

NKS-304
ISBN 978-87-7893-381-2

Software reliability analysis for PSA

Ola Bäckström1

Jan-Erik Holmberg2

Mariana Jockenhövel-Barttfeld3

Markus Porthin4

Andre Taurines3

1Lloyd’s Register AB, Sweden

2Risk Pilot AB, Sweden

3AREVA GmbH, Germany

4VTT Technical Research Centre of Finland

March 2014

Abstract

A project is ongoing, financed by Nordic nuclear safety research (NKS),
The Finnish Research Programme on Nuclear Power Plant Safety
(SAFIR2014) and Nordic PSA group (NPSAG), with the intent to provide
guidelines to analyse and model digital systems in probabilistic safety as-
sessment (PSA), using traditional reliability analysis methods (FMEA,
Fault tree analysis).
This report discusses software reliability in this context. The report pro-
poses a method for the evaluation and quantification of reactor protection
system (RPS) software failures. The proposed method will use operational
history to estimate the fatal failure probability within system software (op-
erating system, runtime), and use an indirect method for the estimation of
failure probability within application software (non-fatal and fatal failures).
The quantification for application software is based on two main measures,
complexity and the degree of verification and validation of the software.
Collection of data and its challenges will also be discussed. Some data
collected for a software platform will be discussed, and used as an exam-
ple of the difficultness — and challenge — to collect data.

Key words

PSA, Software reliability, Operational history data

NKS-304
ISBN 978-87-7893-381-2

Electronic report, March 2014
NKS Secretariat
P.O. Box 49
DK - 4000 Roskilde, Denmark
Phone +45 4677 4041
www.nks.org
e-mail nks@nks.org

NKS Report NKS-304

Software reliability analysis for PSA

Ola Bäckström1

Jan-Erik Holmberg2

Mariana Jockenhövel-Barttfeld3

Markus Porthin4

Andre Taurines3

1Lloyds Register AB, P.O. Box 1288, SE-172 25 Sundbyberg, Sweden

2Risk Pilot, Parmmätargatan 7, SE-11224 Stockholm, Sweden
3AREVA GmbH, P.O. Box 1109, 91001 Erlangen, Germany

4VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland

March 2014

Table of contents
1 INTRODUCTION .. 4

2 MOTIVATION FOR QUANTIFICATION OF SOFTWARE FAULTS 4

3 DEFINITION FOR SOFTWARE FAULTS .. 5

3.1 EXAMPLE SAFETY I&C ARCHITECTURE .. 5

3.2 FAILURE ANALYSIS OF DIGITAL PROTECTIONS SYSTEMS ... 6

3.3 SOFTWARE FAULT MODES ... 7

3.4 EVALUATION OF RELEVANT SOFTWARE FAULTS ... 9

3.5 SOFTWARE FAILURE MODES FOR AN EXAMPLE SAFETY FUNCTION .. 12

4 LIST OF EVIDENCE... 15

4.1 DESCRIPTION OF THE RELEVANT EVIDENCE .. 15

4.2 DISCUSSION ON BASIS V&V PROCEDURE, SIL .. 16

4.3 DISCUSSION ON COMPLEXITY OF SOFTWARE... 17

4.3.1 TOPAAS Approach... 18

4.3.2 ISTec Approach .. 18

4.4 DISCUSSION ON TEST AND USER EXPERIENCE.. 19

4.4.1 Verification and Validation process of TXS ... 19

4.4.2 Operating experience of TXS.. 21

5 QUANTIFICATION METHOD ... 23

5.1 INTRODUCTION TO THE QUANTIFICATION METHOD ... 23

5.2 SYSTEM SOFTWARE (SYS) .. 24

5.3 APPLICATION SOFTWARE .. 25

5.3.1 Introduction to application software evaluation... 25

5.3.2 Baseline failure estimate, prior .. 25

5.3.3 Outline of representations .. 28

5.3.4 Summary of quantification of application software failure probability.............................. 31

6 PLAN FOR 2014 ... 31

7 REFERENCES.. 31

Tables
Table 1. Effects of software module faults [4].The cells not filled are considered not

relevant ..9

Table 2. Screening of relevant software fault cases for PSA modelling.10

Table 3. Principal probability parameters related to I&C failures caused by application
software faults (fault in AS or FRS)..11

Table 4. Example application software modules in VUs and APUs.13

Table 5. Software module level failure modes for the example safety function. Indexes
#1–#6 refer to the transfer gates of the fault trees above...15

Table 6. Probability intervals of safety integrity levels [7]. ..17

Table 7. Assessment of software CCF triggering mechanisms using the TXS operating
experience..23

Table 8. SyS fault related basic events. ...24

Table 9. Baseline failure probability estimates for application software modules..........26

Figures

Figure 1. Example I&C system architecture. ..6

Figure 2. Schematic fault tree for failure to actuate EFW-ON in division x. Yellow
transfer gates include software module basic events listed in Table 5....................13

Figure 3. Schematic fault tree for spurious EFW-OFF in division x. Yellow transfer
gates include software module basic events listed in Table 5.14

Figure 4. A BBN for assessing software reliability using SIL class, software complexity
and usage and test observations as evidence. ..16

Figure 5. How to estimate the software fault probability based on Table 7 in fatal and
non-fatal (spurious and no signal scenarios). ..28

Figure 6. Left figure: No signal in a fail-safe configuration. Right figure: No signal in a
non-fail-safe configuration. ...30

Figure 7. Left figure: Spurious signal in a fail-safe configuration. Right figure: Spurious
signal in a non-fail-safe configuration...30

Abbreviations
APU Acquisition and processing unit
AS Application software
BBN Bayesian Belief Net
CCF Common cause failure
CDF Core damage frequency
DCU Data communication unit
DCS Data communication software
DLC Data link configuration
EF Elementary function
EFW
FRS

Emergency feedwater system
Functional requirement specification

HW Hardware
I&C Instrumentation and control
IEC International Electrotechnical Commission
NKS Nordic nuclear safety research
NPP Nuclear power plant
NPSAG Nordic PSA Group
OECD/NEA Organisation for Economic Co-operation and Development, Nuclear

Energy Agency
pfd Probability of failure on demand
PSA Probabilistic safety assessment
RPS
SAFIR

Reactor protection system
Finnish Research Programme on Nuclear Power Plant Safety

SIL Safety Integrity Level (as defined in IEC 61508)
SIVAT Simulation-based validation tool of TXS
SPACE Specification and coding environment of TXS
SS Subsystem
SyS System software
SW Software
TXS TELEPERM® XS, product of AREVA
V&V Verification and validation
VTT
VU

Technical Research Centre of Finland
Voting unit

1

Summary
Digital protection and control systems have been in operation for many years now (e.g.
in France, Japan) and are appearing as upgrades in older nuclear power plants (NPPs)
with increasing operating experience and are standard solutions for new NPPs. To
assess the risk of NPP operation and to determine the risk impact of digital system
upgrades on NPPs, quantifiable reliability models are needed along with data for digital
systems that are compatible with existing probabilistic safety assessments (PSAs). Due
to the many unique attributes of these systems (e.g., complex dependencies, software),
several challenges exist in systems analysis, modelling and in data collection.

In particular, the assessment of software reliability is challenging. Software failures are
in general mainly caused by systematic (i.e. design specification or modification) faults,
and not by random errors. Software based systems cannot easily be decomposed into
independent components, and the interdependence of the components cannot easily be
identified and modelled. Applying software reliability models in the PSA context is
hence not a trivial matter.

A project is ongoing, financed by Nordic nuclear safety research (NKS), The Finnish
Research Programme on Nuclear Power Plant Safety (SAFIR2014) and Nordic PSA
group (NPSAG), with the intent to provide guidelines to analyse and model digital
systems in a PSA context, using traditional reliability analysis methods (FMEA, Fault
tree analysis). The following focus areas have been identified for the activities:

1. Develop a taxonomy of hardware and software failure modes of digital
components for common use.

2. Develop guidelines regarding level of detail in system analysis and screening of
components, failure modes and dependencies.

3. Develop an approach for modelling and quantification of common cause failure
(CCF) between components.

4. Develop an approach for modelling and quantification of software failures.

This report describes the approach for number four above, however it needs to be put in
relation to the first three items.

The report will discuss a proposed method for evaluation and quantification of reactor
protection system (RPS) software failures in nuclear PSA context. The proposed method
will use operational history to estimate the fatal failure probability within system
software (operating system, runtime), and use an indirect method for the estimation of
failure probability within application software (non-fatal and fatal failures). The
quantification for application software is based on two main measures, complexity and
the degree of verification and validation of the software.

Collection of data and its challenges will also be discussed. Some data collected for a
software platform will be discussed, and used as an example of the difficultness - and
challenge - to collect data.

2

Acknowledgements
The work has been financed by NKS (Nordic nuclear safety research), SAFIR2014 (The
Finnish Research Programme on Nuclear Power Plant Safety 2011–2014) and the
members of the Nordic PSA Group: Forsmark, Oskarshamn Kraftgrupp, Ringhals AB
and Swedish Radiation Safety Authority. NKS conveys its gratitude to all organizations
and persons who by means of financial support or contributions in kind have made the
work presented in this report possible.

Disclaimer
The views expressed in this document remain the responsibility of the author(s) and do
not necessarily reflect those of NKS. In particular, neither NKS nor any other
organization or body supporting NKS activities can be held responsible for the material
presented in this report.

3

1 Introduction
Digital instrumentation and control (I&C) is becoming more and more common in
nuclear power plants (NPPs). Turbine plant I&C and diverse other safety-related
systems, which have minor role in probabilistic safety assessment (PSA) context, are
already digital. Although quite a number of plants has received digital reactor protection
(RPS) systems either as original equipment (e.g. China, France, Japan,) or in upgrade
projects (e.g. Sweden, Switzerland, USA), most plants do not yet have digital reactor
protection system. New-builds will have complete digital I&C.

Currently, no common approach is available in the NPP field for assessing safety and
reliability of digital I&C and meeting related regulatory requirements. However, there is
a tradition to try to find harmonised approaches for probabilistic safety assessment
(PSA) and its applications and there is generally a strong interest to find solutions and
guidelines on how to deal with digital I&C. Due to the absence of a common method for
modelling software CCF in the PSA, generic conservative probabilities are usually used,
which tend to be conservative and may ultimately prevent PSA results from providing
proper risk insights.

This report presents a method for quantification of RPS software failures in nuclear
PSA context. The aim is to define a simple yet sufficient model which describes the
software failure impacts and provides a quantification approach for the failures.
Treatment of common cause failures (CCF) between components is also discussed.

The work is part of the Nordic DIGREL project [1, 2, 3], and builds partly on the work
on taxonomy of failure modes of digital components for the purposes of PSA conducted
by the international OECD/NEA Working Group RISK [4].

2 Motivation for quantification of software
faults

The modelling of programmable control systems in PSA is often considered as a
difficult and tedious task, especially with regard to the software aspect of the systems.
The reason that something is difficult to treat probabilistically is not a good argument to
omit the representation of it (the software part) in PSA.

Software faults are important to the system and should be part of a safety analysis. The
basic question: “What is the probability that a safety system or a function fails when
demanded” is fully feasible and well-formed question for all components or systems
independently of the technology on which the systems are based [5]. A similar
conclusion was made in the workshop on Philosophical Basis for Incorporating
Software Failures in a Probabilistic Risk Assessment [6]. As part of the open discussion,
the panellists unanimously agreed that:

• software fails
• the occurrence of software failures can be treated probabilistically
• it is meaningful to use software failure rates and probabilities
• software failure rates and probabilities can be included in reliability models of

digital systems.

4

Based on these conclusions, it is necessary to be able to estimate the failure probability
of the software.

3 Definition for software faults
3.1 Example safety I&C architecture
DIGREL project primarily considers the RPS of a nuclear power plant, since it is
considered more important for PSA than other I&C and it is considered a conceivable
target for the activity. There is a general consensus that protection systems shall be
included in PSA, while control systems can be treated in a limited manner. The system
architecture and the mode of operation of protection systems versus control systems are
different, which creates different basis for the reliability analysis and modelling.

Protection systems use microprocessors running in parallel in redundant divisions and
they actuate functions on demand (e.g. when process parameter limits are exceeded).
Control systems are versatile having both on demand and continuous functions and they
do not necessarily have a redundant structure. Different roles of the protection and
control systems are also reflected in the safety classification, meaning different safety
and reliability requirements.

The differences between different I&C platforms and software may be significant, not
only the physical design but also the functional, e.g. fault tolerant features and voting
logic. On the other hand, due to the stringent design requirements for protection systems
and common functional requirements for safety automation of light water reactors, there
are important similarities between design solutions provided by different nuclear safety
I&C vendors.

For the purpose of defining concepts and demonstrating modelling and quantification
approaches, a generic safety I&C architecture is assumed. The example protection
system consists of two diverse subsystems, called RPS-A and RPS-B, both divided into
four physically separated divisions (see Figure 1). The platforms of both subsystems are
assumed to be identical. The extent of diversity between RPS-A and RPS-B may vary,
but we may generally assume that they perform different functions. The number of
acquisition and processing units (APU) and voting units (VU) per each subsystem and
division may vary, too, but here we assume that there can be more than one APU/VU
per each subsystem and division.

5

Figure 1. Example I&C system architecture.

3.2 Failure analysis of digital protections systems
With regard to the analysis and modelling of protection systems, the following levels of
details can be distinguished [4]:

1. the entire system (subsystems RPS-A and RPS-B in this example)

2. a division (4 divisions in this example)

3. I&C units, i.e., APUs and VUs. In addition there are data communication units
(DCU) which are usually integrated with APUs and VUs

4. modules (inside the I&C units)

5. basic components (of which modules are built).

At the system and division level, there are basically two failure modes: “failure to
actuate the function” and “spurious actuation”.

At lower levels (I&C unit, module, basic component), it is relevant to consider more
aspects of failure modes, i.e.:

• The fault location (in which hardware or software module the fault is located)
• Failure effect:

o Fatal, ordered failure (generation of outputs ceases, outputs are set to
specified, supposedly safe values),

o Fatal, haphazard failure (generation of outputs ceases, outputs are in
unpredictable states),

o Non-fatal, plausible behaviour (generation of outputs continues, an
external observer cannot determine whether the I&C unit or the hardware
module has failed or not),

o Non-fatal, non-plausible behaviour (generation of outputs continues, an
external observer can decide that the I&C unit or the hardware module
has failed).

6

• Detection situation: On-line detection, off-line detection, revealed only by
demand, spurious effect.

Safety I&C relies on a high degree of self-monitoring, self-tests, plausibility checks and
engineered monitoring functions, all designed to detect faults, errors and potentially
unsafe situations, and to convert them into “safe” states. Therefore, for the further
analysis, regarding the main I&C units of the RPS, APU and VU, the relevant failure
effects can be restricted into “fatal, ordered failure” and “non-fatal, plausible
behaviour”, and later called “fatal” respectively “non-fatal” failure in this report.

In a fatal failure the processor stops, the watchdog or exception handler responds to the
situation and a “safe state” is activated. Depending on how the “safe state” actuation is
defined and the considered system level failure modes in PSA, fatal failures may be
ignored (no consequences) i.e. the system shows a passive behaviour and lead to “no
actuation signal” (fail-safe configuration, such as TELEPERM® XS) or the safe state is
used to initiate a fail-safe actuation. Fatal failure affects all functions implemented in
the I&C unit.

Non-fatal, plausible behaviour can cause inappropriate responses (failure to respond on
demand, spurious actuation). Good design aims at minimizing the area of impact of
non-fatal failures to an as small as possible area (e.g. one function) by separating the
code of individual I&C functions, by separating application and system software etc.

Fatal haphazard failure is a practically eliminated failure state for APU and VU. It may
be relevant for some other types of modules which are not supervised by watchdogs and
have not exception handler. In those cases, fatal haphazard failure can be usually
associated with one of the failure modes of the hardware.

Non-fatal, implausible behaviour is similar to fatal, ordered failure from the response
point of view.

The combination of fault location, failure effect, detection situation together with the
fault tolerant design of the system are usually sufficient to determine the functional end
effect, such as

• Loss of all functions (outputs) of the I&C unit (APU/VU),
• Loss of a specific function (no actuation on demand),
• Spurious actuation.

The above list is not exhaustive, and, e.g., for voting logics or in case of intelligent
validation of input signals the functional end effect may be more complex (e.g.
degraded voting logic). Anyway, the module level (both hardware and software) seems
to be sufficient to analyse dependencies important to PSA, at least for protection
systems.

3.3 Software fault modes
The qualitative part of the software fault mode analysis is focused on

a) identification of safety-critical software modules in I&C units

b) identification of possible effects of postulated faults in the safety-critical
software modules

c) identification of defensive measures against the software faults.

7

The approach is to successively postulate a single software fault in each software
module regardless of the likelihood of such faults, and to determine the maximum
possible extent of the failure, regardless of the measures taken by design or operation to
limit that extent. The following software PSA modules are considered [4]:

• System software (SyS). This includes the operating system and runtime
environment (interaction between application and operating system).

• Elementary functions (EFs)1. There is one such module per EF. A virtual EF
could be created for each hardware module for which one wants to consider
failures due to its software and / or hardware design.

• APU functional requirements specification modules (APU-FRS). There is one
such module per application function required of an APU. Their purpose is to
allow the representation of errors in functional requirements specifications of the
acquisition and processing functions.

• APU application software modules (APU-AS). There is one such module per
application function implemented by an APU. Their purpose is to allow the
representation of errors in the implementation of application-specific acquisition
and processing software. If desired, a virtual module may be used to represent
postulated errors in the data tables specifying the hardware configuration and the
data communication of the APU.

• Proprietary software (Propr. SW) in I&C. There are other modules than the
processor module. Specific pieces of software may be present in hardware
modules in APU, DCU, VU or any other module of the system (e.g. power
supply) other than SyS and AS.

• VU functional requirements specification modules (VU-FRS). There is one such
module per voting function required of a VU. Their purpose is to allow the
representation of errors in functional requirements specifications of the voting
functions.

• VU application software modules (VU-AS). There is one such module per
voting function implemented by a VU. Their purpose is to allow the
representation of errors in the implementation of application-specific voting
software. If desired, a virtual module may be used to represent postulated errors
in the data tables specifying the hardware configuration and the data
communication of the VU.

• Data communication software (DCS). There could be a dedicated operating
system software in the DCSs.

• Data link configuration (DLC). There is one such module per network in the
system.

Given the taxonomy of end effects at I&C level, Table 1 summarises the maximum
failure effect of a postulated software fault in each of the software PSA modules:

• FF-1SS: Failure of one Function (or more) in one subsystem. This case refers to
non-fatal software failures that result in the misbehaviour of one or more I&C
functions in one subsystem. The I&C functions that are dependent on the failed

8

1 For TELEPERM® XS EF are called function blocks. EF can be considered as part of the system
software. However, all the application-specific processing is done in the code of the elementary functions
modules. For this reason, EF could be considered as part of the application software.

functions could also fail. Those dependent functions are necessarily in the same
subsystem.

• FF-1D-1SS: Failure of one Function (or more) in only one division in one
subsystem. This case refers to non-common cause, non-fatal software failures of
I&C functions without vote.

• FF-AllSS: Failure of one Function (or more) in all subsystems
• 1APU/1VU: Failure of one set of redundant APUs/VUs. This case refers to fatal

software failures affecting only one set of redundant APUs/VUs (necessarily in
the same subsystem).

• MAPU-1SS: Failure of multiple sets of redundant APUs in only one subsystem
• 1SS: Loss of one subsystem.
• MAPU-AllSS: Failure of multiple sets of redundant APUs in both subsystems
• 1SS-APU: Loss of one Subsystem and of one or more sets of redundant APUs in

the other subsystem.
• SYSTEM: Loss of both subsystems.

Table 1. Effects of software module faults [4].The cells not filled are considered not
relevant

R: Relevant.

 SW fault location
Effect SyS EF (in

APU)
APU-
FRS

APU-
AS

Propr.
SW

VU-
FRS

VU-
AS

EF (in
VU)

DCS DLC

FF-1SS R R R R R R R
FF-1D-

1SS
R R R R

FF-AllSS R R
1APU R R R R R
1VU R R R R R

MAPU-
1SS

R R R

1SS R R R R R R R R R
MAPU-
AllSS

R R R

1SS-APU R R R
SYSTEM R R R R R R R

3.4 Evaluation of relevant software faults
Table 1 includes a number of possible failure effects for different software faults.
Although it would be impractical to take all of them into consideration in the PSA
model, the most relevant can be identified. In this report, the software faults and effects
proposed in Table 2 will be considered.

9

Table 2. Screening of relevant software fault cases for PSA modelling.

 SW fault location
Effect SyS EF (in

APU)
APU-
FRS

APU-
AS

Propr. SW VU-
FRS

VU-
AS

EF (in
VU)

DCS DLC

FF-1SS 4a 4a 4b 4b
FF-1D-1SS 4c 4c

FF-allSS
1APU/1VU 3a 3a 3b 3b

MAPU-
1SS

1SS 2a 2a 2a 2a 2a 2a 2a 2b 2b
MAPU-
AllSS

1SS-APU
SYSTEM 1 1 1 1 1

1. Software fault causing loss of both subsystems (SYSTEM). This is a complete
CCF covering all subsystems that have the same SyS. The probability of such an
event is naturally extremely low, but the basic event can be used to evaluate the
level of hardware diversity in the actuation of safety functions. It is only
reasonable to consider a fatal failure consisting in a crash of the processing units,
i.e., transition of the computers to a shut-down state. This maximal end effect
covers all the other principally possible end effects. Software fault can be
located in SyS, EFs, proprietary SW-modules in APUs/VUs, DCS, but it can be
represented in a model by a single basic event.

For this event, a single generic probability needs to be estimated, denoted here
P(SYSTEM-SyS fatal CCF).

2. Software fault causing loss of one subsystem (1SS). This is a complete CCF
causing a fatal failure which crashes the processing units in one subsystem,
i.e.,transition of the computers to a shut-down state. The software fault can be
located in

a) the SyS, EF (APU/VU), APU-FRS, proprietary SW-modules in APUs/VUs,
VU-FRS or VU-AS,

b) DCS or DLC.

Difference is that in case of fatal failure in DCS or DLC (b), VUs run and can
take safe fail states. In case (a), the whole subsystem stops running and also
takes a safe state.

For each case, a generic probability needs to be estimated, denoted here P(1SS-
SyS fatal CCF) resp. P(1SS-DCU fatal CCF).

3. Software fault causing failure of redundant set of APUs (3a, see Table 2) or VUs
(3b) in one subsystem (1APU, 1VU, respectively). This is a fatal fault causing
loss of all functions. The fault can be in APU/VU-FRS or APU/VU-AS.

There is a variant, where the software fault could cause the failure of multiple
sets of APUs in one subsystem (MAPU-1SS). It remains to be analysed case-
specifically whether there is a need to consider such CCF.

For this event, a single generic probability needs to estimated, denoted here as
P(AS fatal fault).

10

4. Software fault causing a failure of one or more application functions. This is a
non-fatal failure and can be failure to actuate the function or spurious actuation.
The fault can be in the APUs (4a), VUs (4b) or have effect only in one division
(4c). For instance, there can be safety functions which are actuated on 2-o-o-4
basis or are not implemented in all divisions. Cases 4a – 4c are modelled by
application function and failure mode specific basic events.

The relationship between AS fault and FRS fault can be taken into account in a
Bayesian manner, i.e.,

P(AS fault) = P(AS fault | FRS fault)P(FRS fault) + P(AS fault | no FRS
fault)P(no FRS fault).

In addition, in order to distinguish between fatal and non-fatal failure, we need to
estimate the fraction of AS faults causing fatal respective non-fatal failures.

Table 3 includes a principal decomposition of probability parameters related to faults in
AS or FRS. In section 5.3, handling of AS faults is further developed to better match the
proposed quantification and modelling approach.

Table 3. Principal probability parameters related to I&C failures caused by application
software faults (fault in AS or FRS).

Parameter Description Comment
P(APU-FRS fault)
P(VU-FRS fault)

Probability of a fault in FRS.
Fault itself does not cause
anything, but it increases the
likelihood of an AS fault. AS
fault can be fatal or non-fatal.

FRS specific value. FRS may be
common to more than one AS.

P(APU-AS fault | APU-
FRS fault)
P(VU-AS fault | VU-
FRS fault)

Probability of an AS-fault given
FRS-fault. AS-fault causes
fatal or non-fatal failure of
APU/VU.

FRS fault is not necessarily critical to
cause a failure of AS function, i.e., P(AS
fault | FRS fault) < 1

P(APU-AS fault | no
APU-FRS fault)
P(VU-AS fault | no VU-
FRS fault)

Probability of an AS-fault given
no FRS-fault. The AS-fault is
caused by the implementation
or translation error from FRS to
AS. AS-fault causes fatal or
non-fatal failure of APU/VU.

Can be assumed to be a generic value

P(APU fatal | APU-AS
fault)
P(VU fatal | VU-AS
fault)

Fraction of fatal failures Can be assumed to be a generic value

P(APU-AS non-fatal |
APU-AS fault)
P(VU-AS non-fatal |
VU-AS fault)

Fraction of non-fatal failures.
Non-fatal failure can cause
failure to actuate or spurious
actuation

P(AS non-fatal | AS fault) = 1 – P(AS
fatal | AS fault)

P(APU-AS no actuation |
APU-AS non-fatal)
P(VU-AS no actuation |
VU-AS non-fatal)

Fraction of non-fatal failures
causing failure to actuate.

P(APU-AS spurious |
APU-AS non-fatal)

P(VU-AS spurious |
VU-AS non-fatal)

Fraction of non-fatal failures
causing spurious actuation.

P(APU-AS spurious | APU-AS non-
fatal) = 1 – P(APU-AS no actuation |
APU-AS non-fatal)

11

3.5 Software failure modes for an example safety
function

As an example, the emergency feedwater system (EFW) pump and the safety core
cooling are considered [1]. The failure modes of the pump for this safety function are

• failure to start
• spurious stop.

The above failures may be caused by several reasons, among others failures of the
safety I&C, making the link to the fault tree models of RPS. We denote the start signal
of EFW-pump by EFW-ON and the stop signal by EFW-OFF.

Assuming similar RPS architecture as in Figure 1, the signal path from the
measurements to the pump goes via APUs and a division specific VU. The design
principle of RPS is that given the critical input signals from the measurements, 2-o-o-4
is enough to create the actuation signals in APUs (EFW-ON). APUs send the signal to
all VUs, which vote again by 2-o-o-4 principle, causing the start signal EFW-ON.

EFW-pumps may also be supervised by a pump leakage protection function. If a
leakage is detected in the pump room, the protection system shall stop the pump (only
the specific pump). The signal path is the same as for EFW-ON signal, but the
measurements are different and the output signal is designated as EFW-OFF. The
difference is also that EFW-OFF is a division specific safety function (only the leaking
train is stopped).

The following fail-safe principles have been assumed:

• Voting units are assumed to fail to provide EFW-ON and EFW-OFF signals if
power supply fails or if there is an internal voting unit failure (i.e. the default
value is 0).

• At loss of communication between VU and APU due to a detected failure in the
APU, VUs change the voting rule from 2-o-o-4 to 2-o-o-3 in case of a single
failure. In this report, CCF due to a systematic SW fault is considered. In this
case the preferred state is actuation of EFW-OFF.

• In case of APU safety functions, detected failures of input signals from
measurements or from other APUs cause an actuation (i.e. the default value is 1)
in a 2-o-o-4 condition.

o EFW-ON is actuated by 2-o-o-4 (e.g. based on the calculation of the
second MIN value of the measurements) low water level condition in the
reactor pressure vessel, denoted by the acronym RPV-LL. There are four
measurement sensors, one in all four divisions, which information is
shared by all divisions.

o EFW-OFF is actuated by 2-o-o-2 leakage protection signal in each EFW
train, denoted by EFW-LEAK-x, x = 1, 2, 3, 4. There are two
measurement sensors per each division, and this information is not
shared between divisions. EFW-OFF stops the affected EFW train in
case of pipe break in an EFW train.

Table 4 summarises the application software modules considered in this example.

12

Table 4. Example application software modules in VUs and APUs.
Unit Application software Condition

EFW-ON 2-o-o-4 EFW-ON from APUs 1–4 VU
EFW-OFF EFW-OFF from the same division’s APU
EFW-ON 2-o-o-4 RPV-LL from APUs 1–4
EFW-OFF EFW-LEAK from the same division’s APU
RPV-LL 2-o-o-4 RPV water level below “very low level” measurement

from division 1–4 RPV level measurement sensors (can be
realised so that each APU calculates the 2nd MIN value and
threshold and exchanges the result with each other)

APU

EFW-LEAK 1-o-o-2 water level in the EFW pump room over the leakage
criterion from the same division’s leakage detection sensors

A schematic fault tree for the failure to actuate EFW-ON in division x (x = 1, 2, 3 or 4)
is shown in Figure 2 and spurious EFW-OFF in Figure 3. The fault tree is developed
down to boxes of hardware and software modules failure modes. Software modules
failure modes are listed in Table 5. Hardware modules failure modes are omitted since
they are out of the scope of the report. Only one redundancy (division 4) is developed at
the APU level. The other divisions are identical.

Figure 2. Schematic fault tree for failure to actuate EFW-ON in division x. Yellow
transfer gates include software module basic events listed in Table 5.

13

Figure 3. Schematic fault tree for spurious EFW-OFF in division x. Yellow transfer
gates include software module basic events listed in Table 5.

14

Table 5. Software module level failure modes for the example safety function. Indexes
#1–#6 refer to the transfer gates of the fault trees above.

Software failure modes Unit EFW function failure
mode Fatal faults Non-fatal faults

Failure to actuate EFW-ON
VU #1

No EFW-ON from VU
• SYSTEM level CCF in SW

modules (case 1)
• 1SS level CCF in SW modules

(case 2a)
• 1VU level CCF in SW

modules (case 3b)

• EFW-ON application SW
fault in VU (case 4b)

#2
No EFW-ON from
APU to VU

• SYSTEM level CCF in SW
modules (case 1)

• 1SS level CCF in SW modules
(case 2a and 2b)

• 1APU level CCF in SW
modules (case 3a)

• EFW-ON application SW
fault in APU (case 4a)

APU

#3
EFW-ON condition
RPV-LL fails in APU
(3-o-o-4)

 • RPV-LL application SW
fault in APU (case 4a)

Spurious EFW-OFF
VU #4

Spurious EFW-OFF
• SYSTEM level CCF in SW

modules (case 1)
• 1SS level CCF in SW modules

(case 2a)
• 1VU level CCF in SW

modules (case 3b)

• EFW-OFF application SW
fault in VU (case 4b)

#5
Spurious EFW-OFF
from APU to VU

• SYSTEM level CCF in SW
modules (case 1)

• 1SS level CCF in SW modules
(case 2a and 2b)

• 1APU level CCF in SW
modules (case 3a)

• EFW-OFF application SW
fault in APU (case 4a)

APU

#6
Spurious EFW-OFF
condition EFW-LEAK
in APU

 • EFW-LEAK application SW
fault in APU (case 4a)

4 List of evidence
4.1 Description of the relevant evidence
Figure 4 illustrates a Bayesian Belief Net (BBN) for quantification of software
reliability proposed in [10]. This model includes three main pieces of evidence which
are proposed to be used in the quantification of probability of failure on demand (pfd) of
an AS: Safety Integrity Level (SIL) class, software complexity and observations from
usage and tests. The main rationale for the model is that development process and
product quality affect the reliability of the software, which in turn affects the amount of
discrepancies observed during usage and tests.

15

Figure 4. A BBN for assessing software reliability using SIL class, software complexity

and usage and test observations as evidence.

The SIL class is assumed to give information about the quality of the software
development process, including verification and validation (V&V) and installation tests.
Product quality is represented by complexity of the software solution, with the
assumption that more complex software is more likely to fail. However, complexity of
software is not easy to define and measure accurately, so one may have to rely on
indicative complexity metrics or expert judgements. Still, receiving even indirect
evidence on the complexity of the software influences the beliefs on its reliability.

The observation node in the BBN includes all usage and test observations done after the
installation tests, e.g. maintenance and periodical tests are included in this node.
Normally no errors are found in the software at this stage, and known errors are fixed.
The value of this information depends on the representativeness of the observations with
respect to the possible and foreseeable state space of the software. Since this state space
is huge, the representativeness of tests and even of operation experience has
traditionally been seen as weak by regulators, and they would rather rely on the quality
of software V&V measures.

Although the absence of findings during tests or usage do not guarantee a low software
pfd, their presence help to calibrate the weight of the other BBN nodes, because a
reliable model cannot underestimate an already known operational failure rate.

4.2 Discussion on basis V&V procedure, SIL
The IEC 61508 standard defines a generic approach for analysis of systems comprised
of electrical and/or electronic and/or programmable electronic elements. The standard
introduces the concept safety integrity level, SIL [7]. The different levels have different
requirements on how the equipment should be manufactured and tested and also on how
the software is being developed. The standard does however not include a quantitative
assessment of the software reliability.

Safety integrity level and corresponding assumed failure probability and failure rate are
presented in the table below.

16

Table 6. Probability intervals of safety integrity levels [7].

Safety integrity
level (SIL)

Average probability of a dangerous failure on demand of
the safety function (PFDavg)

4 ≥ 10-5 to < 10-4

3 ≥ 10-4 to < 10-3

2 ≥ 10-3 to < 10-2

1 ≥ 10-2 to < 10-1

Safety integrity
level (SIL)

Average frequency of a dangerous failure of the safety
function [h-1] (PFH)

4 ≥ 10-9 to < 10-8

3 ≥ 10-8 to < 10-7

2 ≥ 10-7 to < 10-6

≥ 10-6 to < 10-51

It was extensively discussed within the report [8] if the SIL level could be used to
estimate the software failure probability, and the conclusion from that project was that
the software failure probability could be argued to be represented by the SIL level
(conservatively). That is however considered to be conservative by software experts,
and it could therefore be further argued that the software failure probability should at
least not be above the lower bound of the SIL.

The basic idea in this report is that the main process quality indicator that can be used to
estimate the quality of the software is the safety class or SIL class of the system. In
nuclear context, cat. A usually is interpreted as SIL3, see for example 2010 edition of
the Safety Critical Systems Handbook [9]. We might assume that in some cases the
vendor or the utility may want to claim that more efforts have been done, a better value
for the design characteristics and V&V process may be justified (cat. A+). Further
taking into account that the method will be applied to cat. B systems (SIL2), a lower
value for V&V may be assumed. This reasoning leads to a categorisation of V&V into
three levels (relevant to nuclear PSA applications):

- low = cat. B = SIL 2

- medium = cat. A = SIL 3

- high = cat. A+ = SIL 4.

It remains to be discussed how cat. A+ differs from cat. A. A possible interpretation:
implementation of the RPS in two subsystems executing different functions allows
claiming a higher reliability for the total solution, by crediting the functional diversity.

4.3 Discussion on complexity of software
Concerning the reliability of software, one of the most important properties is its
complexity. Especially when used with several different operational profiles, much too
complex software is more prone to present failures. A measure of the software
complexity is therefore a key contributor to the assessment of its reliability.

There is however no widely accepted general method to calculate software complexity.
Those which exist are difficult to be automated, a very important feature for the analysis
of the, usually, very large amount of software.

17

In this section two recent approaches for the estimation of software complexity are
presented, TOPAAS (Task Oriented Probability of Abnormalities Analysis for
Software) and the ISTec’s approach.

4.3.1 TOPAAS Approach
The TOPAAS method is based on critical software properties and expert opinions,
which are captured into a factor model to calculate the probability of failure of software
modules (see [11]). The most important factors that determine the software quality are
first defined and for each of these factors performance levels (e.g., good, less good,
average, bad) are decided by experts. Finally, numbers are assigned to these levels,
expressing the importance of the factor and the impact of the level. If n factors Fi are
considered, the failure probability by demand P is calculated as P = PB FB 1 F2 ... Fn,
with PBBPB as the base failure rate, which is conservatively set to 1. If a factor Fi is
unknown, then this factor is set to 1. This implies that missing information results in a
conservative bias of the model. The lowest attainable level of software failure
probability P is assumed to be 1E-5 per demand. An example of a standard software
module of a valve control device is presented. For this example, the failure probability
for the software module is calculated to 4E-5 per demand, which is conservatively
rounded to 1E-4 per demand.

The TOPAAS defines an approach for the calculation of the probability of failure in
software intensive systems. One of the inputs for this method is the software complexity
and for its estimation TOPAAS uses the McCabe index. Another product characteristic
which is taken into account is the number of lines of code. In case an input is not
known, the correspondent contribution is simply a multiplication by one.

4.3.2 ISTec Approach
In 2010 the institute ISTec (Institut für Sicherheitstechnologie) produced a document
[12] where a method for the special case of the assessment of the complexity of safety
relevant software in NPP was proposed. That is a very special kind of software, because
it is produced using integrated tool environments: the software is designed by using
graphical tools where function blocks are interconnected to form logic diagrams. From
that graphic specification a code generator build the final source code.

One important aspect of the ISTec’s approach is its easiness of automation. In fact, the
method was prototypically applied to approximately 1000 logic diagrams describing the
reactor control and limitation system in a German NPP (based on TXS).

In this approach, two levels of complexity are identified: function blocks and logic
diagrams, the first on the most elementary level and the second reflecting the way the
function blocks are connected to each other. For each of these two levels, rules are
established for the calculation of complexity. These rules were implemented either
using commercially available software or as automated tools created by ISTec for this
purpose.

In order to make the method as applicable as possible, two complementary approaches
were considered for the measurement of complexity. The white box view is based on
the static analysis of the source code of the function block, which delivers standard
complexity indicators: number of knots, McCabe index, code length, etc. Notice that the
last two indicators are also used in the TOPAAS method. Since the access to the source
code is not always possible, the complementary black box view is used, which is based
on the analysis of the information present in the software user documentation (number
of parameters, memory requirement, number of pages of text, etc.).
18

For the analysis of the logic diagrams only the black box approach was applied. For
each logic diagram, the following quantities were calculated:

- Number of function blocks
- Number of input signals
- Number of output signals
- Number of upstream logic diagrams
- Number of downstream logic diagrams
- Normalized complexity of the function block interconnections (similar to the

McCabe index)
- Number of changeable parameters
- Number of internal memories
- Complexity of the function blocks themselves (information coming from the

function block analysis)

Each of these quantities is a component of a so-called complexity vector of the logical
diagram. All complexity vectors of an I&C system can be averaged in order to have an
aggregated indicator of its software complexity. This averaged complexity vector can
then be further used for the assessment of the software reliability.

4.4 Discussion on test and user experience
This chapter presents a discussion on test and user experience based on the TELEPERM
XS (TXS) system platform developed at AREVA GmbH.

4.4.1 Verification and Validation process of TXS
The main steps involved in the verification and validation process of TXS are detailed
in this chapter.

The implementation of the software of TXS I&C systems is performed effectively in the
specification and coding environment (SPACE), where the function diagram editor,
code generators, and verification functions are integrated. This means that the
application-specific data for the software and network architecture of the TXS
computers are specified graphically in form of function, arrangement and network
diagrams and then centrally stored in a data base. This data base is used to generate the
complete plant-specific software code by means of automatic code generators.

During the detailed design and manufacturing phase of a TXS system, the verification
and validation of the software is executed in three steps (see [15]):

1. Formal check of the project data base: the verification steps and tests which follow
the formal specification serve mainly to prove that

- The specification is clear, accurate and free of contradictions and the
specification fulfils the process engineering requirements.

Prior to the code generation, the documentation tools are called to check the data
base contents for consistency. Source code for the application software can only be
generated from a consistent specification. The same checks are also performed by
the code generators during the source code generation. If an inconsistency is
detected by the code generators, source code files will not be generated.

2. Visual check of the specification, system meetings: this step verifies that the process
system requirements have been fulfilled. This is established by manually checking
the specification (represented as function diagrams) against the requirements.

19

3. Functional tests in the simulation environment: the SPACE engineering system and
the simulation-based validation tool (SIVAT) allow the specification and
performance of functional tests on the configured I&C functions within a software
simulation environment. The simulation results serve to prove the functionality of
the I&C functions. Depending on the functions involved, the functionality can also
be validated with a closed-loop simulation (e.g., using an engineering simulator in
combination with models of the plant).

The verification and validation is completed with the system and functional tests in the
test field (system integration phase) and during commissioning.

In the system integration phase, the software is loaded into the processors and the
system functions are tested. This functional test consists in feeding input signals into a
computer and checking the output signals using test computers. Additionally, a service
computer is used to test how the signals are acquired and processed “inside” of the
computer that is being tested.

The scope and coverage of functional tests during the detail design phase and the system
integration phase is defined in line with the international requirements given in e.g.,
IEC 61513 and IEC 60880. The scope of functional tests is documented in a test concept
report, where the objectives and coverage of the tests are defined as a basis for the
elaboration of a test plan and test specifications. All implemented I&C functions in all
redundancies are tested. There are different strategies for the functional tests involving
different depth levels, e.g., test of all signals, test of the structure (e.g., all connections
within one function), “negative tests” (to proof that an undesired behaviour of the
system cannot occur), failure-performance tests (to proof if the function is still available
in case of a failure of parts of the I&C system).

Finally during the commissioning phase, the functionality of the I&C system is tested in
combination with the plant, i.e., no specific software tests are performed.

Since the software is tested extensively in the frame of V&V, software identity and
integrity tests are considered to be sufficient for periodical tests. The software identity
and integrity testing is performed through the evaluation of check sums. This test is
automatically performed through the TXS self-monitoring system. The aim of this test
is to proof that the loaded software in the processors did not change. The test involves
the calculation of the check sum of the software code of a processor and the comparison
of this value with the check sum of the original code loaded in this processor. The fact
that both check sums are exactly the same confirms that the software code in this
processor did not change. Note that if a fault in the FRS or a fault in the implementation
of the application functions is not detected during V&V, these will not be detected
during periodical tests.

If the software is updated or an I&C system modernization takes place, a V&V strategy
has to be elaborated. The scope of the tests to be considered is defined by means of an
impact analysis, where the repercussion of the changes (e.g., new software, new system
parts) on the complete system is analysed, including the parts which remain unchanged.
Functional tests in the SIVAT simulation environment are included. Depending on the
scope of the changes, simulation tests on a representative environment and on the field
may also be included, completed by commissioning tests.

Furthermore, according to [16] all these V&V steps in TXS, required by the nuclear
regulations for the performance of category A functions (IEC 60880), can also be

20

understood as fulfilling the correspondent V&V requirements of the SIL 3 (IEC 61508,
industrial regulation).

4.4.2 Operating experience of TXS
The operating experience of the TXS platform has been assessed in 2008 and it is based
on the user experience of more than 60 nuclear-related plants worldwide (see [14]).
These I&C systems are permanently in operation, are broadly monitored, and have been
working reliably and accumulating applicable operating experience for over thirteen
years. During the considered operating time and until the present no CCF caused by the
TXS platform was experienced.

Problems observed during power operation, deficiencies of released products and
components found during engineering, design or testing activities but also deficiencies
found during internal/external audits are documented in non-conformance reports
(NCR). After a NCR initialization, the further processing of NCR is tracked in a data
base by a dedicated team separately and independently from the engineering and
product development teams in order to ensure an independent evaluation. The NCR data
base contains those faults and failures which constitute a significant deviation of
released products from their specification [13].

For each of these non-conformances, it was analysed if the non-conformance had the
potential –if undetected- to be triggered by a CCF initiator and what could be the impact
(resulting down time). From this analysis, the following software CCF triggering
mechanisms have been identified as relevant:

- Temporal effects: this group encompasses all CCF which may be triggered by
time-dependent effects (internal trigger mechanisms), such as the depletion of
resources by time (e.g., leakages in the memory allocation), or by accumulated
time of operation. Affected by this CCF cause are all processors with the same
operating time, which usually includes all processors of one subsystem (case 2
in Table 2).

- Faulty telegrams: this group considers all CCF which may be triggered by the
transmission of information via serial data links. The failure mechanism is given
by the existence of an undetected random failure in a sending CPU causing
transmission of invalid data. If the system software of the receiver processor
contains an undetected fault in the validation of the received data (e.g., wrong
implementation of message checking), the corrupt data remain undetected. If
these corrupt data are processed an exception (interrupt) is activated. The impact
of this CCF cause is restricted to all units with direct communication. According
to the architecture of Figure 1, communication exists between APUs and
between APUs and VUs within one subsystem (no communication between
RPS-A and RPS-B). For this reason this CCF affects the APs and VUs within
one subsystem (case 2 in Table 2).

- Same signal trajectory: this group encompasses all common cause failures
which may be triggered by a sequence of input data from the field (external
trigger mechanism). It cannot be ruled out that the function computers which
have the same operating system and same application software and process
exactly the same signal trajectories may fail simultaneously. This CCF cause
presumes that a very rare (not tested) signal trajectory may be combined with a
latent hardware or software fault. For the analysis of this trigger mechanism it is
convenient to differentiate between two categories:

21

• Category 1: the latent fault is located within the software, e.g., systematic
fault in a TXS function block – elementary function – involved in the
application software,) and leads to a fatal failure. In the case of a latent
software fault, the fault has an impermissible interference (exception) on the
system behaviour, such as the incorrect computation of a command
executed with inoperable values due to a design error (e.g., division by zero,
logarithm of negative values). As a consequence, the application function
can no longer be processed as designed. For such cases, pre-checks and
remedial actions are implemented in the application and system software to
handle the faults on the level of the affected function and to protect the
processor against a stop due to software exceptions. Faults can be captured
by pre-checking algorithms, which handle the situation by substituting
suitable values for computation if necessary. If the pre-check of data fails
(lack in the pre-checking routines, inadequate activation of remedial actions,
faulty/incomplete implementation of remedial actions) an exception handler
is activated that interrupts the cyclic process in the processor module and set
the signal values into defined fail-safe values. Trajectories with exactly the
same sequence of data may only happen between the APUs within one
subsystem, such that this CCF trigger mechanism is restricted to affect at
most all APUs within one subsystem (e.g., RPS-A or RPS-B of Figure 1;
see also case 3 in Table 2).

• Category 2: the latent fault is located in the FRS or in the application
software and leads to a non-fatal failure. This CCF initiator presumes that a
not-tested signal trajectory may be combined with a latent fault in the FRS or
in the application software (e.g., incorrectly designed set point value). In this
case the requested function is not executed (or a different response than the
requested is obtained) but the TXS processing unit continues to operate
cyclically. The impact extent is restricted in this case to the specific
application function (case 4 in Table 2).

The operating experience of the potential CCF causes addressed in [14] is summarized
in Table 7. The CCF triggering mechanisms and the latent fault location, i.e., system
software (SyS), application software (AS), communication of processors (DLC) or
hardware (HW) is also indicated. Note that all observed failures of the TXS platform
correspond to single failures with no evidence of CCF events.

The fatal failure modes triggered by “temporal effects” and “faulty telegrams” in the
system software and by “same signal trajectory” in the application software (category 1)
lead to a processor shut down via an exception handler (detected common cause
failures). This is followed by either a CPU reset including the start-up self-tests or by
the immediate shut down of the processor. Because of the specific features of the TXS
platform, no erroneous signal, even temporary, is possible before the processor
shutdown. The downtimes caused by the failures with CCF potential are very short (see
Table 7).

22

Table 7. Assessment of software CCF triggering mechanisms using the TXS operating
experience.

Latent fault location Accumulated
operation time

[h]

Failure
rate
[1/h]

Event
duration

[h]

CCF triggering
mechanism

Fault effects
(see

Failures in
operation Table 2) FRS/

AS SyS DLC

23

Temporal effects x case 2a 0(1) 3.4E+6 1.5E-7 0.25(2)

x x case 2b 2 3.4E+6 7.4E-7 0.25 Faulty telegrams

Cat. 1 x x case 3 0(1) 3.1E+7(4) 1.6E-8 0.10 Same signal
trajectory Cat. 2 x case 4 -(3) (3)- - -

(1) Although no failures during the TXS accumulated operating experience are reported in [], one dependent failure is assumed for the failure rate

calculation.

14

This value is estimated (not reported in []). 14(2)
(3) A precise failure probability for application software faults triggered by the same signal trajectory cannot be predicted using operating experience

of TXS because the possible influence mechanisms can only be detected in case of a demand of the function. No such a case has occurred until

now

(4) The operating experience for this category reported in [] does not allow the distinction between fatal and non-fatal failures. As a conservative

assumption, the operating experience presented in this case can be considered as only due to fatal failures.

14

Note that the occurrence of a fatal failure in the TXS system software would not create
spurious signals due to the strict separation between application and system software.

Taking diversity requirements between both subsystems (RPS-A and RPS-B in Figure
1) into account no relevant/realistic CCF mode of the TXS software which causes the
complete failure of the system (both subsystems) can be identified.

5 Quantification method
5.1 Introduction to the quantification method
The quantification method depends on the type of software module. System software
and application function software modules are considered relevant to model and
quantify in PSA. The other SW modules could be ignored since their faults are
implicitly covered by other cases.

Fault in system software (SyS) may cause in principle any type of end effect. The
proposal here is, however, that only fatal failure of one subsystem (1SS) or both
subsystems (SYSTEM) are considered. It is analytically very difficult to examine the
reliability of a SyS but operating experience could be used as evidence. This approach is
outlined in the next chapter.

Analysis of faults in application software (AS) is the main issue of the report. For them
an analytical approach is suggested taking into account the complexity of the
application function and the level of V&V process. Various failure effects and failure
extents are considered using generic fractions (i.e. conditional probabilities). This
approach is outlined in chapter 5.3.

Analysis of faults in FRS are part of the analysis of faults in AS.

Fault in EF can in principle cause any of end effect. The case ”fatal failures affecting
redundant units” is covered by the SyS fault. Non-fatal failures are covered by
corresponding AS-fault. It may be of interest to study whether some extra complex EF

is used in several AS, which causes a dependency between AS-modules. The most
likely fault is not EF fault itself but that the EF is used in a wrong way in the AS – use
of EFs is thus part of analysis P(AS-fault). Therefore there is no need to explicitly
model EF faults.

Faults in proprietary SW modules are covered by HW faults from the end effects point
of view. Therefore there is no need to explicitly model these proprietary SW module
faults.

Faults in DCS and DLC may require some special treatment, due to possibly unique end
effect, not necessarily covered by cases 1 and 2. However, the case ”fatal failures
affecting redundant units” is covered by SyS fault, and thus faults in DCS and DLC are
omitted.

5.2 System software (SyS)
The failures of a SyS should preferably be estimated for the system in question from
operational history. The main challenge is to find historical events that have caused a
complete fatal failure of the whole system.

Fatal failure of SyS is assumed to cause at least the failure of one subsystem (1SS).
With sufficient data, this failure mode should be possible to estimate. The value
calculated from operating experience represents thus the unavailability of one
subsystem.

Depending on the degree of similarities between application functions of the two
subsystems similarities, a fraction of faults may cause the failure of both subsystems
(SYSTEM). The assessment of fraction requires an analysis of degree of diversity
between the application functions of the two subsystems. Diversity assessment is out of
the scope of this report and may be considered next year, if examples are available. For
time being, it is suggested that without an analysis of degree of diversity, CCF between
subsystems should be assumed (since it has not be ruled out). Tentatively a factor 0.1
may be used, which is a common CCF judgement in PSA when no proper data is
available.

To summarise the SyS fault related basic events listed in Table 8 could be considered in
the DIGREL example PSA model.

Table 8. SyS fault related basic events.
SW failure event Tentative probability Evidence
SW fault 1: 1E-7 Engineering judgement, 10% from

1APU/1VU (same signal trajectory,
cases 3a/3b). This is where the
diversity between application
functions have an influence

SYSTEM-SyS fatal CCF

SW fault 2a: 1E-6 Analysis of TXS operating
experience 1SS-SyS fatal CCF

SW fault 2b: 1E-5 Analysis of TXS operating
experience 1SS-DCU fatal CCF

Note that the failure probabilities given in Table 8 can be considered as inputs to model
the software failure probabilities in the PSA using basic events.

24

5.3 Application software
5.3.1 Introduction to application software evaluation
The estimate of the application software failure probability is dependent on the
processes that are run on the processor. On each processor, several application software
may run.

A fault in one application software, which causes a fatal failure of the processor, affects
also the other application software running in the same processor. Hence, a fatal failure
can affect other processes running in the same processor– but only in the configuration
that the information output stops.

A non-fatal failure in one application software can produce an incorrect output (or of
course no output, but this is the same as incorrect output) but does not affect the other
applications running in the same processor.

The failure probability of the application software is considered in this method
dependent on the verification and validation procedure and the complexity of the
software.

In section 5.3.2 a baseline failure estimate is developed, based on an estimate of
complexity and V&V. This baseline failure estimate is representing the failure
probability of the one AS (regardless of it is fatal or non-fatal). In the following section
it is discussed how this baseline failure probability is expected to be used and modelled
in different cases.

5.3.2 Baseline failure estimate, prior
The software fault probability in a system is hard to estimate. As shown in previous
sections, the system can be broken down to a set of software fault parameters. But, the
failure data available for software faults are not given on this level of detail. In fact, it is
hard to find any collection of failure data.

In this section, we try to establish some baseline failure estimates. To do this, we have
defined two types of measures for the system:

• Complexity

• Verification and validation

Complexity in a system is a parameter that is dependent on the size of the system, how
many inputs that are handled, if there are delays or hold circuits and so on. It is a
measure defined with the intent that complicated software should be more likely to
produce a critical fault than simple software, given that the same level of verification
and validation is applied. The complexity in a system is defined in the baseline estimate
as a high, medium and low.

The verification and validation measure is believed to impact the software fault
probability in the way that critical faults are expected to be much rarer in a system with
high verification and validation principles. This could be compared with the SIL-system
described in IEC-61508, where the obvious purpose is to reduce the failure probability
of the system by increasing the requirements on the V&V process. Therefore, in the
baseline risk assessment – the SIL is used as the estimator of the V&V process.

25

For a suggested method to be more than just another way of assessing software
reliability, experience from different industries has been studied. The idea is to find
examples that will justify some baseline failure probabilities for critical failures.

Below is a table with some initial assumptions on SW fault probabilities. It shall be
noticed that we are assuming that a critical software fault will be CCF related between
redundant AS that have the same task.

Table 9. Baseline failure probability estimates for application software modules.
 Complexity

 High Medium Low

0 V&V 1.0E-1 1.0E-2 1.0E-3

1 1.0E-2 1.0E-3 1.0E-4

2 1.0E-3 1.0E-4 1.0E-5

3 1.0E-4 1.0E-5 1.0E-6

4 1.0E-5 1.0E-6 1.0E-7

The upper bound, a failure probability of 1E-1 per demand, would represent very
complex software developed with a very simple verification and validation principle. In
practice, this would not be applicable to the nuclear domain within RPSs. If such a
system should be developed, the assumption that such a software should fail 1 time out
of 10 is maybe a bit conservative, but yet reasonable.

As was discussed in section 4.2, the SIL level could be used as an estimate of the
software failure probability. The lower failure probability for each SIL could be claimed
to be an estimate of the highest failure probability the software can have. Hence, the
leftmost column in Table 9 (High complexity software) could be argued to be
representing the lower bound of the SIL bounding failure probability in Table 6.

If the complexity in the software is lower, then the software fault probability should be
lower than what the SIL level is indicating. If a piece of software is of low complexity,
but has the same type of validation, how much better could the software be claimed to
be? In this process we have assumed that software with low complexity would be a
factor of 100 better than the software with high complexity.

Justification

If a functional processor is considered medium complex software with a fairly strict
V&V process, the grading according to the suggested method would be Medium on
complexity and 3 on V&V. This would give a failure probability per demand of 1E-5,
which, referring to previously applied data in nuclear PSAs may be a bit low — where a
commonly used probability of failure for a functional processor in an I&C system is
1E-4 per demand. Certain I&C system suppliers base this on their claim that they have
followed the requirements for SIL 4 developing the software. It is believed to be
reasonable with the 1E-5 pfd assumption for such software, since the involved
probabilities are based on very rough estimates.

Data collected by AREVA [14] states that the fatal failure rate for the software in the
TXS system is in the range of 1.6E-8 per hour, based on operating experience (for
details see section 4.4.2). The failure rate represents failures due to impermissible
interferences from the application software on the system processors. The failure

26

probability for the system can be calculated as the probability that the system is failed
when an initiating event occur plus the likelihood that the system stops during a
transient. The repair time is hence also relevant (0.1h) for impermissible interferences
from the application software with fatal consequences. The transient time is assumed to
be 24 hours. Based on this the failure probability of AS (fatal failures) is calculated to
3.9E-7. Hence, compared to the baseline failure probabilities of Table 9, it indicates a
SIL3 application of Low complexity or a SIL4 application of Medium complexity. This
seems reasonable.

In the presentation Reliability of New Plant Automation of Loviisa NPP [18] the failure
probabilities used for the software at digital safety I&C were discussed. The probability
of software failures affecting more than one division is 5E-5 (within same automation
system). The presentation also considered data used for CCF between different systems,
but that is not relevant in this context. The failure probability is reasonably consistent
with the baseline failure probability for Medium complex software for SIL 3.

A study of software related failure within the U.S. Public Switched Telephone Network
(PSTN) is presented in the paper Sources of failure in the public switched telephone
network [19]. The telephone switching network performs a fairly simple task by
connecting point A with point B, but requires a very complex computing system.
Software for a switch with even a relatively small set of features may comprise several
million lines of code. It is pointed out that the telephone switch manufacturer's software
development process typically includes elaborate quality assurance functions. Relating
this to Table 9 would give a highly complex system, complexity grade High, with an
advanced verification and validation process, V&V grade 4, which in its turn gives a
probability of failure per demand of 1E-5. The author of [19] has studied the system
outages from April 1992 to March 1994 and concludes that the PSTN averaged an
availability rate better than 99.999% during that time period. The software related
failures, including those in recovery mode, account for 14% of the number of total
outages. This would indicate that the failure probability of the system would be at least
14% of 1E-4 ~ 1E-5. This would then be reasonably consistent with the table above.

In the paper Failure modes in medical device software: an analysis of 15 years of recall
data [20] Dolores R. Wallace and D. Richard Kuhn examine recall data for medical
devices due to software failures using the U.S. Food and Drug Administration database
of medical device failures. It is concluded that 6% of the 2,792 medical devices recalled
between 1983 and 1991, including devices not containing software, were recalled due to
software related failures. For the devices recalled between 1992 and 1997 the data were
not complete, but the results were within the same range. The years 1994, 1995, 1996
had 11%, 10% and 9% of the software recalls which, according to the authors, could be
a result of the rapid increase of software in medical devices. The conclusion from the
paper is that there should be more quality assurance procedures to mitigate software
failure. Based on this we could assume that the V&V processes are of reasonably low
score and thereby would fit in the low grade V&V. For reasonably complicated software
this would indicate an annual failure probability of 1E-2. This estimate is however very
uncertain, but is yet reasonable when compared with the table.

The TOPAAS method [11] developed by the Dutch Rijkswaterstaat includes
considerably more grading points than the method suggested here. The example
presented in the TOPAAS document includes between 10,000 and 50,000 lines of code
and is stated to have a fairly simple logic. The product fulfils the requirements for SIL 1
and it is assumed to have medium-low complexity. The suggested method in this
document would yield a probability of failure per demand of 1E-4 –1E-3. The
27

calculated failure probability based on the method in [11] is 2.2E-5. Even though there
is a difference between the methods, the TOPAAS method shows that the failure
probability can be significantly lower than the SIL level indicated failure probability –
and there is a reasonable consistence between the methods.

5.3.3 Outline of representations
The data collected and presented in previous section does not discuss "what is a system"
or what is the "origin of the fault"? It is however reasonable to believe that as soon as a
fault is detected, the software is considered faulty. Within a process there may in reality
be several AS running – in parallel. If there is a fault in one of them, this will only affect
the other AS if the overall process is stopped, halted. This would cause all the AS on
that processor to stop working and give no output.

Hence, a failure in the specification or the programming of one of the processes may
influence the others, but only if the process runs into a fatal fault. This is a subset of the
failures for the AS. Table 9 is considered to be an estimate of all the failures, fatal and
non-fatal, for an AS. Table 9 is also considered to include failures in the FRS, or rather,
the complexity in the FRS defines the complexity in the software – and the V&V is the
measure of the implementation process.

Illustrated by Figure 5 is the process of estimating fatal and non-fatal failures and also
the split of non-fatal failures into failure to actuate or spurious actuation failure cases.

It can be noticed from Figure 6 and Figure 7 that regardless if the modelled failure mode
is failure to actuate or if it is spurious actuation, it is estimated given the full fraction of
non-fatal failures in the current model (i.e., being a fraction of the total probability
P(AS1 fault)).

Figure 5. How to estimate the software fault probability based on Table 7 in fatal and
non-fatal (spurious and no signal scenarios).

For the estimation of the fractions failure to actuate resp. spurious actuation it has to be
taken into account that in general a significant effort is spent to implement fault
propagation barriers, self-tests, self-monitoring and plausibility checks in soft- and

28

hardware to capture any detected malfunctions inside a system, and to direct these
detected malfunctions into safe states. Therefore, non-fatal failures leading to spurious
actuations should be considered as less frequent than non-fatal failures leading to
failures on demand.

Given the fact that there is at this stage of this project no evidence available how to split
the non-fatal failures into fractions representing failure to actuate resp. spurious
actuation one could conservatively assume the same failure probability for non-fatal
failures leading to failure to actuate and to spurious actuation (for this topic, future
collection of evidences is of high interest).

Referring back to Table 3, the first three rows in the table are represented by the P(AS1
fault) in the figure, whereas rows four and five in the table are representing the
fatal/non-fatal failure fractions and rows six and seven are representing the failure to
actuate and spurious actuation cases.

An alternative approach to estimate fatal failure probability in application software
could be to use operational history, if sufficient history is available. Which method to
use to estimate the fatal failure probability will be discussed further in the continued
work. Also, as described in section 3, which of the fatal and non-fatal failure modes that
are relevant in the fault trees are also dependent on the system functionality. The figures
below illustrate the situations for no-signal scenario (in a fail-safe and non-fail-safe
configuration) and spurious signal (in a fail-safe and non-fail-safe configuration). It
shall be noticed that a fatal failure in another process may influence the behaviour of the
studied AS, as discussed above.

29

No output from
application software 1,
not fail safe

@NOSIGNAL-NOFAILS-1

Failure in any process on
processor running AS1

@NOSIGNAL-NOFAILS-2

Failure probability in AS1

AS1-FATAL

Failure probability in AS2

AS2-FATAL

Failure probability in ASn

ASN-FATAL

Non-fatal failures in AS1

@NOSIGNAL-NOFAILS-3

Non-fatal failures in AS1
- no signal

AS1-NOSIG-NONFATAL

Failure probability in
ASx, CCF - no signal

ASX-NOSIG-CCF-NONFAT

No output from
application software 1,
fail safe

@NOSIGNAL-FAILSAFE-1

Non-fatal failures in AS1

@NOSIGNAL-FAILSAFE-3

Non-fatal failures in AS1
- no signal

AS1-NOSIG-NONFATAL

Failure probability in
ASx, CCF - no signal

ASX-NOSIG-CCF-NONFAT

Figure 6. Left figure: No signal in a fail-safe configuration. Right figure: No signal in a
non-fail-safe configuration.

Spurious output from
application software 1,
fail safe

@SPURIOS-FAILSAFE-1

Fatal failure in any
process on processor

@SPURIOS-FAILSAFE-2

Failure probability in AS1

AS1-FATAL

Failure probability in AS2

AS2-FATAL

Failure probability in ASn

ASN-FATAL

Non-fatal failures in AS1

@SPURIOS-FAILSAFE-3

Non-fatal failures in AS1
- spurious signal

AS1-SPUR-NONFATAL

Non fatal failure
probability in ASx, CCF -
spurious signal

ASX-SPUR-CCF-NONFAT

Spurious output from
application software 1,
not fail safe

@SPURIOUS-NOFAILS-1

Non-fatal failures in AS1

@SPURIOUS-NOFAILS-4

Non-fatal failures in AS1
- spurious signal

AS1-SPUR-NONFATAL

Non fatal failure
probability in ASx, CCF -
spurious signal

ASX-SPUR-CCF-NONFAT

Figure 7. Left figure: Spurious signal in a fail-safe configuration. Right figure:
Spurious signal in a non-fail-safe configuration.

30

5.3.4 Summary of quantification of application software failure
probability

The baseline failure probability for the application software is estimated from Table 9.
The failure probability is dependent on the software complexity and the V&V program.
In case there are observations, after the installation tests, these should be possible to use
as evidence for a better approximation of the software failure probability. This part of
the method is however not defined yet.

Further investigation on this topic includes the estimation of the fraction for fatal and
non-fatal failures. The fatal failure probability may also be estimated based on
operational history.

Which failures that can cause spurious and no signals are dependent on the system
layout. For example, if the system is designed in a way that the safe end state will not
cause spurious stop signal to the system – then only the non-fatal failures will have a
potential for causing spurious signals. Fatal failures would in this example only cause
no signal scenarios.

CCF is especially interesting for functional requirements, and these are in their turn
especially interesting for non-fatal failures. A simple application model for CCF is
being considered.

6 Plan for 2014
In 2014, the plan is to perform an example including several types of software basic
events in order to test and demonstrate the method.

Guidelines document will be prepared for the method. Some issues to address in the
guidelines are

• How to assess complexity?
• Can better V&V-class than SIL 3 be justified sometimes, i.e., SIL 4 representing

requirements which are stricter than cat. A (extra V&V measures are taken)?
• How to assess CCF between application SW modules which have common

functional requirements specifications?
• The estimate of application software failure probabilities needs further

discussion regarding fatal failure treatment, fractions of fatal failure or failure to
actuate / spurious actuation (if applicable).

• How to take user experience (additional tests and experiences) into account?

7 References
1. Authén, S, Björkman, K., Holmberg, J.-E., Larsson, J. Guidelines for reliability

analysis of digital systems in PSA context — Phase 1 Status Report, NKS-230
Nordic nuclear safety research (NKS), Roskilde, 2010.

2. Authén, S., Gustafsson, J., Holmberg, J.-E. Guidelines for reliability analysis of
digital systems in PSA context — Phase 2 Status Report, NKS-261 Nordic nuclear
safety research (NKS), Roskilde, 2012.

31

3. Authén, S., Holmberg, J.-E., Guidelines for reliability analysis of digital systems in
PSA context - Phase 3 Status Report, NKS-277, Nordic nuclear safety research
(NKS), Roskilde, 2013.

4. Failure modes taxonomy for reliability assessment of digital I&C systems for PRA,
report prepared by a task group of OECD/NEA Working Group RISK, draft January
2014.

5. Recommendations on assessing digital system reliability in probabilistic risk
assessments of nuclear power plants, NEA/CSNI/R(2009)18, OECD/NEA/CSNI,
Paris, 2009.

6. Chu, T.L., Martinez-Guridi, G., Yue, M., Samanta, P., Vinod, G., and Lehner, J.,
Workshop on Philosophical Basis for Incorporating Software Failures into a
Probabilistic Risk Assessment,” Brookhaven National Laboratory, Technical
Report, BNL-90571-2009-IR, November 2009.

7. International Electrotechnical Commission, “Function Safety of
Electrical/Electronic/Programmable Safety-Related Systems,” Parts 1-7, IEC 61508,
various dates.

8. Björkman, K., Bäckström, O., Holmberg, J.-E., Use of IEC 61508 in Nuclear
Applications Regarding Software Reliability — Pre-study, VTT, VTT-R-09293-11

9. Smith, D.J. Simpson, K.G.L. Safety Critical Systems Handbook Safety Critical
Systems Handbook. A Straightforward Guide to Functional Safety: IEC 61508 and
Related Standards Including: Process IEC 61511, Machinery IEC 62061 and ISO
13849, 3rd edition, 2010.

10. Porthin, M., Holmberg, J-E., Modelling software failures using Bayesian nets, VTT
Research Report VTT-R-08279-12, 2013.

11. Rijkswaterstaat Ministerie van Verkeer en Waterstaat, TOPAAS: Een structurele
aanpak voor faalkansanalyse van software intensieve systemen, 01.04.2011

12. Komplexitätsmessung der Software Digitaler Leittechniksysteme, ISTec-A-1569, J.
Märtz H. Miedl A. Lindner, Ch. Gerst, 2010.

13. AREVA GmbH, Managing operating experience with TXS. Report PTLS-
G/2010/en/0046 Rev. A; 28.01.2008

14. AREVA GmbH, Quantitative Bewertung des Einflusses eines GVA auf die
Unverfügbarkeit von Leitsystemen in TELEPERM XS Gerätetechnik. Work Report
NLR-G/2009/de/0001 Rev. A; 04.09.2009

15. AREVA GmbH, Overview of the TXS CORE Software (for Releases 3.1.x to 3.3.x)
TELEPERM XS Manual TXS-1073-76-V3.0

16. VDI/VDE 3528- Gesellschaft Mess- und Automatisierungstechnik (GMA),
Requirements of repetition parts and criteria for their use in the instrumentation and
control to safety in nuclear power plants. Part 1, ICS 27.120.20, August 2011

17. Proceedings of the DIGREL seminar “Development of best practice guidelines on
failure modes taxonomy for reliability assessment of digital I&C systems for PSA”,
October 25, 2011, VTT-M-07989-11, Espoo, 2011.

18. Jänkälä, K., Reliability of New Plant Automation of Loviisa NPP, Presentation at
NKS seminar at VTT September 2010

19. Kuhn, R., Sources of Failure in the Public Switched Telephone Network, Computer
00-18-9162/97/$10.00 ©1997 IEEE

20. Wallace, D.R., Kuhn, R, Failure modes in medical device software: An analysis of
15 years of recall data, Paper

32

Bibliographic Data Sheet NKS-304

Title Software reliability analysis for PSA

Author(s) Ola Bäckström1, Jan-Erik Holmberg2, Mariana Jockenhövel-Barttfeld3,

Markus Porthin4, Andre Taurines3

Affiliation(s) 1Lloyd’s Register AB, Sweden, 2Risk Pilot AB, Sweden, 3AREVA GmbH,

Germany, 4VTT Technical Research Centre of Finland

ISBN 978-87-7893-381-2

Date March 2014

Project NKS-R / DIGREL

No. of pages 32

No. of tables 9

No. of illustrations 7

No. of references 20

Abstract A project is ongoing, financed by Nordic nuclear safety research (NKS),
The Finnish Research Programme on Nuclear Power Plant Safety
(SAFIR2014) and Nordic PSA group (NPSAG), with the intent to provide
guidelines to analyse and model digital systems in probabilistic safety
assessment (PSA), using traditional reliability analysis methods (FMEA,
Fault tree analysis).
This report discusses software reliability in this context. The report proposes
a method for the evaluation and quantification of reactor protection system
(RPS) software failures. The proposed method will use operational history
to estimate the fatal failure probability within system software (operating
system, runtime), and use an indirect method for the estimation of failure
probability within application software (non-fatal and fatal failures). The
quantification for application software is based on two main measures,
complexity and the degree of verification and validation of the software.
Collection of data and its challenges will also be discussed. Some data
collected for a software platform will be discussed, and used as an example
of the difficultness — and challenge — to collect data.

Key words PSA, Software reliability, Operational history data

Available on request from the NKS Secretariat, P.O.Box 49, DK-4000 Roskilde, Denmark.
Phone (+45) 4677 4041, nks@nks.org, www.nks.org

	Abstract
	Key words
	NKS-304_DIGREL SW reliabilty 2013.pdf
	1 Introduction
	2 Motivation for quantification of software faults
	3 Definition for software faults
	3.1 Example safety I&C architecture
	3.2 Failure analysis of digital protections systems
	3.3 Software fault modes
	3.4 Evaluation of relevant software faults
	3.5 Software failure modes for an example safety function

	4 List of evidence
	4.1 Description of the relevant evidence
	4.2 Discussion on basis V&V procedure, SIL
	4.3 Discussion on complexity of software
	4.3.1 TOPAAS Approach
	4.3.2 ISTec Approach

	4.4 Discussion on test and user experience
	4.4.1 Verification and Validation process of TXS
	4.4.2 Operating experience of TXS

	5 Quantification method
	5.1 Introduction to the quantification method
	5.2 System software (SyS)
	5.3 Application software
	5.3.1 Introduction to application software evaluation
	5.3.2 Baseline failure estimate, prior
	5.3.3 Outline of representations
	5.3.4 Summary of quantification of application software failure probability

	6 Plan for 2014
	7 References

