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Abstract 
 
A project is ongoing, financed by Nordic nuclear safety research (NKS), 
The Finnish Research Programme on Nuclear Power Plant Safety 
(SAFIR2014) and Nordic PSA group (NPSAG), with the intent to provide 
guidelines to analyse and model digital systems in probabilistic safety as-
sessment (PSA), using traditional reliability analysis methods (FMEA, 
Fault tree analysis).  
This report discusses software reliability in this context. The report pro-
poses a method for the evaluation and quantification of reactor protection 
system (RPS) software failures. The proposed method will use operational 
history to estimate the fatal failure probability within system software (op-
erating system, runtime), and use an indirect method for the estimation of 
failure probability within application software (non-fatal and fatal failures). 
The quantification for application software is based on two main measures, 
complexity and the degree of verification and validation of the software.  
Collection of data and its challenges will also be discussed. Some data 
collected for a software platform will be discussed, and used as an exam-
ple of the difficultness — and challenge — to collect data. 
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Summary 
Digital protection and control systems have been in operation for many years now (e.g. 
in France, Japan) and are appearing as upgrades in older nuclear power plants (NPPs) 
with increasing operating experience and are standard solutions for new NPPs. To 
assess the risk of NPP operation and to determine the risk impact of digital system 
upgrades on NPPs, quantifiable reliability models are needed along with data for digital 
systems that are compatible with existing probabilistic safety assessments (PSAs). Due 
to the many unique attributes of these systems (e.g., complex dependencies, software), 
several challenges exist in systems analysis, modelling and in data collection. 

In particular, the assessment of software reliability is challenging. Software failures are 
in general mainly caused by systematic (i.e. design specification or modification) faults, 
and not by random errors. Software based systems cannot easily be decomposed into 
independent components, and the interdependence of the components cannot easily be 
identified and modelled. Applying software reliability models in the PSA context is 
hence not a trivial matter. 

A project is ongoing, financed by Nordic nuclear safety research (NKS), The Finnish 
Research Programme on Nuclear Power Plant Safety (SAFIR2014) and Nordic PSA 
group (NPSAG), with the intent to provide guidelines to analyse and model digital 
systems in a PSA context, using traditional reliability analysis methods (FMEA, Fault 
tree analysis). The following focus areas have been identified for the activities: 

1. Develop a taxonomy of hardware and software failure modes of digital 
components for common use. 

2. Develop guidelines regarding level of detail in system analysis and screening of 
components, failure modes and dependencies. 

3. Develop an approach for modelling and quantification of common cause failure 
(CCF) between components. 

4. Develop an approach for modelling and quantification of software failures. 

This report describes the approach for number four above, however it needs to be put in 
relation to the first three items. 

The report will discuss a proposed method for evaluation and quantification of reactor 
protection system (RPS) software failures in nuclear PSA context. The proposed method 
will use operational history to estimate the fatal failure probability within system 
software (operating system, runtime), and use an indirect method for the estimation of 
failure probability within application software (non-fatal and fatal failures). The 
quantification for application software is based on two main measures, complexity and 
the degree of verification and validation of the software. 

Collection of data and its challenges will also be discussed. Some data collected for a 
software platform will be discussed, and used as an example of the difficultness - and 
challenge - to collect data.
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1 Introduction 
Digital instrumentation and control (I&C) is becoming more and more common in 
nuclear power plants (NPPs). Turbine plant I&C and diverse other safety-related 
systems, which have minor role in probabilistic safety assessment (PSA) context, are 
already digital. Although quite a number of plants has received digital reactor protection 
(RPS) systems either as original equipment (e.g. China, France, Japan,) or in upgrade 
projects (e.g. Sweden, Switzerland, USA), most plants do not yet have digital reactor 
protection system. New-builds will have complete digital I&C. 

Currently, no common approach is available in the NPP field for assessing safety and 
reliability of digital I&C and meeting related regulatory requirements. However, there is 
a tradition to try to find harmonised approaches for probabilistic safety assessment 
(PSA) and its applications and there is generally a strong interest to find solutions and 
guidelines on how to deal with digital I&C. Due to the absence of a common method for 
modelling software CCF in the PSA, generic conservative probabilities are usually used, 
which tend to be conservative and may ultimately prevent PSA results from providing 
proper risk insights. 

This report presents a method for quantification of RPS software failures in nuclear 
PSA context. The aim is to define a simple yet sufficient model which describes the 
software failure impacts and provides a quantification approach for the failures. 
Treatment of common cause failures (CCF) between components is also discussed. 

The work is part of the Nordic DIGREL project [1, 2, 3], and builds partly on the work 
on taxonomy of failure modes of digital components for the purposes of PSA conducted 
by the international OECD/NEA Working Group RISK [4]. 

2 Motivation for quantification of software 
faults 

The modelling of programmable control systems in PSA is often considered as a 
difficult and tedious task, especially with regard to the software aspect of the systems. 
The reason that something is difficult to treat probabilistically is not a good argument to 
omit the representation of it (the software part) in PSA. 

Software faults are important to the system and should be part of a safety analysis. The 
basic question: “What is the probability that a safety system or a function fails when 
demanded” is fully feasible and well-formed question for all components or systems 
independently of the technology on which the systems are based [5]. A similar 
conclusion was made in the workshop on Philosophical Basis for Incorporating 
Software Failures in a Probabilistic Risk Assessment [6]. As part of the open discussion, 
the panellists unanimously agreed that: 

• software fails 
• the occurrence of software failures can be treated probabilistically 
• it is meaningful to use software failure rates and probabilities 
• software failure rates and probabilities can be included in reliability models of 

digital systems. 
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Based on these conclusions, it is necessary to be able to estimate the failure probability 
of the software. 

3 Definition for software faults 
3.1 Example safety I&C architecture 
DIGREL project primarily considers the RPS of a nuclear power plant, since it is 
considered more important for PSA than other I&C and it is considered a conceivable 
target for the activity. There is a general consensus that protection systems shall be 
included in PSA, while control systems can be treated in a limited manner. The system 
architecture and the mode of operation of protection systems versus control systems are 
different, which creates different basis for the reliability analysis and modelling. 

Protection systems use microprocessors running in parallel in redundant divisions and 
they actuate functions on demand (e.g. when process parameter limits are exceeded). 
Control systems are versatile having both on demand and continuous functions and they 
do not necessarily have a redundant structure. Different roles of the protection and 
control systems are also reflected in the safety classification, meaning different safety 
and reliability requirements. 

The differences between different I&C platforms and software may be significant, not 
only the physical design but also the functional, e.g. fault tolerant features and voting 
logic. On the other hand, due to the stringent design requirements for protection systems 
and common functional requirements for safety automation of light water reactors, there 
are important similarities between design solutions provided by different nuclear safety 
I&C vendors. 

For the purpose of defining concepts and demonstrating modelling and quantification 
approaches, a generic safety I&C architecture is assumed. The example protection 
system consists of two diverse subsystems, called RPS-A and RPS-B, both divided into 
four physically separated divisions (see Figure 1). The platforms of both subsystems are 
assumed to be identical. The extent of diversity between RPS-A and RPS-B may vary, 
but we may generally assume that they perform different functions. The number of 
acquisition and processing units (APU) and voting units (VU) per each subsystem and 
division may vary, too, but here we assume that there can be more than one APU/VU 
per each subsystem and division. 
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Figure 1. Example I&C system architecture. 

3.2 Failure analysis of digital protections systems 
With regard to the analysis and modelling of protection systems, the following levels of 
details can be distinguished [4]: 

1. the entire system (subsystems RPS-A and RPS-B in this example) 

2. a division (4 divisions in this example) 

3. I&C units, i.e., APUs and VUs. In addition there are data communication units 
(DCU) which are usually integrated with APUs and VUs 

4. modules (inside the I&C units) 

5. basic components (of which modules are built). 

At the system and division level, there are basically two failure modes: “failure to 
actuate the function” and “spurious actuation”. 

At lower levels (I&C unit, module, basic component), it is relevant to consider more 
aspects of failure modes, i.e.: 

• The fault location (in which hardware or software module the fault is located) 
• Failure effect: 

o Fatal, ordered failure (generation of outputs ceases, outputs are set to 
specified, supposedly safe values), 

o Fatal, haphazard failure (generation of outputs ceases, outputs are in 
unpredictable states), 

o Non-fatal, plausible behaviour (generation of outputs continues, an 
external observer cannot determine whether the I&C unit or the hardware 
module has failed or not), 

o Non-fatal, non-plausible behaviour (generation of outputs continues, an 
external observer can decide that the I&C unit or the hardware module 
has failed). 
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• Detection situation: On-line detection, off-line detection, revealed only by 
demand, spurious effect. 

Safety I&C relies on a high degree of self-monitoring, self-tests, plausibility checks and 
engineered monitoring functions, all designed to detect faults, errors and potentially 
unsafe situations, and to convert them into “safe” states. Therefore, for the further 
analysis, regarding the main I&C units of the RPS, APU and VU, the relevant failure 
effects can be restricted into “fatal, ordered failure” and “non-fatal, plausible 
behaviour”, and later called “fatal” respectively “non-fatal” failure in this report. 

In a fatal failure the processor stops, the watchdog or exception handler responds to the 
situation and a “safe state” is activated. Depending on how the “safe state” actuation is 
defined and the considered system level failure modes in PSA, fatal failures may be 
ignored (no consequences) i.e. the system shows a passive behaviour and lead to “no 
actuation signal” (fail-safe configuration, such as TELEPERM® XS) or the safe state is 
used to initiate a fail-safe actuation. Fatal failure affects all functions implemented in 
the I&C unit. 

Non-fatal, plausible behaviour can cause inappropriate responses (failure to respond on 
demand, spurious actuation). Good design aims at minimizing the area of impact of 
non-fatal failures to an as small as possible area (e.g. one function) by separating the 
code of individual I&C functions, by separating application and system software etc. 

Fatal haphazard failure is a practically eliminated failure state for APU and VU. It may 
be relevant for some other types of modules which are not supervised by watchdogs and 
have not exception handler. In those cases, fatal haphazard failure can be usually 
associated with one of the failure modes of the hardware.  

Non-fatal, implausible behaviour is similar to fatal, ordered failure from the response 
point of view. 

The combination of fault location, failure effect, detection situation together with the 
fault tolerant design of the system are usually sufficient to determine the functional end 
effect, such as 

• Loss of all functions (outputs) of the I&C unit (APU/VU), 
• Loss of a specific function (no actuation on demand), 
• Spurious actuation. 

The above list is not exhaustive, and, e.g., for voting logics or in case of intelligent 
validation of input signals the functional end effect may be more complex (e.g. 
degraded voting logic). Anyway, the module level (both hardware and software) seems 
to be sufficient to analyse dependencies important to PSA, at least for protection 
systems. 

3.3 Software fault modes 
The qualitative part of the software fault mode analysis is focused on 

a) identification of safety-critical software modules in I&C units 

b) identification of possible effects of postulated faults in the safety-critical 
software modules 

c) identification of defensive measures against the software faults. 
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The approach is to successively postulate a single software fault in each software 
module regardless of the likelihood of such faults, and to determine the maximum 
possible extent of the failure, regardless of the measures taken by design or operation to 
limit that extent. The following software PSA modules are considered [4]: 

• System software (SyS). This includes the operating system and runtime 
environment (interaction between application and operating system). 

• Elementary functions (EFs)1. There is one such module per EF. A virtual EF 
could be created for each hardware module for which one wants to consider 
failures due to its software and / or hardware design. 

• APU functional requirements specification modules (APU-FRS). There is one 
such module per application function required of an APU. Their purpose is to 
allow the representation of errors in functional requirements specifications of the 
acquisition and processing functions.  

• APU application software modules (APU-AS). There is one such module per 
application function implemented by an APU. Their purpose is to allow the 
representation of errors in the implementation of application-specific acquisition 
and processing software. If desired, a virtual module may be used to represent 
postulated errors in the data tables specifying the hardware configuration and the 
data communication of the APU. 

• Proprietary software (Propr. SW) in I&C. There are other modules than the 
processor module. Specific pieces of software may be present in hardware 
modules in APU, DCU, VU or any other module of the system (e.g. power 
supply) other than SyS and AS. 

• VU functional requirements specification modules (VU-FRS). There is one such 
module per voting function required of a VU. Their purpose is to allow the 
representation of errors in functional requirements specifications of the voting 
functions.  

• VU application software modules (VU-AS). There is one such module per 
voting function implemented by a VU. Their purpose is to allow the 
representation of errors in the implementation of application-specific voting 
software. If desired, a virtual module may be used to represent postulated errors 
in the data tables specifying the hardware configuration and the data 
communication of the VU. 

• Data communication software (DCS). There could be a dedicated operating 
system software in the DCSs. 

• Data link configuration (DLC). There is one such module per network in the 
system. 

Given the taxonomy of end effects at I&C level, Table 1 summarises the maximum 
failure effect of a postulated software fault in each of the software PSA modules: 

• FF-1SS: Failure of one Function (or more) in one subsystem. This case refers to 
non-fatal software failures that result in the misbehaviour of one or more I&C 
functions in one subsystem. The I&C functions that are dependent on the failed 
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1 For TELEPERM® XS EF are called function blocks. EF can be considered as part of the system 
software. However, all the application-specific processing is done in the code of the elementary functions 
modules. For this reason, EF could be considered as part of the application software. 

 



 

functions could also fail. Those dependent functions are necessarily in the same 
subsystem. 

• FF-1D-1SS: Failure of one Function (or more) in only one division in one 
subsystem. This case refers to non-common cause, non-fatal software failures of 
I&C functions without vote. 

• FF-AllSS: Failure of one Function (or more) in all subsystems 
• 1APU/1VU: Failure of one set of redundant APUs/VUs. This case refers to fatal 

software failures affecting only one set of redundant APUs/VUs (necessarily in 
the same subsystem). 

• MAPU-1SS: Failure of multiple sets of redundant APUs in only one subsystem 
• 1SS: Loss of one subsystem. 
• MAPU-AllSS: Failure of multiple sets of redundant APUs in both subsystems 
• 1SS-APU: Loss of one Subsystem and of one or more sets of redundant APUs in 

the other subsystem. 
• SYSTEM: Loss of both subsystems. 

Table 1. Effects of software module faults [4].The cells not filled are considered not 
relevant 

R: Relevant. 

 SW fault location 
Effect SyS EF (in 

APU) 
APU-
FRS 

APU-
AS 

Propr. 
SW 

VU-
FRS 

VU-
AS 

EF (in 
VU) 

DCS DLC

FF-1SS R R R R  R R R   
FF-1D-

1SS 
R R R R       

FF-AllSS R R         
1APU R R R R R      
1VU R    R R R R   

MAPU-
1SS 

R R   R      

1SS R R R  R R R R R R 
MAPU-
AllSS 

R R   R      

1SS-APU R R   R      
SYSTEM R R   R R R R R  

3.4 Evaluation of relevant software faults 
Table 1 includes a number of possible failure effects for different software faults. 
Although it would be impractical to take all of them into consideration in the PSA 
model, the most relevant can be identified. In this report, the software faults and effects 
proposed in Table 2 will be considered. 
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Table 2. Screening of relevant software fault cases for PSA modelling. 

 

 SW fault location 
Effect SyS EF (in 

APU) 
APU-
FRS 

APU-
AS 

Propr. SW VU-
FRS 

VU-
AS 

EF (in 
VU) 

DCS DLC

FF-1SS   4a 4a  4b 4b    
FF-1D-1SS   4c 4c       

FF-allSS           
1APU/1VU   3a 3a  3b 3b    

MAPU-
1SS 

          

1SS 2a 2a 2a  2a 2a 2a 2a 2b 2b 
MAPU-
AllSS 

          

1SS-APU           
SYSTEM 1 1   1   1 1  

1. Software fault causing loss of both subsystems (SYSTEM). This is a complete 
CCF covering all subsystems that have the same SyS. The probability of such an 
event is naturally extremely low, but the basic event can be used to evaluate the 
level of hardware diversity in the actuation of safety functions. It is only 
reasonable to consider a fatal failure consisting in a crash of the processing units, 
i.e., transition of the computers to a shut-down state. This maximal end effect 
covers all the other principally possible end effects. Software fault can be 
located in SyS, EFs, proprietary SW-modules in APUs/VUs, DCS, but it can be 
represented in a model by a single basic event. 

For this event, a single generic probability needs to be estimated, denoted here 
P(SYSTEM-SyS fatal CCF). 

2. Software fault causing loss of one subsystem (1SS). This is a complete CCF 
causing a fatal failure which crashes the processing units in one subsystem, 
i.e.,transition of the computers to a shut-down state. The software fault can be 
located in 

a) the SyS, EF (APU/VU), APU-FRS, proprietary SW-modules in APUs/VUs, 
VU-FRS or VU-AS, 

b)  DCS or DLC. 

Difference is that in case of fatal failure in DCS or DLC (b), VUs run and can 
take safe fail states. In case (a), the whole subsystem stops running and also 
takes a safe state. 

For each case, a generic probability needs to be estimated, denoted here P(1SS-
SyS fatal CCF) resp. P(1SS-DCU fatal CCF). 

3. Software fault causing failure of redundant set of APUs (3a, see Table 2) or VUs 
(3b) in one subsystem (1APU, 1VU, respectively). This is a fatal fault causing 
loss of all functions. The fault can be in APU/VU-FRS or APU/VU-AS. 

There is a variant, where the software fault could cause the failure of multiple 
sets of APUs in one subsystem (MAPU-1SS). It remains to be analysed case-
specifically whether there is a need to consider such CCF. 

For this event, a single generic probability needs to estimated, denoted here as 
P(AS fatal fault). 
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4. Software fault causing a failure of one or more application functions. This is a 
non-fatal failure and can be failure to actuate the function or spurious actuation. 
The fault can be in the APUs (4a), VUs (4b) or have effect only in one division 
(4c). For instance, there can be safety functions which are actuated on 2-o-o-4 
basis or are not implemented in all divisions. Cases 4a – 4c are modelled by 
application function and failure mode specific basic events. 

The relationship between AS fault and FRS fault can be taken into account in a 
Bayesian manner, i.e., 

P(AS fault) = P(AS fault | FRS fault)P(FRS fault) +  P(AS fault | no FRS 
fault)P(no FRS fault). 

In addition, in order to distinguish between fatal and non-fatal failure, we need to 
estimate the fraction of AS faults causing fatal respective non-fatal failures. 

Table 3 includes a principal decomposition of probability parameters related to faults in 
AS or FRS. In section 5.3, handling of AS faults is further developed to better match the 
proposed quantification and modelling approach. 

 

Table 3. Principal probability parameters related to I&C failures caused by application 
software faults (fault in AS or FRS). 

Parameter Description Comment 
P(APU-FRS fault) 
P(VU-FRS fault) 

Probability of a fault in FRS. 
Fault itself does not cause 
anything, but it increases the 
likelihood of an AS fault. AS 
fault can be fatal or non-fatal. 

FRS specific value. FRS may be 
common to more than one AS. 

P(APU-AS fault | APU-
FRS fault) 
P(VU-AS fault | VU-
FRS fault) 

Probability of an AS-fault given 
FRS-fault.  AS-fault causes 
fatal or non-fatal failure of 
APU/VU. 

FRS fault is not necessarily critical to 
cause a failure of AS function, i.e.,  P(AS 
fault | FRS fault) < 1 

P(APU-AS fault | no 
APU-FRS fault) 
P(VU-AS fault | no VU-
FRS fault) 

Probability of an AS-fault given 
no FRS-fault. The AS-fault is 
caused by the implementation 
or translation error from FRS to 
AS.  AS-fault causes fatal or 
non-fatal failure of APU/VU. 

Can be assumed to be a generic value 

P(APU fatal | APU-AS 
fault) 
P(VU fatal | VU-AS 
fault) 

Fraction of fatal failures Can be assumed to be a generic value 

P(APU-AS non-fatal | 
APU-AS fault) 
P(VU-AS non-fatal | 
VU-AS fault) 

Fraction of non-fatal failures. 
Non-fatal failure can cause 
failure to actuate or spurious 
actuation 

P(AS non-fatal | AS fault) = 1 –  P(AS 
fatal | AS fault) 

P(APU-AS no actuation | 
APU-AS non-fatal) 
P(VU-AS  no actuation | 
VU-AS non-fatal) 

Fraction of non-fatal failures 
causing failure to actuate. 

 

P(APU-AS spurious | 
APU-AS non-fatal) 

 

P(VU-AS   spurious | 
VU-AS non-fatal) 

Fraction of non-fatal failures 
causing spurious actuation. 

P(APU-AS spurious | APU-AS non-
fatal) = 1 – P(APU-AS no actuation | 
APU-AS non-fatal) 
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3.5 Software failure modes for an example safety 
function 

As an example, the emergency feedwater system (EFW) pump and the safety core 
cooling are considered [1]. The failure modes of the pump for this safety function are 

• failure to start 
• spurious stop. 

The above failures may be caused by several reasons, among others failures of the 
safety I&C, making the link to the fault tree models of RPS. We denote the start signal 
of EFW-pump by EFW-ON and the stop signal by EFW-OFF. 

Assuming similar RPS architecture as in Figure 1, the signal path from the 
measurements to the pump goes via APUs and a division specific VU. The design 
principle of RPS is that given the critical input signals from the measurements, 2-o-o-4 
is enough to create the actuation signals in APUs (EFW-ON). APUs send the signal to 
all VUs, which vote again by 2-o-o-4 principle, causing the start signal EFW-ON. 

EFW-pumps may also be supervised by a pump leakage protection function. If a 
leakage is detected in the pump room, the protection system shall stop the pump (only 
the specific pump). The signal path is the same as for EFW-ON signal, but the 
measurements are different and the output signal is designated as EFW-OFF. The 
difference is also that EFW-OFF is a division specific safety function (only the leaking 
train is stopped). 

The following fail-safe principles have been assumed: 

• Voting units are assumed to fail to provide EFW-ON and EFW-OFF signals if 
power supply fails or if there is an internal voting unit failure (i.e. the default 
value is 0). 

• At loss of communication between VU and APU due to a detected failure in the 
APU, VUs change the voting rule from 2-o-o-4 to 2-o-o-3 in case of a single 
failure. In this report, CCF due to a systematic SW fault is considered. In this 
case the preferred state is actuation of EFW-OFF. 

• In case of APU safety functions, detected failures of input signals from 
measurements or from other APUs cause an actuation (i.e. the default value is 1) 
in a 2-o-o-4 condition. 

o EFW-ON is actuated by 2-o-o-4 (e.g. based on the calculation of the 
second MIN value of the measurements) low water level condition in the 
reactor pressure vessel, denoted by the acronym RPV-LL. There are four 
measurement sensors, one in all four divisions, which information is 
shared by all divisions.  

o EFW-OFF is actuated by 2-o-o-2 leakage protection signal in each EFW 
train, denoted by EFW-LEAK-x, x = 1, 2, 3, 4. There are two 
measurement sensors per each division, and this information is not 
shared between divisions. EFW-OFF stops the affected EFW train in 
case of pipe break in an EFW train. 

Table 4 summarises the application software modules considered in this example. 
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Table 4. Example application software modules in VUs and APUs. 
Unit Application software Condition 

EFW-ON 2-o-o-4 EFW-ON from APUs 1–4 VU 
EFW-OFF EFW-OFF from the same division’s APU 
EFW-ON 2-o-o-4 RPV-LL from APUs 1–4 
EFW-OFF EFW-LEAK from the same division’s APU 
RPV-LL 2-o-o-4 RPV water level below “very low level” measurement 

from division 1–4 RPV level measurement sensors (can be 
realised so that each APU calculates the 2nd MIN value and 
threshold and exchanges the result with each other) 

APU 

EFW-LEAK 1-o-o-2 water level in the EFW pump room over the leakage 
criterion from the same division’s leakage detection sensors 

 

A schematic fault tree for the failure to actuate EFW-ON in division x (x = 1, 2, 3 or 4) 
is shown in Figure 2 and spurious EFW-OFF in Figure 3. The fault tree is developed 
down to boxes of hardware and software modules failure modes. Software modules 
failure modes are listed in Table 5. Hardware modules failure modes are omitted since 
they are out of the scope of the report. Only one redundancy (division 4) is developed at 
the APU level. The other divisions are identical. 

  
Figure 2. Schematic fault tree for failure to actuate EFW-ON in division x. Yellow 
transfer gates include software module basic events listed in Table 5. 
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Figure 3. Schematic fault tree for spurious EFW-OFF in division x. Yellow transfer 
gates include software module basic events listed in Table 5. 
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Table 5. Software module level failure modes for the example safety function. Indexes 
#1–#6 refer to the transfer gates of the fault trees above. 

Software failure modes Unit EFW function failure 
mode Fatal faults Non-fatal faults 

Failure to actuate EFW-ON 
VU #1 

No EFW-ON from VU 
• SYSTEM level CCF in SW 

modules (case 1) 
• 1SS level CCF in SW modules 

(case 2a) 
• 1VU level CCF in SW 

modules (case 3b) 

• EFW-ON application SW 
fault in VU (case 4b) 

#2 
No EFW-ON from 
APU to VU 

• SYSTEM level CCF in SW 
modules (case 1) 

• 1SS level CCF in SW modules 
(case 2a and 2b) 

• 1APU level CCF in SW 
modules (case 3a) 

• EFW-ON application SW 
fault in APU (case 4a) 

APU 

#3 
EFW-ON condition 
RPV-LL fails in APU 
(3-o-o-4) 

 • RPV-LL application SW 
fault in APU (case 4a) 

Spurious EFW-OFF 
VU #4 

Spurious EFW-OFF 
• SYSTEM level CCF in SW 

modules (case 1) 
• 1SS level CCF in SW modules 

(case 2a) 
• 1VU level CCF in SW 

modules (case 3b) 

• EFW-OFF application SW 
fault in VU (case 4b) 

#5 
Spurious EFW-OFF 
from APU to VU 

• SYSTEM level CCF in SW 
modules (case 1) 

• 1SS level CCF in SW modules 
(case 2a and 2b) 

• 1APU level CCF in SW 
modules (case 3a) 

• EFW-OFF application SW 
fault in APU (case 4a) 

APU 

#6 
Spurious EFW-OFF 
condition EFW-LEAK 
in APU 

 • EFW-LEAK application SW 
fault in APU (case 4a) 

 

4 List of evidence 
4.1 Description of the relevant evidence 
Figure 4 illustrates a Bayesian Belief Net (BBN) for quantification of software 
reliability proposed in [10]. This model includes three main pieces of evidence which 
are proposed to be used in the quantification of probability of failure on demand (pfd) of 
an AS: Safety Integrity Level (SIL) class, software complexity and observations from 
usage and tests. The main rationale for the model is that development process and 
product quality affect the reliability of the software, which in turn affects the amount of 
discrepancies observed during usage and tests. 
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Figure 4. A BBN for assessing software reliability using SIL class, software complexity 

and usage and test observations as evidence. 

The SIL class is assumed to give information about the quality of the software 
development process, including verification and validation (V&V) and installation tests. 
Product quality is represented by complexity of the software solution, with the 
assumption that more complex software is more likely to fail. However, complexity of 
software is not easy to define and measure accurately, so one may have to rely on 
indicative complexity metrics or expert judgements. Still, receiving even indirect 
evidence on the complexity of the software influences the beliefs on its reliability. 

The observation node in the BBN includes all usage and test observations done after the 
installation tests, e.g. maintenance and periodical tests are included in this node. 
Normally no errors are found in the software at this stage, and known errors are fixed. 
The value of this information depends on the representativeness of the observations with 
respect to the possible and foreseeable state space of the software. Since this state space 
is huge, the representativeness of tests and even of operation experience has 
traditionally been seen as weak by regulators, and they would rather rely on the quality 
of software V&V measures. 

Although the absence of findings during tests or usage do not guarantee a low software 
pfd, their presence help to calibrate the weight of the other BBN nodes, because a 
reliable model cannot underestimate an already known operational failure rate. 

4.2 Discussion on basis V&V procedure, SIL 
The IEC 61508 standard defines a generic approach for analysis of systems comprised 
of electrical and/or electronic and/or programmable electronic elements. The standard 
introduces the concept safety integrity level, SIL [7]. The different levels have different 
requirements on how the equipment should be manufactured and tested and also on how 
the software is being developed. The standard does however not include a quantitative 
assessment of the software reliability. 

Safety integrity level and corresponding assumed failure probability and failure rate are 
presented in the table below. 
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Table 6. Probability intervals of safety integrity levels [7]. 

Safety integrity 
level (SIL) 

Average probability of a dangerous failure on demand of 
the safety function (PFDavg) 

4 ≥ 10-5 to < 10-4

3 ≥ 10-4 to < 10-3

2 ≥ 10-3 to < 10-2

1 ≥ 10-2 to < 10-1

Safety integrity 
level (SIL) 

Average frequency of a dangerous failure of the safety 
function [h-1] (PFH) 

4 ≥ 10-9 to < 10-8

3 ≥ 10-8 to < 10-7

2 ≥ 10-7 to < 10-6

≥ 10-6 to < 10-51 

 

It was extensively discussed within the report [8] if the SIL level could be used to 
estimate the software failure probability, and the conclusion from that project was that 
the software failure probability could be argued to be represented by the SIL level 
(conservatively). That is however considered to be conservative by software experts, 
and it could therefore be further argued that the software failure probability should at 
least not be above the lower bound of the SIL. 

The basic idea in this report is that the main process quality indicator that can be used to 
estimate the quality of the software is the safety class or SIL class of the system. In 
nuclear context, cat. A usually is interpreted as SIL3, see for example 2010 edition of 
the Safety Critical Systems Handbook [9]. We might assume that in some cases the 
vendor or the utility may want to claim that more efforts have been done, a better value 
for the design characteristics and V&V process may be justified (cat. A+). Further 
taking into account that the method will be applied to cat. B systems (SIL2), a lower 
value for V&V may be assumed. This reasoning leads to a categorisation of V&V into 
three levels (relevant to nuclear PSA applications): 

- low = cat. B = SIL 2 

- medium = cat. A = SIL 3 

- high = cat. A+ = SIL 4. 

It remains to be discussed how cat. A+ differs from cat. A. A possible interpretation: 
implementation of the RPS in two subsystems executing different functions allows 
claiming a higher reliability for the total solution, by crediting the functional diversity. 

4.3 Discussion on complexity of software 
Concerning the reliability of software, one of the most important properties is its 
complexity. Especially when used with several different operational profiles, much too 
complex software is more prone to present failures. A measure of the software 
complexity is therefore a key contributor to the assessment of its reliability. 

There is however no widely accepted general method to calculate software complexity. 
Those which exist are difficult to be automated, a very important feature for the analysis 
of the, usually, very large amount of software. 
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In this section two recent approaches for the estimation of software complexity are 
presented, TOPAAS (Task Oriented Probability of Abnormalities Analysis for 
Software) and the ISTec’s approach. 

4.3.1 TOPAAS Approach 
The TOPAAS method is based on critical software properties and expert opinions, 
which are captured into a factor model to calculate the probability of failure of software 
modules (see [11]). The most important factors that determine the software quality are 
first defined and for each of these factors performance levels (e.g., good, less good, 
average, bad) are decided by experts. Finally, numbers are assigned to these levels, 
expressing the importance of the factor and the impact of the level. If n factors Fi are 
considered, the failure probability by demand P is calculated as P = PB  FB 1 F2 ... Fn, 
with PBBPB as the base failure rate, which is conservatively set to 1. If a factor Fi is 
unknown, then this factor is set to 1. This implies that missing information results in a 
conservative bias of the model. The lowest attainable level of software failure 
probability P is assumed to be 1E-5 per demand. An example of a standard software 
module of a valve control device is presented. For this example, the failure probability 
for the software module is calculated to 4E-5 per demand, which is conservatively 
rounded to 1E-4 per demand. 

The TOPAAS defines an approach for the calculation of the probability of failure in 
software intensive systems. One of the inputs for this method is the software complexity 
and for its estimation TOPAAS uses the McCabe index. Another product characteristic 
which is taken into account is the number of lines of code. In case an input is not 
known, the correspondent contribution is simply a multiplication by one. 

4.3.2 ISTec Approach 
In 2010 the institute ISTec (Institut für Sicherheitstechnologie) produced a document 
[12] where a method for the special case of the assessment of the complexity of safety 
relevant software in NPP was proposed. That is a very special kind of software, because 
it is produced using integrated tool environments: the software is designed by using 
graphical tools where function blocks are interconnected to form logic diagrams. From 
that graphic specification a code generator build the final source code. 

One important aspect of the ISTec’s approach is its easiness of automation. In fact, the 
method was prototypically applied to approximately 1000 logic diagrams describing the 
reactor control and limitation system in a German NPP (based on TXS). 

In this approach, two levels of complexity are identified: function blocks and logic 
diagrams, the first on the most elementary level and the second reflecting the way the 
function blocks are connected to each other. For each of these two levels, rules are 
established for the calculation of complexity. These rules were implemented either 
using commercially available software or as automated tools created by ISTec for this 
purpose. 

In order to make the method as applicable as possible, two complementary approaches 
were considered for the measurement of complexity. The white box view is based on 
the static analysis of the source code of the function block, which delivers standard 
complexity indicators: number of knots, McCabe index, code length, etc. Notice that the 
last two indicators are also used in the TOPAAS method. Since the access to the source 
code is not always possible, the complementary black box view is used, which is based 
on the analysis of the information present in the software user documentation (number 
of parameters, memory requirement, number of pages of text, etc.). 
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For the analysis of the logic diagrams only the black box approach was applied. For 
each logic diagram, the following quantities were calculated: 

- Number of function blocks 
- Number of input signals 
- Number of output signals 
- Number of upstream logic diagrams 
- Number of downstream logic diagrams 
- Normalized complexity of the function block interconnections (similar to the 

McCabe index) 
- Number of changeable parameters 
- Number of internal memories 
- Complexity of the function blocks themselves (information coming from the 

function block analysis) 
 

Each of these quantities is a component of a so-called complexity vector of the logical 
diagram. All complexity vectors of an I&C system can be averaged in order to have an 
aggregated indicator of its software complexity. This averaged complexity vector can 
then be further used for the assessment of the software reliability. 

4.4 Discussion on test and user experience  
This chapter presents a discussion on test and user experience based on the TELEPERM 
XS (TXS) system platform developed at AREVA GmbH. 

4.4.1 Verification and Validation process of TXS 
The main steps involved in the verification and validation process of TXS are detailed 
in this chapter. 

The implementation of the software of TXS I&C systems is performed effectively in the 
specification and coding environment (SPACE), where the function diagram editor, 
code generators, and verification functions are integrated. This means that the 
application-specific data for the software and network architecture of the TXS 
computers are specified graphically in form of function, arrangement and network 
diagrams and then centrally stored in a data base. This data base is used to generate the 
complete plant-specific software code by means of automatic code generators. 

During the detailed design and manufacturing phase of a TXS system, the verification 
and validation of the software is executed in three steps (see [15]): 

1. Formal check of the project data base: the verification steps and tests which follow 
the formal specification serve mainly to prove that  

- The specification is clear, accurate and free of contradictions and the 
specification fulfils the process engineering requirements. 

Prior to the code generation, the documentation tools are called to check the data 
base contents for consistency. Source code for the application software can only be 
generated from a consistent specification. The same checks are also performed by 
the code generators during the source code generation. If an inconsistency is 
detected by the code generators, source code files will not be generated. 

2. Visual check of the specification, system meetings: this step verifies that the process 
system requirements have been fulfilled. This is established by manually checking 
the specification (represented as function diagrams) against the requirements.  
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3. Functional tests in the simulation environment: the SPACE engineering system and 
the simulation-based validation tool (SIVAT) allow the specification and 
performance of functional tests on the configured I&C functions within a software 
simulation environment. The simulation results serve to prove the functionality of 
the I&C functions. Depending on the functions involved, the functionality can also 
be validated with a closed-loop simulation (e.g., using an engineering simulator in 
combination with models of the plant). 

The verification and validation is completed with the system and functional tests in the 
test field (system integration phase) and during commissioning. 

In the system integration phase, the software is loaded into the processors and the 
system functions are tested. This functional test consists in feeding input signals into a 
computer and checking the output signals using test computers. Additionally, a service 
computer is used to test how the signals are acquired and processed “inside” of the 
computer that is being tested. 

The scope and coverage of functional tests during the detail design phase and the system 
integration phase is defined in line with the international requirements given in e.g., 
IEC 61513 and IEC 60880. The scope of functional tests is documented in a test concept 
report, where the objectives and coverage of the tests are defined as a basis for the 
elaboration of a test plan and test specifications. All implemented I&C functions in all 
redundancies are tested. There are different strategies for the functional tests involving 
different depth levels, e.g., test of all signals, test of the structure (e.g., all connections 
within one function), “negative tests” (to proof that an undesired behaviour of the 
system cannot occur), failure-performance tests (to proof if the function is still available 
in case of a failure of parts of the I&C system). 

Finally during the commissioning phase, the functionality of the I&C system is tested in 
combination with the plant, i.e.,  no specific software tests are performed. 

Since the software is tested extensively in the frame of V&V, software identity and 
integrity tests are considered to be sufficient for periodical tests. The software identity 
and integrity testing is performed through the evaluation of check sums. This test is 
automatically performed through the TXS self-monitoring system. The aim of this test 
is to proof that the loaded software in the processors did not change. The test involves 
the calculation of the check sum of the software code of a processor and the comparison 
of this value with the check sum of the original code loaded in this processor. The fact 
that both check sums are exactly the same confirms that the software code in this 
processor did not change. Note that if a fault in the FRS or a fault in the implementation 
of the application functions is not detected during V&V, these will not be detected 
during periodical tests. 

If the software is updated or an I&C system modernization takes place, a V&V strategy 
has to be elaborated. The scope of the tests to be considered is defined by means of an 
impact analysis, where the repercussion of the changes (e.g., new software, new system 
parts) on the complete system is analysed, including the parts which remain unchanged. 
Functional tests in the SIVAT simulation environment are included. Depending on the 
scope of the changes, simulation tests on a representative environment and on the field 
may also be included, completed by commissioning tests. 

Furthermore, according to [16] all these V&V steps in TXS, required by the nuclear 
regulations for the performance of category A functions (IEC 60880), can also be 
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understood as fulfilling the correspondent V&V requirements of the SIL 3 (IEC 61508, 
industrial regulation). 

4.4.2 Operating experience of TXS 
The operating experience of the TXS platform has been assessed in 2008 and it is based 
on the user experience of more than 60 nuclear-related plants worldwide (see [14]). 
These I&C systems are permanently in operation, are broadly monitored, and have been 
working reliably and accumulating applicable operating experience for over thirteen 
years. During the considered operating time and until the present no CCF caused by the 
TXS platform was experienced. 

Problems observed during power operation, deficiencies of released products and 
components found during engineering, design or testing activities but also deficiencies 
found during internal/external audits are documented in non-conformance reports 
(NCR). After a NCR initialization, the further processing of NCR is tracked in a data 
base by a dedicated team separately and independently from the engineering and 
product development teams in order to ensure an independent evaluation. The NCR data 
base contains those faults and failures which constitute a significant deviation of 
released products from their specification [13]. 

For each of these non-conformances, it was analysed if the non-conformance had the 
potential –if undetected- to be triggered by a CCF initiator and what could be the impact 
(resulting down time). From this analysis, the following software CCF triggering 
mechanisms have been identified as relevant: 

- Temporal effects: this group encompasses all CCF which may be triggered by 
time-dependent effects (internal trigger mechanisms), such as the depletion of 
resources by time (e.g., leakages in the memory allocation), or by accumulated 
time of operation. Affected by this CCF cause are all processors with the same 
operating time, which usually includes all processors of one subsystem (case 2 
in Table 2). 

- Faulty telegrams: this group considers all CCF which may be triggered by the 
transmission of information via serial data links. The failure mechanism is given 
by the existence of an undetected random failure in a sending CPU causing 
transmission of invalid data. If the system software of the receiver processor 
contains an undetected fault in the validation of the received data (e.g., wrong 
implementation of message checking), the corrupt data remain undetected. If 
these corrupt data are processed an exception (interrupt) is activated. The impact 
of this CCF cause is restricted to all units with direct communication. According 
to the architecture of Figure 1, communication exists between APUs and 
between APUs and VUs within one subsystem (no communication between 
RPS-A and RPS-B). For this reason this CCF affects the APs and VUs within 
one subsystem (case 2 in Table 2). 

- Same signal trajectory: this group encompasses all common cause failures 
which may be triggered by a sequence of input data from the field (external 
trigger mechanism). It cannot be ruled out that the function computers which 
have the same operating system and same application software and process 
exactly the same signal trajectories may fail simultaneously. This CCF cause 
presumes that a very rare (not tested) signal trajectory may be combined with a 
latent hardware or software fault. For the analysis of this trigger mechanism it is 
convenient to differentiate between two categories: 
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• Category 1: the latent fault is located within the software, e.g., systematic 
fault in a TXS function block – elementary function – involved in the 
application software,) and leads to a fatal failure. In the case of a latent 
software fault, the fault has an impermissible interference (exception) on the 
system behaviour, such as the incorrect computation of a command 
executed with inoperable values due to a design error (e.g., division by zero, 
logarithm of negative values). As a consequence, the application function 
can no longer be processed as designed. For such cases, pre-checks and 
remedial actions are implemented in the application and system software to 
handle the faults on the level of the affected function and to protect the 
processor against a stop due to software exceptions. Faults can be captured 
by pre-checking algorithms, which handle the situation by substituting 
suitable values for computation if necessary. If the pre-check of data fails 
(lack in the pre-checking routines, inadequate activation of remedial actions, 
faulty/incomplete implementation of remedial actions) an exception handler 
is activated that interrupts the cyclic process in the processor module and set 
the signal values into defined fail-safe values. Trajectories with exactly the 
same sequence of data may only happen between the APUs within one 
subsystem, such that this CCF trigger mechanism is restricted to affect at 
most all APUs within one subsystem (e.g., RPS-A or RPS-B of Figure 1; 
see also case 3 in Table 2). 

• Category 2: the latent fault is located in the FRS or in the application 
software and leads to a non-fatal failure. This CCF initiator presumes that a 
not-tested signal trajectory may be combined with a latent fault in the FRS or 
in the application software (e.g., incorrectly designed set point value). In this 
case the requested function is not executed (or a different response than the 
requested is obtained) but the TXS processing unit continues to operate 
cyclically. The impact extent is restricted in this case to the specific 
application function (case 4 in Table 2). 

The operating experience of the potential CCF causes addressed in [14] is summarized 
in Table 7. The CCF triggering mechanisms and the latent fault location, i.e., system 
software (SyS), application software (AS), communication of processors (DLC) or 
hardware (HW) is also indicated. Note that all observed failures of the TXS platform 
correspond to single failures with no evidence of CCF events. 

The fatal failure modes triggered by “temporal effects” and “faulty telegrams” in the 
system software and by “same signal trajectory” in the application software (category 1) 
lead to a processor shut down via an exception handler (detected common cause 
failures). This is followed by either a CPU reset including the start-up self-tests or by 
the immediate shut down of the processor. Because of the specific features of the TXS 
platform, no erroneous signal, even temporary, is possible before the processor 
shutdown. The downtimes caused by the failures with CCF potential are very short (see 
Table 7). 
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Table 7. Assessment of software CCF triggering mechanisms using the TXS operating 
experience.  

Latent fault location Accumulated 
operation time 

[h] 

Failure 
rate 
[1/h] 

Event 
duration 

[h] 

CCF triggering 
mechanism 

Fault effects 
(see 

Failures in 
operation Table 2) FRS/ 

AS SyS DLC 
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Temporal effects x   case 2a 0(1) 3.4E+6 1.5E-7 0.25(2)

x  x case 2b 2 3.4E+6 7.4E-7 0.25 Faulty telegrams 

Cat. 1 x x  case 3 0(1) 3.1E+7(4) 1.6E-8 0.10 Same signal 
trajectory Cat. 2  x  case 4 -(3) (3)- - - 

(1) Although no failures during the TXS accumulated operating experience are reported in [ ], one dependent failure is assumed for the failure rate 

calculation. 

14

This value is estimated (not reported in [ ]). 14(2) 
(3) A precise failure probability for application software faults triggered by the same signal trajectory cannot be predicted using operating experience 

of TXS because the possible influence mechanisms can only be detected in case of a demand of the function. No such a case has occurred until 

now 

(4) The operating experience for this category reported in [ ] does not allow the distinction between fatal and non-fatal failures. As a conservative 

assumption, the operating experience presented in this case can be considered as only due to fatal failures. 
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Note that the occurrence of a fatal failure in the TXS system software would not create 
spurious signals due to the strict separation between application and system software. 

Taking diversity requirements between both subsystems (RPS-A and RPS-B in Figure 
1) into account no relevant/realistic CCF mode of the TXS software which causes the 
complete failure of the system (both subsystems) can be identified. 

5 Quantification method 
5.1 Introduction to the quantification method 
The quantification method depends on the type of software module. System software 
and application function software modules are considered relevant to model and 
quantify in PSA. The other SW modules could be ignored since their faults are 
implicitly covered by other cases. 

Fault in system software (SyS) may cause in principle any type of end effect. The 
proposal here is, however, that only fatal failure of one subsystem (1SS) or both 
subsystems (SYSTEM) are considered. It is analytically very difficult to examine the 
reliability of a SyS but operating experience could be used as evidence. This approach is 
outlined in the next chapter. 

Analysis of faults in application software (AS) is the main issue of the report. For them 
an analytical approach is suggested taking into account the complexity of the 
application function and the level of V&V process. Various failure effects and failure 
extents are considered using generic fractions (i.e. conditional probabilities). This 
approach is outlined in chapter 5.3. 

Analysis of faults in FRS are part of the analysis of faults in AS. 

Fault in EF can in principle cause any of end effect. The case ”fatal failures affecting 
redundant units” is covered by the SyS fault. Non-fatal failures are covered by 
corresponding AS-fault. It may be of interest to study whether some extra complex EF 

 



 

is used in several AS, which causes a dependency between AS-modules. The most 
likely fault is not EF fault itself but that the EF is used in a wrong way in the AS – use 
of EFs is thus part of analysis P(AS-fault). Therefore there is no need to explicitly 
model EF faults. 

Faults in proprietary SW modules are covered by HW faults from the end effects point 
of view. Therefore there is no need to explicitly model these proprietary SW module 
faults. 

Faults in DCS and DLC may require some special treatment, due to possibly unique end 
effect, not necessarily covered by cases 1 and 2. However, the case ”fatal failures 
affecting redundant units” is covered by SyS fault, and thus faults in DCS and DLC are 
omitted. 

5.2 System software (SyS) 
The failures of a SyS should preferably be estimated for the system in question from 
operational history. The main challenge is to find historical events that have caused a 
complete fatal failure of the whole system. 

Fatal failure of SyS is assumed to cause at least the failure of one subsystem (1SS). 
With sufficient data, this failure mode should be possible to estimate. The value 
calculated from operating experience represents thus the unavailability of one 
subsystem. 

Depending on the degree of similarities between application functions of the two 
subsystems similarities, a fraction of faults may cause the failure of both subsystems 
(SYSTEM). The assessment of fraction requires an analysis of degree of diversity 
between the application functions of the two subsystems. Diversity assessment is out of 
the scope of this report and may be considered next year, if examples are available. For 
time being, it is suggested that without an analysis of degree of diversity, CCF between 
subsystems should be assumed (since it has not be ruled out). Tentatively a factor 0.1 
may be used, which is a common CCF judgement in PSA when no proper data is 
available. 

To summarise the SyS fault related basic events listed in Table 8 could be considered in 
the DIGREL example PSA model. 

Table 8. SyS fault related basic events. 
SW failure event Tentative probability Evidence 
SW fault 1: 1E-7 Engineering judgement, 10% from 

1APU/1VU (same signal trajectory, 
cases 3a/3b). This is where the 
diversity between application 
functions have an influence 

SYSTEM-SyS fatal CCF 

SW fault 2a: 1E-6 Analysis of TXS operating 
experience 1SS-SyS fatal CCF 

SW fault 2b: 1E-5 Analysis of TXS operating 
experience 1SS-DCU fatal CCF 

 

Note that the failure probabilities given in Table 8 can be considered as inputs to model 
the software failure probabilities in the PSA using basic events. 
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5.3 Application software 
5.3.1 Introduction to application software evaluation 
The estimate of the application software failure probability is dependent on the 
processes that are run on the processor. On each processor, several application software 
may run. 

A fault in one application software, which causes a fatal failure of the processor, affects 
also the other application software running in the same processor. Hence, a fatal failure 
can affect other processes running in the same processor– but only in the configuration 
that the information output stops. 

A non-fatal failure in one application software can produce an incorrect output (or of 
course no output, but this is the same as incorrect output) but does  not affect the other 
applications running in the same processor. 

The failure probability of the application software is considered in this method 
dependent on the verification and validation procedure and the complexity of the 
software. 

In section 5.3.2 a baseline failure estimate is developed, based on an estimate of 
complexity and V&V. This baseline failure estimate is representing the failure 
probability of the one AS (regardless of it is fatal or non-fatal). In the following section 
it is discussed how this baseline failure probability is expected to be used and modelled 
in different cases. 

5.3.2 Baseline failure estimate, prior 
The software fault probability in a system is hard to estimate. As shown in previous 
sections, the system can be broken down to a set of software fault parameters. But, the 
failure data available for software faults are not given on this level of detail. In fact, it is 
hard to find any collection of failure data. 

In this section, we try to establish some baseline failure estimates. To do this, we have 
defined two types of measures for the system: 

• Complexity 

• Verification and validation 

Complexity in a system is a parameter that is dependent on the size of the system, how 
many inputs that are handled, if there are delays or hold circuits and so on. It is a 
measure defined with the intent that complicated software should be more likely to 
produce a critical fault than simple software, given that the same level of verification 
and validation is applied. The complexity in a system is defined in the baseline estimate 
as a high, medium and low. 

The verification and validation measure is believed to impact the software fault 
probability in the way that critical faults are expected to be much rarer in a system with 
high verification and validation principles. This could be compared with the SIL-system 
described in IEC-61508, where the obvious purpose is to reduce the failure probability 
of the system by increasing the requirements on the V&V process. Therefore, in the 
baseline risk assessment – the SIL is used as the estimator of the V&V process. 
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For a suggested method to be more than just another way of assessing software 
reliability, experience from different industries has been studied. The idea is to find 
examples that will justify some baseline failure probabilities for critical failures.  

Below is a table with some initial assumptions on SW fault probabilities. It shall be 
noticed that we are assuming that a critical software fault will be CCF related between 
redundant AS that have the same task. 

Table 9. Baseline failure probability estimates for application software modules. 
  Complexity    

  High Medium Low  

0 V&V 1.0E-1 1.0E-2 1.0E-3 

1  1.0E-2 1.0E-3 1.0E-4 

2  1.0E-3 1.0E-4 1.0E-5 

3  1.0E-4 1.0E-5 1.0E-6 

4  1.0E-5 1.0E-6 1.0E-7 

 

The upper bound, a failure probability of 1E-1 per demand, would represent very 
complex software developed with a very simple verification and validation principle. In 
practice, this would not be applicable to the nuclear domain within RPSs. If such a 
system should be developed, the assumption that such a software should fail 1 time out 
of 10 is maybe a bit conservative, but yet reasonable. 

As was discussed in section 4.2, the SIL level could be used as an estimate of the 
software failure probability. The lower failure probability for each SIL could be claimed 
to be an estimate of the highest failure probability the software can have. Hence, the 
leftmost column in Table 9 (High complexity software) could be argued to be 
representing the lower bound of the SIL bounding failure probability in Table 6. 

If the complexity in the software is lower, then the software fault probability should be 
lower than what the SIL level is indicating. If a piece of software is of low complexity, 
but has the same type of validation, how much better could the software be claimed to 
be? In this process we have assumed that software with low complexity would be a 
factor of 100 better than the software with high complexity. 

Justification 

If a functional processor is considered medium complex software with a fairly strict 
V&V process, the grading according to the suggested method would be Medium on 
complexity and 3 on V&V. This would give a failure probability per demand of 1E-5, 
which, referring to previously applied data in nuclear PSAs may be a bit low — where a 
commonly used probability of failure for a functional processor in an I&C system is 
1E-4 per demand. Certain I&C system suppliers base this on their claim that they have 
followed the requirements for SIL 4 developing the software. It is believed to be 
reasonable with the 1E-5 pfd assumption for such software, since the involved 
probabilities are based on very rough estimates. 

Data collected by AREVA [14] states that the fatal failure rate for the software in the 
TXS system is in the range of 1.6E-8 per hour, based on operating experience (for 
details see section 4.4.2). The failure rate represents failures due to impermissible 
interferences from the application software on the system processors. The failure 
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probability for the system can be calculated as the probability that the system is failed 
when an initiating event occur plus the likelihood that the system stops during a 
transient. The repair time is hence also relevant (0.1h) for impermissible interferences 
from the application software with fatal consequences. The transient time is assumed to 
be 24 hours. Based on this the failure probability of AS (fatal failures) is calculated to 
3.9E-7. Hence, compared to the baseline failure probabilities of Table 9, it indicates a 
SIL3 application of Low complexity or a SIL4 application of Medium complexity. This 
seems reasonable.

In the presentation Reliability of New Plant Automation of Loviisa NPP [18] the failure 
probabilities used for the software at digital safety I&C were discussed. The probability 
of software failures affecting more than one division is 5E-5 (within same automation 
system). The presentation also considered data used for CCF between different systems, 
but that is not relevant in this context. The failure probability is reasonably consistent 
with the baseline failure probability for Medium complex software for SIL 3. 

A study of software related failure within the U.S. Public Switched Telephone Network 
(PSTN) is presented in the paper Sources of failure in the public switched telephone 
network [19]. The telephone switching network performs a fairly simple task by 
connecting point A with point B, but requires a very complex computing system. 
Software for a switch with even a relatively small set of features may comprise several 
million lines of code. It is pointed out that the telephone switch manufacturer's software 
development process typically includes elaborate quality assurance functions. Relating 
this to Table 9 would give a highly complex system, complexity grade High, with an 
advanced verification and validation process, V&V grade 4, which in its turn gives a 
probability of failure per demand of 1E-5. The author of [19] has studied the system 
outages from April 1992 to March 1994 and concludes that the PSTN averaged an 
availability rate better than 99.999% during that time period. The software related 
failures, including those in recovery mode, account for 14% of the number of total 
outages. This would indicate that the failure probability of the system would be at least 
14% of 1E-4 ~ 1E-5. This would then be reasonably consistent with the table above. 

In the paper Failure modes in medical device software: an analysis of 15 years of recall 
data [20] Dolores R. Wallace and D. Richard Kuhn examine recall data for medical 
devices due to software failures using the U.S. Food and Drug Administration database 
of medical device failures. It is concluded that 6% of the 2,792 medical devices recalled 
between 1983 and 1991, including devices not containing software, were recalled due to 
software related failures. For the devices recalled between 1992 and 1997 the data were 
not complete, but the results were within the same range. The years 1994, 1995, 1996 
had 11%, 10% and 9% of the software recalls which, according to the authors, could be 
a result of the rapid increase of software in medical devices.  The conclusion from the 
paper is that there should be more quality assurance procedures to mitigate software 
failure. Based on this we could assume that the V&V processes are of reasonably low 
score and thereby would fit in the low grade V&V. For reasonably complicated software 
this would indicate an annual failure probability of 1E-2. This estimate is however very 
uncertain, but is yet reasonable when compared with the table. 

The TOPAAS method [11] developed by the Dutch Rijkswaterstaat includes 
considerably more grading points than the method suggested here. The example 
presented in the TOPAAS document includes between 10,000 and 50,000 lines of code 
and is stated to have a fairly simple logic. The product fulfils the requirements for SIL 1 
and it is assumed to have medium-low complexity. The suggested method in this 
document would yield a probability of failure per demand of 1E-4 –1E-3. The 
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calculated failure probability based on the method in [11] is 2.2E-5. Even though there 
is a difference between the methods, the TOPAAS method shows that the failure 
probability can be significantly lower than the SIL level indicated failure probability – 
and there is a reasonable consistence between the methods. 

5.3.3 Outline of representations 
The data collected and presented in previous section does not discuss "what is a system" 
or what is the "origin of the fault"? It is however reasonable to believe that as soon as a 
fault is detected, the software is considered faulty. Within a process there may in reality 
be several AS running – in parallel. If there is a fault in one of them, this will only affect 
the other AS if the overall process is stopped, halted. This would cause all the AS on 
that processor to stop working and give no output. 

Hence, a failure in the specification or the programming of one of the processes may 
influence the others, but only if the process runs into a fatal fault. This is a subset of the 
failures for the AS. Table 9 is considered to be an estimate of all the failures, fatal and 
non-fatal, for an AS. Table 9 is also considered to include failures in the FRS, or rather, 
the complexity in the FRS defines the complexity in the software – and the V&V is the 
measure of the implementation process. 

Illustrated by Figure 5 is the process of estimating fatal and non-fatal failures and also 
the split of non-fatal failures into failure to actuate or spurious actuation failure cases. 

It can be noticed from Figure 6 and Figure 7 that regardless if the modelled failure mode 
is failure to actuate or if it is spurious actuation, it is estimated given the full fraction of 
non-fatal failures in the current model (i.e., being a fraction of the total probability 
P(AS1 fault)). 

 

 
Figure 5. How to estimate the software fault probability based on Table 7 in fatal and 
non-fatal (spurious and no signal scenarios). 

 

For the estimation of the fractions failure to actuate resp. spurious actuation it has to be 
taken into account that in general a significant effort is spent to implement fault 
propagation barriers, self-tests, self-monitoring and plausibility checks in soft- and 
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hardware to capture any detected malfunctions inside a system, and to direct these 
detected malfunctions into safe states. Therefore, non-fatal failures leading to spurious 
actuations should be considered as less frequent than non-fatal failures leading to 
failures on demand. 

Given the fact that there is at this stage of this project no evidence available how to split 
the non-fatal failures into fractions representing failure to actuate resp. spurious 
actuation one could conservatively assume the same failure probability for non-fatal 
failures leading to failure to actuate and to spurious actuation (for this topic, future 
collection of evidences is of high interest).  

Referring back to Table 3, the first three rows in the table are represented by the P(AS1 
fault) in the figure, whereas rows four and five in the table are representing the 
fatal/non-fatal failure fractions and rows six and seven are representing the failure to 
actuate and spurious actuation cases. 

An alternative approach to estimate fatal failure probability in application software 
could be to use operational history, if sufficient history is available. Which method to 
use to estimate the fatal failure probability will be discussed further in the continued 
work. Also, as described in section 3, which of the fatal and non-fatal failure modes that 
are relevant in the fault trees are also dependent on the system functionality. The figures 
below illustrate the situations for no-signal scenario (in a fail-safe and non-fail-safe 
configuration) and spurious signal (in a fail-safe and non-fail-safe configuration). It 
shall be noticed that a fatal failure in another process may influence the behaviour of the 
studied AS, as discussed above. 
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Figure 6. Left figure: No signal in a fail-safe configuration. Right figure: No signal in a 
non-fail-safe configuration. 

 

 

Spurious output from  
application software 1,  
fail safe

@SPURIOS-FAILSAFE-1

Fatal failure in any 
process on processor

@SPURIOS-FAILSAFE-2

Failure probability in AS1

AS1-FATAL

Failure probability in AS2

AS2-FATAL

Failure probability in ASn

ASN-FATAL

Non-fatal failures in AS1

@SPURIOS-FAILSAFE-3

Non-fatal failures in AS1  
- spurious signal

AS1-SPUR-NONFATAL

Non fatal failure 
probability in ASx, CCF -  
spurious signal

ASX-SPUR-CCF-NONFAT

Spurious output from  
application software 1,  
not fail safe

@SPURIOUS-NOFAILS-1

Non-fatal failures in AS1

@SPURIOUS-NOFAILS-4

Non-fatal failures in AS1  
- spurious signal

AS1-SPUR-NONFATAL

Non fatal failure 
probability in ASx, CCF -  
spurious signal

ASX-SPUR-CCF-NONFAT

 
Figure 7. Left figure: Spurious signal in a fail-safe configuration. Right figure: 
Spurious signal in a non-fail-safe configuration. 
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5.3.4 Summary of quantification of application software failure 
probability 

The baseline failure probability for the application software is estimated from Table 9. 
The failure probability is dependent on the software complexity and the V&V program. 
In case there are observations, after the installation tests, these should be possible to use 
as evidence for a better approximation of the software failure probability. This part of 
the method is however not defined yet. 

Further investigation on this topic includes the estimation of the fraction for fatal and 
non-fatal failures. The fatal failure probability may also be estimated based on 
operational history. 

Which failures that can cause spurious and no signals are dependent on the system 
layout. For example, if the system is designed in a way that the safe end state will not 
cause spurious stop signal to the system – then only the non-fatal failures will have a 
potential for causing spurious signals. Fatal failures would in this example only cause 
no signal scenarios. 

CCF is especially interesting for functional requirements, and these are in their turn 
especially interesting for non-fatal failures. A simple application model for CCF is 
being considered. 

6 Plan for 2014 
In 2014, the plan is to perform an example including several types of software basic 
events in order to test and demonstrate the method. 

Guidelines document will be prepared for the method. Some issues to address in the 
guidelines are 

• How to assess complexity? 
• Can better V&V-class than SIL 3 be justified sometimes, i.e., SIL 4 representing 

requirements which are stricter than cat. A (extra V&V measures are taken)? 
• How to assess CCF between application SW modules which have common 

functional requirements specifications? 
• The estimate of application software failure probabilities needs further 

discussion regarding fatal failure treatment,  fractions of fatal failure or failure to 
actuate / spurious actuation (if applicable). 

• How to take user experience (additional tests and experiences) into account? 
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