visible, as it was already 
noticed in Section 3.4. 
 
For the 2x2 fuel assembly configuration, it can be seen from Table 18, Fig.  10, Fig.  11, Fig.  
12 and Fig.  13 that the agreement between the hybrid solution and the reference Monte Carlo 
solution is much better for 2x2 fuel pin cells/local mesh compared to the 1x1 fuel pin 
cell/local mesh, except for the thermal neutron flux distribution along the secondary diagonal, 
where larger discrepancies are observed in the moderator region. The best agreement in the 
dominant eigenvalue is obtained for the 2x2 case. It is also observed that the buckling of the 
neutron flux is noticeably different in the hybrid framework. 
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Fig.  8 Spatial distribution (left figures) and corresponding relative error (right figures) of the fast (top figures) 
and thermal (bottom figures) neutron fluxes along the diagonal of the 1x1 fuel assembly configuration for the 
reference Monte Carlo solution (in red, labelled as MC – Monte Carlo) and for the hybrid solution using the 
Monte Carlo probabilities (in blue, labelled as RMM – Response Matrix Method). The local problem in the 

hybrid modelling is made of 1x1 fuel pin cell. 
 
 

 
 

Fig.  9 Spatial distribution (left figures) and corresponding relative error (right figures) of the fast (top figures) 
and thermal (bottom figures) neutron fluxes along the diagonal of the 1x1 fuel assembly configuration for the 
reference Monte Carlo solution (in red, labelled as MC – Monte Carlo) and for the hybrid solution using the 
Monte Carlo probabilities (in blue, labelled as RMM – Response Matrix Method). The local problem in the 

hybrid modelling is made of 2x2 fuel pin cell. 
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Fig.  10 Spatial distribution (left figures) and corresponding relative error (right figures) along the primary 
diagonal of the fast (top figures) and thermal (bottom figures) neutron fluxes along the diagonal of the 2x2 fuel 

assembly configuration for the reference Monte Carlo solution (in red, labelled as MC – Monte Carlo) and for the 
hybrid solution using the Monte Carlo probabilities (in blue, labelled as RMM – Response Matrix Method). The 

local problem in the hybrid modelling is made of 1x1 fuel pin cell. 
 
 

 
 

Fig.  11 Spatial distribution (left figures) and corresponding relative error (right figures) along the primary 
diagonal of the fast (top figures) and thermal (bottom figures) neutron fluxes along the diagonal of the 2x2 fuel 

assembly configuration for the reference Monte Carlo solution (in red, labelled as MC – Monte Carlo) and for the 
hybrid solution using the Monte Carlo probabilities (in blue, labelled as RMM – Response Matrix Method). The 

local problem in the hybrid modelling is made of 2x2 fuel pin cell. 
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Fig.  12 Spatial distribution (left figures) and corresponding relative error (right figures) along the secondary 
diagonal of the fast (top figures) and thermal (bottom figures) neutron fluxes along the diagonal of the 2x2 fuel 

assembly configuration for the reference Monte Carlo solution (in red, labelled as MC – Monte Carlo) and for the 
hybrid solution using the Monte Carlo probabilities (in blue, labelled as RMM – Response Matrix Method). The 

local problem in the hybrid modelling is made of 1x1 fuel pin cell. 
 
 

 
 

Fig.  13 Spatial distribution (left figures) and corresponding relative error (right figures) along the secondary 
diagonal of the fast (top figures) and thermal (bottom figures) neutron fluxes along the diagonal of the 2x2 fuel 

assembly configuration for the reference Monte Carlo solution (in red, labelled as MC – Monte Carlo) and for the 
hybrid solution using the Monte Carlo probabilities (in blue, labelled as RMM – Response Matrix Method). The 

local problem in the hybrid modelling is made of 2x2 fuel pin cell. 
 
 
In order to identify the reason of the somewhat surprising higher discrepancies observed in the 
thermal neutron fluxes for the 2x2 fuel assembly configuration and the 2x2 fuel pin cells/local 
problem, some additional tests were performed. The local problem represented in Fig.  14 was 
thus considered. Two systems of 2x2 fuel pin cells were considered: the system earlier 
labelled one and made of four pin cells of type one, and the system earlier labelled four and 
made of three pin cells of type three and one pin cell of type four, i.e. the two considered 
system are: 

1  11: 1  1
 
  

 and 3  34: 4  3
 
  
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The probabilities were estimated following the procedure earlier described. The ratio between 
the standard deviations of the detector counts used for evaluating the probabilities and the 
mean values of such detector counts are given in Table 20, for a few selected fuel pin types, a 
few detector counts, and the thermal group. It can be noticed that such ratios are very high, 
and in some cases much larger than unity. The reliability of the probabilities based on the 
above detector counts is thus highly questionable. 
 

 
 

Fig.  14 Elementary 2x2 fuel pin cell system used for further testing. The labelling of the various regions and 
surfaces corresponds to the one for presenting the results in Table 20 and should not be mistaken with the types 

of fuel pins used. 
 
 

Table 20 Ratio between the standard deviation and the mean values of some detector counts used in the 
estimation of some probabilities in the thermal group. 

 
System type 

 1  3fuel mod
R 

  
 1  3mod fuel

R 
 

 1  3mod mod
R   

 1 2mod w
R   

1  1w mod
R   

1  11: 1  1
 
  

 1.54 2.71 0.36 0.34 0.76 

3  34: 4  3
 
  

 2.69 3.28 0.5 0.53 1.3 

 
A closer examination of some of the probabilities also revealed that the reciprocity 
relationship between probabilities is not always fulfilled. This occurs when the probabilities 
are expected to be very small. Following the procedure earlier explained, those probabilities 
are estimated to be equal to zero. Increasing the number of source neutrons from 4000 to 8000 
and the number of active cycles from 500 to 1000 did not resolve this issue. 
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5 Conclusions and outlook 
 
In this work, a hybrid neutron transport framework developed in the previous contract period 
was verified. The framework makes use of a deterministic approach relying on the response 
matrix method for which the required probabilities are estimated from the Monte Carlo 
Serpent2 code. For the deterministic calculations, a response matrix formulation combined 
with a power iteration technique was implemented in Matlab. New procedures were 
established for estimating the required probabilities in a more reliable manner and for 
decreasing the computational cost of the Monte Carlo calculations. The newly developed 
procedures can handle both 1x1 fuel pin cell and 2x2 fuel pin cells/local problem. 
 
A benchmarking of the 1x1 probabilities against probabilities estimated “deterministically” 
demonstrated that the probabilities seem to qualitatively agree. The differences in the 
modelling assumptions used in the Monte Carlo and “deterministic” calculations of the 
probabilities might be the reason for not obtaining perfect quantitative agreement. 
 
When using the hybrid framework on a single fuel assembly in an infinite lattice, the 
agreement between the hybrid solution and the Monte Carlo solution is very good. When 
applying the hybrid framework on a system of 2x2 fuel assemblies in an infinite lattice, the 
agreement somehow deteriorates, especially when only 1x1 fuel pin cell is used per local 
problem. Results drastically improve when 2x2 fuel pin cells are used, except for the thermal 
flux. 2x2 fuel pin cells/local problem might be more adequate to capture flux gradients 
existing between the pins in such local problems. 
 
It should be mentioned that although the response matrix method used in the present 
framework relies on isotropic emissions in the laboratory reference system, the probabilities 
computed from Monte Carlo do not rely on such an approximation and should thus better 
describe the physics at hand. 
 
The following points would need to be further investigated before considering larger systems 
and systems of larger dimensionality in the hybrid framework: 
• The buckling of the fast neutron flux was systematically different from the reference 

solution. Since the mean free path of fast neutrons is much larger than for thermal 
neutrons, a tighter coupling on large scale exist. It should for instance be checked whether 
the calculations in Serpent2 include a criticality spectrum correction that might change the 
buckling of the neutron flux. 

• A system that can be modelled for estimating the probabilities both deterministically and 
from Monte Carlo would need to be created. Using Carlvik’s method, this would require 
that the outer boundary of the system is circular, and a white boundary condition is applied 
on the outer boundary. The latter cannot be presently modelled in Serpent2 (Leppänen, 
2017). 

• Some detectors counts were found to have bad statistics, thus rendering the associated 
probabilities less reliable. This seems to happen when the detector counts are very low. An 
automatic procedure that make use of the complementarity and reciprocity relationships 
the probabilities should fulfil should be developed, so that the probabilities having good 
statistics could be used for deducing the probabilities having otherwise poor statistics. 

• When using more than one fuel pin cell per local problem, the spatial mesh needs to be 
internally refined in order to match the local problem. For instance, the 2x2 local mesh 
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considered in this work would most likely need to consider four azimuthal sectors per fuel 
pin in order to better treat the heterogeneous interactions between the four modelled fuel 
pins. 

• The theoretical implications of the assumed isotropic emissions in the response matrix 
method needs to be further investigated, in particular considering the fact that no such 
approximation is made when estimating the probabilities from Monte Carlo. In addition, 
the development of a response matrix formulation for higher orders of the angular neutron 
flux than its first moments (scalar neutron flux and neutron currents) might be necessary. 

• The effect of transport correcting the macroscopic cross-sections before being used in the 
hybrid framework should be assessed. 

• The work performed by the Serpent2 code developers on the response matrix method for 
acceleration of the convergence of the fission source (Leppänen, 2018) should be studied 
and integrated in the present framework, if possible. 
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