

Nordisk kernesikkerhedsforskning Norrænar kjarnöryggisrannsóknir Pohjoismainen ydinturvallisuustutkimus Nordisk kjernesikkerhetsforskning Nordisk kärnsäkerhetsforskning Nordic nuclear safety research

> NKS-78 ISBN 87-7893-134-7

Transfer Factors for Nuclear Emergency Preparedness

Eila Kostiainen, Riitta Hänninen Radiation and Nuclear Safety Authority (STUK), Finland

> Klas Rosén, Enok Haak, Åke Eriksson Swedish University of Agricultural Science

Sven Poul Nielsen, Miranda Keith-Roach Risø National Laboratory, Denmark

> Brit Salbu Agricultural University of Norway

> > December 2002

Abstract

This report by the NKS/BOK-1.4 project subgroup describes transfer factors for radiocaesium and radiostrontium for the fallout year and the years after the fallout. The intention has been to collect information on tools to assess the order of magnitude of radioactive contamination of agricultural products in an emergency situation in Nordic environment. The report describes transfer paths from fallout to plant, from soil to plant and to animal products. The transfer factors of radionuclides (Sr, Cs, I) given in the report are intended to be used for making rough estimates of the contamination of agricultural products soon after the heaviness and composition of the deposition (Bq m^{-2}) is known.

Key words

Transfer factor; Agriculture; Emergency Preparedness; Sr; Cs; I;

NKS-78 ISBN 87-7893-134-7

Pitney Bowes Management Services Denmark A/S, 2003

The report can be obtained from NKS Secretariat P.O. Box 30 DK – 4000 Roskilde, Denmark

Phone +45 4677 4045 Fax +45 4677 4046 www.nks.org e-mail nks@catscience.dk

Transfer Factors for Nuclear Emergency Preparedness

Report from the NKS/BOK-1.4 project group Countermeasures in Agriculture and Forestry

Eila Kostiainen * Riitta Hänninen * Klas Rosén # Enok Haak# Åke Eriksson# Sven Poul Nielsen * Miranda Keith-Roach * Brit Salbu °

* Radiation and Nuclear Safety Authority (STUK), Finland
 # Swedish University of Agricultural Science, Sweden
 + Risø National Laboratory, Denmark
 ¤ Agricultural University of Norway

Preface

Within the NKS/BOK-1.4 project countermeasures in agriculture and forestry a survey of environmental transfer factors to be used in emergency preparedness planning was carried out. The survey covered the existing Nordic data on transfer factors in agricultural environment. This report is the result of the survey, participants of collecting the data were:

Denmark: Sven Poul Nielsen, Miranda Keith-Roach^{*}, Risø National Laboratory
Finland: Eila Kostiainen, Riitta Hänninen, Radiation and Nuclear Safety Authority (STUK)
Norway: Brit Salbu, Agricultural University of Norway
Sweden: Klas Rosén, Enok Haak and Åke Eriksson, Swedish University of Agricultural
Science

The conclusions and recommendations issued in this report are solely the responsibility of the authors and not of NKS.

* Present address: Dept. of Environmental Sciences, University of Plymouth

Contents

Summary	5
1 Background and introduction	5
2 Methods	5
3 Transfer paths	6
3.1 Transfer fallout-to-plant	6
3.1.1 Retention by grass crops	7
3.1.2 Retention by grain crops	10
3.2 Transfer soil-to-plant	13
3.3 Transfer to animal products	14
4 UNSCEAR report data	15
5 NRPB data	17
6 Discussion	20
7 References	
Appendix 1: Transfer factors	
Appendix 2: Bibliographic database	23

Summary

The project was to find tools to assess the order of magnitude of radioactive contamination of agricultural products in an emergency situation. Making a literature survey of transfer factors did this. The review was mainly Nordic data, but to some extent also international data of environmental calculation models. The database of publications including transfer data was collected country-wise.

Transfer factors for radiocaesium and radiostrontium are given in this report, for the fallout year and for the years after the fallout. They are intended to be used for making rough estimates of the contamination of agricultural products soon after the heaviness and composition of the deposition $(Bq m^{-2})$ is known. They are aimed to give a basis for making decisions on the need of measurements for monitoring feedstuffs and for taking relevant countermeasures in agriculture to decrease radionuclide transfer to food items.

1 Background and introduction

In the connection of the late-phase nuclear emergency exercise Huginn (Lauritzen, 2001) the assessment of radionuclide concentrations was found difficult especially for the fallout year, because transfer data was not easily to be found for the fallout occurring during the growing season. The most reliable assessments of the radionuclide concentrations pertained to the year following the fallout year. There was a need for a survey of transfer factors especially for the fallout year (growing season).

The transfer factors for plant root uptake of ¹³⁷Cs and ⁹⁰Sr are generally available for the first year after the fallout year, and this data can be used also for assessments, if the fallout happens in spring before the growing season. This data concerns the root uptake of plants, but data concerning the transfer from the leaves to edible parts of the plant is scarce. For plants which are planted before deposition early in spring, only some contamination on the above ground parts would be expected, but little or no activity in the roots, because caesium is known to migrate very slowly in soil. Caesium is not expected to reach the depth of the roots before the fields have been ploughed and tilled and therefore considerable transfer from soil to plant through the roots cannot be expected before next year.

2 Methods

A review of literature was made by participating countries during the project work, concentrating in the data from Nordic countries published in literature and in-house reports. Both experimental data, and data related to real conditions (after Chernobyl) were looked through. The experimental data was the only data found for assessing the transfer of radionuclides when deposition takes place during the growing season. The transfer data after the Chernobyl accident for the next years was available for Nordic countries to be used for the years after the fallout year. The data included in environmental calculation models was gone over. Also the international literature was reviewed using databases of INIS, Springer-Verlag, Elsevier and Academic Press.

The database of publications including data of transfer factors was made as an Excel table with columns: Author/source, Publication name, Site, Deposition, Product(s), Soil, season, Transfer factor/foodchain transfer models. The data was compiled according to the author and publishing year (Appendix 2).

3 Transfer paths

In fallout situation the human population can be exposed to external and internal radiation by different pathways, Figure 1. We consider here the internal radiation from intake of food products, due to transfer of radionuclides to crops and animals in agriculture. As generally found, the transfer to a certain crop will be much less if fallout takes place between two growth seasons than during a growth season. The direct transfer from fallout to a crop exposed to the atmosphere during a growth season will always be much higher than the indirect transfer from a contaminated ground surface, which in turn will be higher than the transfer by root uptake from a contaminated soil or plough layer.

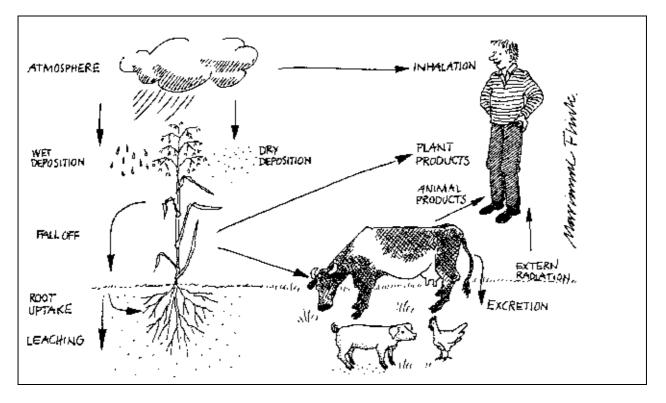


Figure 1. Main pathways for radionuclides to man (Rosén, 1996).

Different measures and units are used to evaluate and compare the transfer of radionuclides from one sector to another sector within the nutrient chains of ecosystems. Aspects on use of some of them will be treated below in the order: transfer from **fallout-to-plant**; transfer from **soil-to-plant**; transfer from **feedingstuff-to-animal products**. Some of the most used transfer factors/ ratios/coefficients are defined in Appendix 1.

3.1 Transfer fallout-to-plant

To describe the direct interception and retention of fallout radionuclides by agricultural crops, two types of measures, **TRd-value**, and **FRd-value**, can be used. The **TRd-value**, is obtained when the activity of a radionuclide transferred to 1 kg dry weight of the crop is weighted by the deposition, *d*, per square meter at the time of fallout:

$$TRd = \frac{\text{Concentration in plant (Bq (kg d.w.)-1)}}{\text{Deposition on ground (Bq m-2)}}$$
(1)

where d = deposition.

The calculated value of **TRd** is proportional to the contamination level of the growing crop and independent of the fallout level at the moment of deposition. It is a **yield independent** measure, easy to compare fore different field situations.

If the yield per unit area is determined, the amount of a nuclide intercepted and retained by a crop per unit area can be weighted by the amount deposited through this unit area. The result of this operation is the Fraction of the deposition Retained by the crop. This fraction, denoted **FRd**, can be found by multiplying **TRd** by the crop weight per unit area:

FRd = Yield*TRd =
$$m^{2}(kg d.w.)^{-1} * (kg d.w.) m^{-2}$$
 (2)

The **FRd-value** is a **yield dependent** measure, which can be expressed as the fraction or percent of initial fallout. The fraction recovered by the growing crop, **FRd**, is dimensionless and influenced by the same factors as **TRd**.

The time of year and growth stage when radioactive fallout takes place greatly determine the nuclide transfer to an agricultural crop. After initial interception of the fallout and up to harvest, there is a period of time dependent **falloff**, which reduces the nuclide content in the crop. By repeated sampling during that part of the season the changes in the crop can be observed and half-times calculated, both with regard to the nuclide content per unit dry weight or **TRd**, and with regard to reduction in nuclide recovery or **FRd**.

3.1.1 Retention by grass crops

Grass fields, pastures or leys, are dynamic systems, used for feeding cattle. The magnitude of the fraction, retained on vegetation up to actual grazing or cutting time is dependent on season of fallout and precipitation. Notably, the loss of nuclides by **falloff** can partly be counteracted by other transfer modes. Nuclides, solubly bound to plant surfaces below cutting or grazing zone, can by growth penetrate to interior tissues and be transferred to above ground plant parts. Nuclides deposited on ground, before or after falloff, can be reabsorbed on leaves by resuspension of contaminated soil particles or reach above ground plant parts by root uptake from surface soil layers.

3.1.1.1 Pastures

Pastures used for grazing by cows are very sensitive for transfer of fallout nuclides during the summer period. The nuclides are deposited on grass leaves with rain as **wet fallout** or with air streams as **dry fallout**. Wet fallout was dominating in the Nordic countries after the Chernobyl accident.

Interception and retention of deposited radionuclides on pasture grass has been studied under Swedish field conditions (Eriksson, 1977). Table 1 shows examples in variation of TRd-values for initial interception of **wet fallout**, varying from 2.41-3.16 m² (kg d.w.)⁻¹. The values were somewhat higher for ⁸⁵Sr than for ¹³⁴Cs, and higher for lower than higher yield due to difference in growth dilution. Total retained fraction, FRd, was initially nearly half of that deposited for both nuclides.

Grass,	Nuclide	TRd	FRd
kg d.w. m^{-2}		$m^2 (kg d.w.)^{-1}$	
0.138	⁸⁵ Sr ¹³⁴ Cs	3.06	0.46
	^{134}Cs	3.16	0.43
0.193	⁸⁵ Sr	2.50	0.48
	^{134}Cs	2.41	0.47

Table 1. Initial retention of radionuclides by grass vegetation from wet depositions on pasture land

Table 2 shows examples of TRd-values for initial interception of simulated **dry depositions.** TRd varied from 0.15 to 1.03. As expected, TRd tended to be less the larger the particles were. TRd was higher for dry depositions on wetted grass than on dry grass, and highest for thoroughly wetted grass (rain). The absorptions were much lower than for wet deposition Table 1.

Table 2. Range and levels of absorption for dry deposited particles on pasture land, TRd, m² (kg d.w.)⁻¹

Particle fraction	Dep. on wette	ed grass	Dep. on dry grass
μm	Range, 3 exp.	1exp.	Range, 3 exp.
40-63	0.61-0.85	1.03	0.31-0.57
63-100	0.42-0.65	1.00	0.15-0.28
100-200	0.39-0.56	0.65	0.16-0.26

The above examples of wet and dry depositions indicate the problem of radioactive fallout and grazing by cattle, on natural pastures under seminatural conditions, on cultural pastures and on grass regrowth after hay harvest and silage production under natural agricultural conditions. No-tably, the transfer fallout-to-animal products are triggered by the grazing performance of cattle.

3.1.1.2 Ley crops

During a limited time annually leys in rotation with arable crops grow relatively fast. It deals with 4-6 weeks per harvest, two or three harvests per year. The transfer to grass depends on many factors. Most important are growth stage and time up to harvest. Results from Swedish experiments, Table 3 for ¹³⁴Cs and Table 4 for ⁸⁵Sr (Eriksson et al., 1998, a; Haak et al., 2000) reflect conditions for interception and retention of the two nuclides. During early growth the interception was about the same as after Chernobyl. Fallout later, when the grass stand is dense, gives a higher interception. A maximum value is obtained at deposition just before harvest. After each harvest the interception capacity decreases due to less leaf surface of lower vegetation.

Table 3. Interception and retention of 134 Cs in experiments with leys, expressed as TRd and FRd. Data available for four sampling days (Sday). Julian day number 145 means 25th of May etc. Wd = Weighted.

_	$TRd, m^2 (kg d.w.)^{-1}$						FRd	
Sday	1st	2nd	3rd	Wd	1st	2nd	3rd	Total
	cut	cut	cut	mean	cut	cut	cut	fraction
	Deposi	ition day	/ 115					
148	0.114	0.019	0.011	0.03	0.019	0.022	0.009	0.030
158	0.063	0.022	0.011	0.03	0.019	0.003	0.004	0.026
169	0.034	0.021	0.010	0.02	0.013	0.001	0.003	0.017
184	0.021	-	0.010	0.02	0.014	-	0.003	0.017
	Deposi	ition day	/ 147					
148	1.217	0.040	0.014	0.26	0.187	0.117	0.004	0.198
158	0.846	0.097	0.032	0.32	0.217	0.020	0.009	0.246
169	0.269	0.087	0.022	0.15	0.101	0.080	0.006	0.115
184	0.165	-	0.033	0.12	0.114	-	0.010	0.124
	Deposi	ition day	/ 157					
158	1.594	0.056	0.005	0.58	0.394	0.008	0.002	0.404
169	0.625	0.092	0.030	0.34	0.247	0.089	0.008	0.264
184	0.261	-	0.028	0.18	0.175	-	0.010	0.185
	Deposi	ition day	/ 168					
169	0.691	0.101	0.008	0.33	0.259	0.009	0.003	0.271
184	0.398	-	0.030	0.26	0.242	-	0.009	0.251

Table 4. Interception and retention of 85 Sr in experiments with leys, expressed as TRd and FRd. Data available for 4 sampling days (Sday). Julian day 115 means 25th of May etc. Wd = Weighted.

Т	Rd, m^2	(kg d.w.	.) ⁻¹	FRd				
1st	2nd	3rd	Wd	1st	2nd	3rd	Total	
cut	cut	cut	mean	cut	cut	cut	fraction	
Deposi	ition day	/ 115						
0.095	0.043	0.018	0.05	0.016	0.018	0.011	0.045	
0.062	0.060	0.037	0.05	0.020	0.009	0.014	0.043	
0.031	0.053	0.029	0.03	0.012	0.003	0.009	0.024	
0.029	-	0.024	0.02	0.020	-	0.006	0.026	
Deposi	ition day	/ 147						
0.958	0.026	0.017	0.20	0.141	0.008	0.005	0.153	
0.474	0.023	0.015	0.17	0.122	0.005	0.004	0.131	
0.461	0.033	0.014	0.12	0.080	0.003	0.004	0.087	
0.168	-	0.009	0.05	0.044	-	0.003	0.047	
Deposi	ition day	/ 157						
1.140	0.012	0.000	0.41	0.282	0.002	0.000	0.284	
0.461	0.005	0.000	0.23	0.181	0.001	0.000	0.182	
0.168	-	0.000	0.11	0.113	-	0.010	0.113	
Deposi	ition day	/ 168						
0.476	0.025	0.000	0.21	0.176	0.002	0.000	0.178	
0.293	-	0.014	0.19	0.180	-	0.010	0.184	
	1st cut Deposi 0.095 0.062 0.031 0.029 Deposi 0.958 0.474 0.461 0.168 Deposi 0.461 0.168 Deposi 0.476	1st 2nd cut cut Deposition day 0.095 0.043 0.062 0.060 0.031 0.053 0.029 - Deposition day 0.958 0.958 0.026 0.474 0.023 0.461 0.033 0.168 - Deposition day 1.140 0.461 0.005 0.168 - Deposition day 0.461 0.461 0.005 0.168 - Deposition day 0.461 0.461 0.005 0.168 - Deposition day 0.476	1st 2nd 3rd cut cut cut Deposition day 115 0.095 0.043 0.018 0.062 0.060 0.037 0.031 0.053 0.029 0.029 - 0.024 Deposition day 147 0.958 0.026 0.017 0.474 0.023 0.015 0.461 0.033 0.014 0.168 - 0.009 Deposition day 157 1.140 0.012 0.000 0.461 0.005 0.000 0.461 0.005 0.000 0.461 0.005 0.000 0.461 0.005 0.000 0.461 0.005 0.000 0.461 0.005 0.000 0.461 0.005 0.000 0.463 - 0.000 0.464 0.025 0.000	cutcutcutmeanDeposition day 115 0.095 0.043 0.018 0.05 0.095 0.043 0.018 0.05 0.062 0.060 0.037 0.05 0.031 0.053 0.029 0.03 0.029 - 0.024 0.02 Deposition day 147 0.958 0.026 0.017 0.20 0.474 0.023 0.015 0.17 0.461 0.033 0.014 0.12 0.168 - 0.009 0.05 Deposition day 157 1.140 0.012 0.000 1.140 0.012 0.000 0.23 0.168 - 0.000 0.23 0.168 - 0.000 0.11 Deposition day 168 0.025 0.000 0.21	1st 2nd 3rd Wd 1st cut cut cut mean cut Deposition day 115 0.095 0.043 0.018 0.05 0.016 0.095 0.043 0.018 0.05 0.016 0.062 0.060 0.037 0.05 0.020 0.031 0.053 0.029 0.03 0.012 0.029 - 0.024 0.02 0.020 Deposition day 147 0.958 0.026 0.017 0.20 0.141 0.474 0.023 0.015 0.17 0.122 0.461 0.033 0.014 0.12 0.080 0.168 - 0.009 0.05 0.044 Deposition day 157 1.140 0.012 0.000 0.41 0.282 0.461 0.005 0.000 0.23 0.181 0.168 0.181 0.168 - 0.000 0.23 0.181 0.168 0.113 Deposition day 168	1st2nd3rdWd1st2ndcutcutcutmeancutcutDeposition day 115 cut cutcut0.0950.0430.0180.050.0160.0180.0620.0600.0370.050.0200.0090.0310.0530.0290.030.0120.0030.029-0.0240.020.020-Deposition day 1470.9580.0260.0170.200.1410.0080.4740.0230.0150.170.1220.0050.4610.0330.0140.120.4610.0330.0140.120.0800.0030.168-Deposition day 1571.1400.0120.0000.410.2820.0020.4610.0050.0000.230.1810.0010.168-0.0000.230.1810.0010.168-0.0000.210.1760.0020.0250.0020.0250.002	1st2nd3rdWd1st2nd3rdcutcutcutmeancutcutcutcutDeposition day 115 0.095 0.043 0.018 0.05 0.016 0.018 0.011 0.062 0.060 0.037 0.05 0.020 0.009 0.014 0.031 0.053 0.029 0.03 0.012 0.003 0.009 0.029 - 0.024 0.02 0.020 - 0.006 Deposition day 1470.958 0.026 0.017 0.20 0.141 0.008 0.005 0.474 0.023 0.015 0.17 0.122 0.005 0.004 0.461 0.033 0.014 0.12 0.080 0.003 0.004 0.168 - 0.009 0.23 0.181 0.001 0.000 0.461 0.005 0.000 0.23 0.181 0.001 0.000 0.461 0.005 0.000 0.23 0.181 0.001 0.000 0.168 - 0.000 0.11 0.113 - 0.010 Deposition day 168- 0.000 0.21 0.176 0.002 0.000	

3.1.2 Retention by grain crops

Cereals have large leaf surfaces, which at wet fallout during vegetative phase cause transfer to ears and grain, even if fallout during generative phase is more serious. **TRd** and **FRd** are in Tables 5 and 6 for different deposition and sampling days with spring wheat as experimental crop (Eriksson et al., 1998, b; Haak et al., 2000). They are given for vegetative parts, straw and leaves 5-20, 20-40 and > 40 cm above ground, and for generative part, ears.

For vegetative plant parts the reduction in TRd from deposition to sampling, depends partly on growth dilution and partly on falloff to the ground. Penetration to the interior and transfer to other plant parts, as outlined above, may contribute. Rapid early growth reduced the TRd-value considerably with time, from about 1.4 to 0.16 in three weeks. Later in season with less rapid growth, the reduction in TRd was also less.

The initial interception depends on the development of the surface/weight ratio of the particular crop during the season. After depositions on the maturing wheat, the initial interception, according to the TRd-values, seemed to reach $\frac{1}{4}$ of those early in the season. The top TRd-values in developing ears were recorded after deposition in July, (Deposition day, Dday 203). The retention was duly reduced with time in the same way for ears as for the vegetative parts. As shown by the FRd-values for ¹³⁴Cs in Table 3, the initial interception of caesium was low at the start of the growth but reached nearly 40% in July (Dday 203).

	TRd, n	n^2 (kg d	.w.) ⁻¹					FRd		
Sday	Straw a	nd leaves	s, cm	Ears	Whole	Straw an	d leaves,	cm	Ears	Whole
	>5-20	20-40	>40		crop	>5-20	20-40	>40		plant
	Depos	ition da	ıy 170							
184	0,131				0.131	0.012				
204	0.018	0.018		0.001	0.016	0.002	0.003		0.000	0.005
219	0.006	0.003	0.001	0.002	0.003	0.001	0.001	0.000	0.000	0.003
245	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Depos	ition da	iy 183							
184	1.356		-		1.356	0.162				0.162
204	0.162	0.110		0.046	0.022	0.036			0.061	0.120
219	0.091	0.066	0.036	0.037	0.055	0.017	0.016	0.009	0.009	0.050
245	0.031	0.046	0.024	0.035	0.005	0.005	0.005	0.011	0.011	0.031
	Depos	ition da	iy 203							
204	0.540	0.817	5	0.590	0.708	0.080	0.258		0.041	0.379
219	0,271	0.214	0.325	0.221	0.256	0.047	0.049	0.088	0.054	0.238
245	0.204	0.158	0.244	0.140	0.172	0.053	0.081	0.096	0.081	0.047
	Depos	ition da	y 218							
219	0.238	0.289	5	0.288	0.292	0.053	0.081	0.096	0.081	0.311
245	0.178	0.134	0.239	0.146	0.167	0.030	0.030	0.070	0.114	0.244
	Depos	ition da	v 234							
235	0.421		0.610	0.248	0.434	0.067	0.106	0.100	0.073	0.346
245	0.225	0.255	0.254	0.137	0.184	0.029	0.045	0.058	0.073	0.205

Table 5. Interception and retention of ¹³⁴Cs for spring wheat expressed as TRd and FRd. Data available for 4 sampling days (SDay).

A comparison of data in Table 5 also shows a much lower ¹³⁴Cs reduction with time of FRd than of TRd. Considering the whole crop, the residence time in July seems to be about 3-4 weeks. Due to increased growth there is a tendency for increase of FRd in the ears with time after deposition even when there is a general reduction of TRd in straw and leaves.

The interception and retention of ⁸⁵Sr was about 20 % less than that of ¹³⁴Cs in the wheat after deposition. The falloff was comparatively larger for ⁸⁵Sr as shown by the FRd-values in Tables 5 and Table 6. Very little or no ⁸⁵Sr was detected in the ears from the two earliest depositions. The fractions or FRd, of both nuclides intercepted by the ears was about 10 % of that intercepted by the crop totally at Dday 203 but increased with plant growth up to 20-25 % in the latter part of the season at Dday 218 and Dday 234.

	Т	Rd. m^2 (kg d.w.)	1				FRd		
Sday	Straw and		-	Ears	Whole	Straw a	nd leaves		Ears	Whole
	>5-20	20-40	>40		crop	>5-20	20-40	>40m		crop
	Depositi	on day 1	70							
184	0,091				0.093	0.009				
204	0.001	0.002		0.000	0.001	0.000	0.000		0.000	0.009
219	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
245	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Depositi	on day 1	83							
184	1.114				1.114	0.133				0.133
204	0.137	0.047		0.000	0.063	0.018	0.015		0.000	0.033
219	0.093	0.040	0.000	0.000	0.029	0.017	0.009	0.000	0.000	0.026
245	0.043	0.016	0.009	0.000	0.012	0.005	0.002	0.000	0.000	0.009
	Depositio	on day 2	03							
204	0.356	0.563		0.590	0.367	0.054	0.178		0.025	0.257
219	0,204	0.145	0.286	0.221	0.045	0.035	0.033	0.075	0.011	0.155
245	0.167	0.127	0.231	0.140	0.026	0.024	0.025	0.064	0.017	0.130
	Depositi	on day 2	218							
219	0.178	0.233	0.230	0.288	0.184	0.040	0.065	0.064	0.052	0.221
245	0.185	0.105	0.203	0.146	0.063	0.031	0.024	0.059	0.049	0.163
	Depositi	on day 2	234							
235	0.293	0.413	0.379	0.248	0.163	0.047	0.079	0.062	0.048	0.235
245	0.129	0.341	0.118	0.137	0.123	0.019	0.062	0.032	0.068	0.180

Table 6. Interception and retention of ⁸⁵Sr for spring wheat expressed as TRd and FRd. Data available for 4 sampling days (Sday).

Results from Tables 3-6 are graphically shown after statistical smoothing in Figures 2-4, where the time scale is days after plant emergence. As illustrated for ¹³⁴Cs, this transformation of data gives more clear trends of the change in retention of ¹³⁷Cs during the season. Notable, the change with time of TRd-values is influenced both by fall-off and growth dilution of the plant, while change of FRd-values is influenced by fall-off only. Both values, however, may be used for calculation of half-times of the nuclide intercepted, **reduction half-time** or **residence half-time**, respectively.

The development after different deposition times of the TRd-values and the FRd-values is shown for **vegetative parts** of wheat in Figures 2 and Figure 3. Figure 2 shows that the reduction half-time was about 2 weeks, and Figure 3 that the residence half-time was about 3-4 weeks. The growth of the crop during the season explains the difference between the two half times. TRd or the activity concentration of ¹³⁴Cs decreases faster than FRd or the fraction of deposition retained in the crop.

The development after depositions at different times of the FRd-values for **generative parts** is shown in Figures 4 (DD = DDay = deposition day). It shows that the fraction of ¹³⁴Cs retained in ears of the wheat crop increases with time of deposition or in the order DDay10 < DDay23 < DDay43. The later the fallout takes place the higher is the fraction of ¹³⁴Cs retained in the ears.

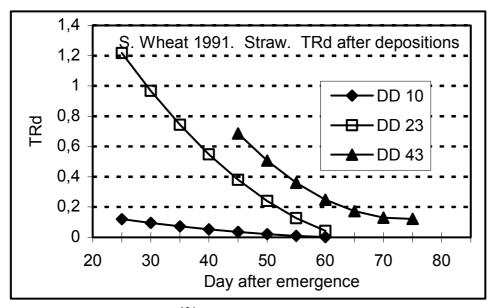


Figure 2. Reduction of the ¹³⁴Cs content in spring wheat straw after depositions during the season as indicated by TRd-values.

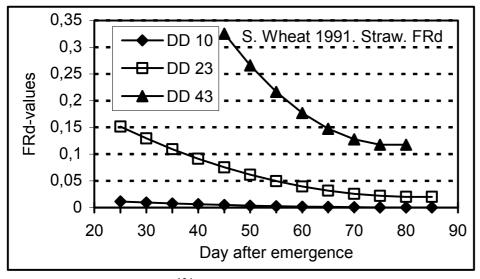


Figure 3. Reduction of the ¹³⁴Cs content in spring wheat straw after depositions during the season as indicated by FRd-values.

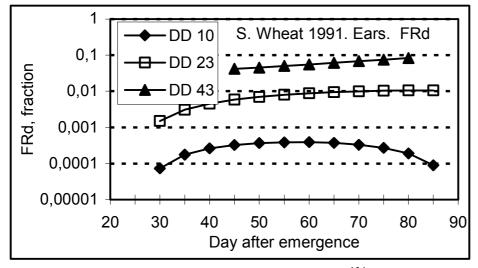


Figure 4. Change with time during the season of the ¹³⁴Cs content in ears of spring wheat after depositions as indicated by FRd-values.


In Table 7 changes with time in grain yield and **FRd-** and **TRd-**values are given. The transfer values were higher for ¹³⁴Cs than for ⁸⁵Sr, which show that caesium is more mobile in plant than strontium. The ratios are reduced in the two latter sections of the table, from vegetative parts to ears and from ears to grain due to relatively larger flow of caesium than of strontium within the plant. The double labelling of the crop with ⁸⁵Sr and ¹³⁴Cs, thus permits evaluation of the pathways of the two nuclides, from interception on outer parts up to deposition in grains.

Table 7. Transfer of ¹³⁴Cs and ⁸⁵Sr to spring wheat from depositions on different Ddays during the growth period 1991. Yield level and nuclide transfer refer to harvest on Sday 245, 2nd Sept 1991.

Dday	Yield,		2 (kg d.w.) ⁻¹	Fraction,	
Nr	kg d.w. m ⁻²	¹³⁴ Cs	⁸⁵ Sr	¹³⁴ Cs	⁸⁵ Sr
170	0.10	0.001	0.000	0.000	0.000
183	0.35	0.018	0.000	0.005	0.000
203	0.51	0.112	0.018	0.057	0.009
218	0.59	0.104	0.032	0.061	0.019
234	0.42	0.073	0.032	0.029	0.013

3.2 Transfer soil-to-plant

Many factors influence the root uptake of radionuclides from contaminated soils as presented for Sr and Cs in figure 5. In the soil solution, they behave similar as potassium and calcium and act as carrier isotopes of these nutrients respectively. While ⁹⁰Sr stays with in the labile fraction, ¹³⁷Cs is largely fixed to clay minerals in the non-labile fraction. They are transferred to the root surface mainly by mass flow and diffusion respectively.

Plant uptake

Figure 5. Schematic view of radionuclide pools and some of the processes involved.

Field crops absorb nutrients from different soil layers and the transfer factor, TRsp, is an integrated measure over root depth. We calculate TRsp as follows.

$$TRsp = TR = TF = \frac{Concentration in plant (Bq (kg d.w.)^{-1})}{Nuclide deposition (Bq m^{-2})}$$
Unit: m² (kg d.w.)⁻¹ (4)

where s = soil and p = plant

This normalisation makes it easy to compare **soil-to-plant** transfer under different field conditions. If we know the nuclide deposition per unit surface, the transfer factor and the yield, we easily calculate the nuclide transfer to crop product per hectare.

Many factors influence the **soil-to-plant** transfer, soil-pH, crop type, rooting in the soil profile, clay and organic matter content. Mineral soils, especially clayey cause fixation of ¹³⁷Cs, which lower the root uptake. Transfer of both ¹³⁷Cs and ⁹⁰Sr is lower on clayey soils than on sandy soils. Organic soils usually have higher transfer of Cs than mineral soils. Mineral soils, with as low organic matter content as 5 percent, are quite effective to lower the root uptake of Cs considerably. TRsp found under Swedish field conditions are shown below.

the year after fallout, $m^2 (kg d.w.)^{-1} x 10^{-3}$ (Eriksson, 1994)

Crop	Radiocaesi	um (Cs)		Radiostrontium (Sr)				
	Clayey soils	Sandy soils	Organic soils	Clayey soils	Sandy soils	Organic soils		
Cereals	0.05	0.2	2.0	0.5	1.0	0.5		
Ley grass	5.0	10	100	10	20	10		
Potatoes	0.3	1.2	12	1.0	2.0	1.0		
Cultural pasture	5.0	10	100	10	20	10		
Natural pasture	10	20	200	20	40	20		

3.3 Transfer to animal products

Farming areas used for growing fodder crops are normally the base for animal husbandry. Grazing or feeding with contaminated crop products cause nuclide transfer to animal products. Most of the nuclide intake by animals goes back by secretion to the manure produced on the farm but a fraction that varies with the actual radionuclide and type of animal is retained in the animal product, later to be used as food items. The general formula or transfer coefficient, TC, for nuclide transfer from feeding stuff to animal products is defined as

$$TC = TC_{fm} = FM = \frac{Concentration in milk/meat (Bq/kg f.w.)}{Daily nuclide intake (Bq/animal and day)} Unit: [day/kg f.w.] (5)$$

Transfer coefficients for ¹³⁷Cs, ⁹⁰Sr and ¹³¹I are presented in Table 9 (Eriksson & Anderson, 1994). TC is the ratio between activity concentrations in the product divided by the daily intake of nuclide per animal. For transfer from feed to milk, equilibrium is relatively soon obtained between daily intake and secretion in milk. For cow meat, and to a less extent for pig meat, it takes a longer time to reach equilibrium. For transfer from feed to cow meat a dynamic model can be used. Applied to certain conditions and according to Whicker & Kirchner (1987) it can be described by

 $A_{mt} = TCk_bM$, where

 $A_{mt} =$ Fraction of daily activity intake retained in the meat compartment,

0.5 for 137 Cs and 0.01 for 90 Sr

M = Meat compartment, i.e. part of eatable meat per animal, supposed to be 180 kg of total a slaughter weight of 270 kg

 k_b = Daily release of activity from meat compartment, fraction

TC = Transfer coefficient, as above is the ratio between activity concentration in the actual product divided by the daily intake. Determination of TC is determined for "steady state conditions", Haak et al., 1998.

The dynamic model for cow meat is used for periods when the nuclide intake is changing with time. A_{mt} , M and K_b are then included to calculate the activity retained per kg cow meat at predetermined slaughtering occasions. The nuclide concentration in feed and cow meat varies during the year, being higher in summer at grazing than when feeding in winter with cereals. A similar dynamic model can be applied for pig meat, useful for predictive purposes to decrease nuclide content in meat by feeding with uncontaminated fodder before slaughtering.

Nuclide	Milk	Cow meat		Pig meat
	Day/l	A _{mt}	$k_b (day)^{-1}$	day/kg
¹³⁷ Cs	0.008	0.5	0.23	0.25
⁹⁰ Sr	0.0013	0.01	0.093	0.02
¹³¹ I	0.012	0.05	0.039	-

Table 9. Transfer coefficients, TC, for some animal products

4 UNSCEAR report data

The UNSCEAR 1988 Report lists assessed results of representative integrated concentrations of ¹³¹I and ¹³⁷Cs in foods during the first year after the accident (Table 10). Also the first year diet intake of ¹³⁷Cs is given.

Table 10.

	Normalised integrated concentration for I-131 (Bq a/kg per kBq/m²)Normalised integrated concentration for Cs-137 in the first year (Bq a/kg per kBq/m²)				First year diet intake of ¹³⁷ Cs (Bq per kBq/m ²)			
Country	milk products	leafy vege- tables	Milk prod- ucts	grain	leafy veg	veg/ fruit	meat	
Den- mark	0.02	0.1	1.2	1.6	0,4	0.6	1	508
Finland	0,01	0.03	1.4	0.3	0.2	0.6	4.5	823
Norway	(0.01)	(0.04)	2.6	0.2	1.3	0,8	8.3	1326
Sweden	0.01	0.01	3.5	1.7	2,9	4.1	19.9	448

The transfer coefficients for the ingestion pathway from deposition to intake (Bq per Bq m⁻²) for various radionuclides are listed in the UNSCEAR 2000 report (Table 11). These values are calculated for an even distribution of the deposition throughout the year, as was the case for global fallout from atmospheric nuclear testing. If the deposition occurs during the winter season, the

transfer coefficients are lower, and for a summer deposition they are higher then the value for the even distribution.

Radionuclide	Deposition to intake (Bq per Bq/m ²)	First year (Bq per Bq/m ²)		
Cr-51	0.56			
Mn-54	2			
Fe-55	6	3		
Fe-59	0.76			
Co-58	2.1			
Co-60	2.9			
Zn-65	3.6			
Sr-89	0.03	0.03		
Sr-90	1.9	0.2		
Zr-95	0.1			
Nb-95	0.07			
Sb-124	1			
I-131	0.07	0.07		
Cs-134	2			
Cs-136	0.3			
Cs-137	4.2	1.9		
Ba-140	0.005	0.005		
Ce-141	0.07			
Ce-144	0.1			
Pu-238	0.05			
Pu-239	0.7			
Pu-240	0.7			
Pu-241	0.04			
Am-241	0.2			
Cm-244	0.04			

Table 11. Transfer coefficients for radionuclides for the ingestion pathway (UNSCEAR 2000)

The transfer coefficients for radionuclides for the ingestion pathway according to Danish data are listed in Table 12 for different ingredients of the diet and for the whole diet.

	Normalis	ed transfer	First yea	ar transfer
		<u>g per Bq/m²)</u>		per Bq/m ²)
	Sr-90	Cs-137	Sr-90	Cs-137
Rye	32	11	23	11
Barley	24	8	17	8
Wheat	23	8	15	8
Oats	37	7	14	7
Milk	3.5	3.4	1.6	3
Beef	1.4	28	0.5	25
Pork	1	35	0.2	18
	Normalis	Normalised transfer		ar transfer
	<u>(Bq pe</u>	<u>r Bq/m²)</u>	<u>(Bq pe</u>	<u>r Bq/m²)</u>
Total diet	5	4.2	1.1	1.8

Table 12. Transfer coefficients for radionuclides for the ingestion pathway (Danish data)

5 NRPB data

In the large transfer data compilation NRPB (1999) there are several tables of recommended values, for soil-to plant transfer of radiocaesium and radiostrontium, presented for different crops and soil types. The values of TFs are given as Bq kg⁻¹ in plant per Bq kg⁻¹ dry soil. This data does not give the connection between Bq kg⁻¹ soil and deposition Bq m⁻². They are not readily usable since information of soil contamination level is usually available and most practically given in Bq m⁻². The TFs are given with 95 % confidence intervals in Tables 13 and 14 respectively. They are useful for planning monitoring of crops and countermeasures, in the years after fallout.

The crop types in the tables 13 and 14 are as follows:

- cereals, i.e. barley, wheat, oats, rye and maize grain
- □ tubers, i.e. potatoes
- □ leafy green vegetables, e.g. lettuce, endive, kale, parsley
- D brassicas, e.g. cabbage, Brussels sprouts, cauliflower
- □ root vegetables, e.g. carrots, radish, swedes and turnips
- □ legumes, e.g. beans and peas
- onion family, i.e. onion, spring onion and leek

Definition of four broad soil types given in the tables 10 and 11 are as follows:

- \Box sand, > 70% sand fraction by weight (particles with diameter greater than 0.2 mm)
- □ loam, any other combination of sand, silt and clay
- \Box clay, > 35% clay fraction by weight (particles with diameter less than 0.002 mm)
- \Box organic, > 20% organic matter

Crop	Soil typenaNbRecommendedValue		95% confid	95% confidence interval			
					Lower	Upper	
Cereals	Sand	208	25	2.1 10 ⁻²	1.7 10-3	2.5 10-1	
	Loam	358	23	$1.4 \ 10^{-2}$	4.5 10 ⁻⁴	4.2 10-1	
	Clay	49	11	1.1 10 ⁻²	5.7 10-4	2.1 10 ⁻¹	
	Mineral ^c	615	34	1.5 10 ⁻²	6.8 10 ⁻⁴	3.5 10-1	
	Organic	54	7	4.3 10 ⁻²	3.8 10 ⁻³	4.9 10 ⁻¹	
Tubers	Sand	89	13	1.1 10 ⁻¹	1.4 10 ⁻²	8.9 10 ⁻¹	
	Loam	173	14	$2.9 \ 10^{-2}$	$2.9 \ 10^{-3}$	2.8 10-1	
	Clay	20	5	2.9 10 ⁻²	3.4 10-3	2.5 10-1	
	Mineral ^c	282	22	4.4 10 ⁻²	3.5 10-3	5.6 10 ⁻¹	
	Organic	15	5	5.5 10 ⁻²	6.0 10 ⁻³	5.1 10 ⁻¹	
Green	Sand	72	7	2.1 10 ⁻¹	2.6 10 ⁻²	1.7	
vegetables	Loam	100	12	1.2 10 ⁻¹	1.2 10 ⁻²	1.7	
vegetables	Clay	34	5	6.6 10 ⁻²	7.6 10 ⁻³	5.8 10 ⁻¹	
	Mineral ^c	206	14	1.3 10 ⁻¹	1.3 10 ⁻²	1.4	
	Organic	7	2	2.9 10 ⁻¹	1.6 10 ⁻²	5.5	
Brassicas	Sand	36	7	1.2 10-1	1.3 10 ⁻²	1.2	
	Loam	40	9	2.8 10 ⁻²	5.9 10 ⁻³	1.3 10-1	
	Clay	13	2	4.4 10 ⁻²	9.6 10 ⁻³	2.0 10 ⁻¹	
	Mineral ^c	89	11	5.5 10-2	5.4 10-3	5.6 10-1	
	Organic	11	4	2.1 10 ⁻¹	5.7 10 ⁻³	7.5	
Root	Sand	38	9	5.4 10 ⁻²	8.7 10-3	3.3 10 ⁻¹	
vegetables	Loam	52	11	3.7 10 ⁻²	1.5 10-3	9.0 10 ⁻¹	
C	Clay	13	3	2.2 10 ⁻²	3.5 10-3	1.4 10 ⁻¹	
	Mineral ^c	103	14	4.0 10 ⁻²	2.8 10 ⁻³	5.6 10-1	
	Organic	12	4	7.9 10 ⁻²	3.3 10 ⁻³	1.9	
Legumes	Sand	47	8	7.4 10 ⁻²	6.1 10 ⁻³	9.0 10 ⁻¹	
- 6	Loam	74	11	1.1 10 ⁻²	6.4 10 ⁻⁴	1.8 10 ⁻¹	
	Clay	13	2	3.8 10 ⁻³	1.8 10 ⁻³	8.0 10 ⁻³	
	Mineral ^c	134	15	1.9 10 ⁻²	7.1 10 ⁻⁴	5.2 10-1	
	Organic	0	-	3.5 10 ^{-2 d}	-	-	
				2	2	2	
Onions	Sand	20	3	1.3 10 ⁻²	3-6 10 ⁻³	4.6 10 ⁻²	
	Loam	11	2	8.5 10-3	1.3 10-3	5.7 10-2	
	Clay	7	1	5.6 10 ⁻³	9.5 10 ⁻⁴	3.3 10 ⁻²	
	Mineral ^c	38	4	9.8 10 ⁻³	1.9 10 ⁻³	5.1 10-2	
	Organic	5	1	6.7 10 ⁻³	$2.8 \ 10^{-4}$	1.6 10 ⁻¹	

Table 13. Recommended values and 95% confidence intervals for TFs (Bq kg⁻¹ dry mass plant per Bq kg⁻¹ dry mass soil) for radiocaesium.

Notes

^a Number of records.

^b Number of studies.
^c Data for sand, loam and clay combined.
^d Value extrapolated using scaling factor for loam.

Crop	Soil type	n ^a	N ^b	Recommended	95% confid	ence interval
				Value	Lower	Upper
Cereals	Sand	112	13	2.3 10-1	3.0 10-2	1.7
	Loam	88	13	1.5 10-1	2.2 10 ⁻²	9.4 10 ⁻¹
	Clay	21	5	7.1 10 ⁻²	2.2 10 ⁻²	2.3 10-1
	Mineral ^c	221	16	$1.7 \ 10^{-1}$	$2.3 \ 10^{-2}$	1.3
	Organic	7	3	3.0 10 ⁻²	7.4 10 ⁻³	1.2 10 ⁻²
Tubers	Sand	44	11	2.3 10 ⁻¹	3.9 10 ⁻²	1.4
	Loam	33	10	2.1 10 ⁻¹	5.3 10-2	8.6 10 ⁻¹
	Clay	9	3	9.4 10 ⁻²	2.8 10 ⁻²	3.1 10 ⁻¹
	Mineral ^c	86	14	2.0 10 ⁻¹	3.9 10 ⁻²	1.1
	Organic	4	4	2.0 10 ⁻¹ 1.7 10 ⁻²	5.1 10 ⁻³	5.5 10-2
Green	Sand	54	6	3.2	4.5 10 ⁻¹	2.2 10-1
vegetables	Loam	75	7	2.4	6.5 10 ⁻¹	9.1
	Clay	27	4	1.8	8.3 10-1	4.0
	Mineral ^c	156	8	2.5	5.4 10-1	1.2 10 ⁻¹
	Organic	1	1	3.3 10-1	-	-
Brassicas	Sand	24	8	3.0	4.9 10 ⁻¹	1.8 10 ¹
	Loam	28	7	2.2	3.0 10 ⁻¹	1.6 10 ¹
	Clay	8	2	1.7	4.0 10-1	7.0
	Mineral ^c	60	9	2.4	3.7 10 ⁻¹	$1.5 \ 10^1$
	Organic	5	4	2.0 10-1	8.1 10 ⁻²	4.9 10-1
Root	Sand	32	9	1.5	1.2 10-1	2.0 10 ¹
vegetables	Loam	29	7	1.6	1.9 10 ⁻¹	1.3 10 ¹
U	Clay	6	2	1.4	3.4 10-1	5.5
	Mineral ^c	67	12	1.6	1.6 10 ⁻¹	1.5 10 ¹
	Organic	3	2	1.6 10-1	9.4 10 ⁻²	2.6 10- ¹
Legumes	Sand	38	5	2.7	7.4 10-1	9.6
-	Loam	58	4	1.4	3.0 10 ⁻¹	6.5
	Clay	14	2	8.2 10-1	2.0 10-1	3.3
	Mineral ^c	110	7	1.6	3.2 10 ⁻¹	8.3
	Organic	0	-	2.9 10 ^{-1 d}	-	-
Onions	Sand	13	4	9.0 10 ⁻¹	1.3 10 ⁻¹	6.2
	Loam	8	2	8.8 10 ⁻¹	1.8 10 ⁻¹	4.2
	Clay	3	1	5.4 10-1	3.5 10-1	8.5 10- ¹
	Mineral ^c	24	5	8.4 10 ⁻¹	1-5 10-1	4.5
	Organic	1	1	4.2 10 ⁻¹	-	-

Table 14. Recommended values and 95% confidence intervals for TFs (Bq kg⁻¹ dry mass plant per Bq kg⁻¹ dry mass soil) for radiostrontium.

Notes

^a Number of records.

^b Number of studies.
^c Data for sand, loam and clay combined.
^d Value extrapolated using scaling factor for loam.

6 Discussion

The default values given in this report are usable only for rough first estimations in an emergency situation in Nordic countries. For predicting the radionuclide concentrations in agricultural products more precisely specific information is needed on differences in agriculture, use of natural pasture, soil types, fertilisation status of the soils, growing conditions etc. All these factors cause variability and add the uncertainty of the estimations. The use of calculation models with transfer factors gives only robust assessments, which can be confirmed by measurements.

The literature review revealed that there is a lot of data collected after the Chernobyl fallout that can be used for soil-to-plant transfer for the years after the fallout year. Provided that the fallout levels of radiocaesium and radiostrontium are known, the values given, in Table 8 for soil-to-plant transfer and in Table 9 for transfer to animal products, can be used for decisions on agricultural use in the Nordic countries. They can also be used to decide whether extra countermeasures are needed for certain soils before use, in acute phase and in the long term.

Fallout during the growth period can be serious at relatively low fallout levels. The season of deposition is the factor that affects most the contamination of agricultural products. The start of the growing season and the harvest times vary, and the contamination of crops may differ a lot in different parts of the countries. Sample measurements are always needed in an emergency situation to confirm the assessments made by calculations. Calculation models, that take into account the time from fallout to harvest occasion, can be useful and improve the prediction of nuclide transfer to feed or food products.

Data on transfer of ¹³¹I to agricultural products are few and seems to be inadequate for prediction of default values of transfer factors. According to the OECD/NEA Workshop 12-14 June 1995 it can be approximated that after ¹³¹I deposition of 4-10 kBq m⁻² the concentration of ¹³¹I in milk exceeds 500 Bq l⁻¹. Documents of the NRPB (1994) give peak concentrations in milk, beef and lamb (and approximate times of occurrence) following deposition of 1 Bq m⁻² on grass field on June and January (Table 15.).

Peak concentration in Bq kg^{-1} (approximate time of occurrence in days) Milk Beef Lamb Radionuclide Deposition Deposition Deposition Deposition Deposition on 1 June on 1 January on 1 June on 1 January on 1 June 131I $7*10^{-2}$ (4) $2*10^{-2}$ (4) $2*10^{-7}$ (110) $2*10^{-2}$ (6) $7*10^{-7}$ (110) ¹³⁷Cs $7*10^{-2}$ (6) $6*10^{-3}$ (110) $1*10^{-1}$ (16) $1*10^{-2}$ (120) $3*10^{-1}(21)$ 1*10⁻³ (110) $2*10^{-4}$ (120) ⁹⁰Sr $1*10^{-2}(5)$ $2*10^{-3}$ (10) $2*10^{-3}$ (16)

Table 15. Comparison between concentrations of 131 I, 137 Cs and 90 Sr (Bq/kg) for milk, beef and lamb after deposition on the 1st of June and the 1st of January. It is assumed that cattle graze pasture in summertime.

7 References

Eriksson, Å.1977. Direct uptake of vegetation of deposited materials. I. Retention of nuclides and simulated fallout particles in pasture grass. Report SLU-IRB-42. Department of radiobiology, Agricultural College of Sweden. Uppsala.

Eriksson, Å., Rosén, K. & Haak, E. 1998. Retention of simulated fallout nuclides in agricultural crops. I. Experiments on leys. Rapport SLU-REK-80, Uppsala. pp 1-32.

Eriksson, Å., Rosén, K. & Haak, E. 1998. Retention of simulated fallout nuclides in agricultural crops. II. Deposition of Cs and Sr on Grain Crops. Rapport SLU-REK-81, Uppsala. pp 1-36.

Haak, E., Eriksson, Å. & Rosén, K. 2000. Retention of simulated fallout nuclides in grass and grain crops, 8-13. Proc XXXth Meeting of ESNA/jointly organised with UIR working group soil-to-plant transfer. Keszthely, Hungary, August 26-30, 2000. Gerzabeck, H,M. (ed).

Haak, E., Eriksson, Å., Lönsjö, H. & Rosén, K. (1998). Överföring av Cesium-137 till jordbruksprodukter i Skåne och Blekinge efter en kärnenergiolycka. Rapport SLU-REK-82, Uppsala. pp 1-44. (In Swedish with English summary.)

Lauritzen, B. (editor), 2001. Huginn. A late phase nuclear emergency exercise, NKS-23. IBSN 87-7893-073-1.

Rosén, K., 1996. PhD. Thesis. Report SLU-REK-78. Field studies on the behaviour of radiocaesium in agricultural environments after the Chernobyl accident.

Whicker, F.W. & Kirchner, T.B. 1987. Pathway: A dynamic food-chain model to predict radionuclide ingestion after fallout deposition. Health Physics 52, 717-737.

Nisbet, A.F., Woodman R.F.M. and Haylock R.G.E. 1999. Recommended Soil-to-plant Transfer Factors for Radiocaesium and Radiostrontium for Use in Arable Systems, NRPB-R304, Chilton: National Radiological Protection Board, 50 pp.

NRPB. 1994. Guidance on Restrictions on Food and Water Following a Radiological Accident, Volume 5 No 1.

UNSCEAR 1988. Sources, Effects and Risks of Ionizing Radiation.

UNSCEAR 2000. Sources and Effects of Ionizing Radiation.

Appendix 1: Transfer factors

In radioecology different ratios/coefficient/factors are used to characterise the transfer of radionuclides from one sector to another within an ecosystem or a food chain. Below some of the most used ones are defined TRd, CR, TF, FM, CF and T_{ag} .

Transfer from fallout to plant by direct deposition on growing crops									
	_								
Concentration in plant (Bq(kg d.w.) ⁻¹) TRd =	Unit: $m^2 / kg d.w.$	(1)							
TRd = Deposition on ground (Bq m ⁻²)	6								
where $d = deposition$									
FRd = TRd * Yield $(m^{2}(kg d.w.)^{-1} * (kg d.w.) m^{-2})$	Dimensionless	(2)							
where $d = deposition$									
Transfer from soil to plant under field conditions									
Concentration in plant (Bq/kg d.w.)	Unit: m ² /kg d.w.	(3)							
TRsp = TR = TF = Nuclide deposition (Bq/m ⁻²)	Unit. In /kg u.w.	(3)							
where $s = soil$ and $p = plant$									
Transfer from plant to milk/meat									
Concentration in milk/meat (Bq/kg f.w.) TC = TC _{fm} = FM =	Unit: day/ka fyy	(4)							
Daily nuclide intake (Bq/animal and day)	Unit. day/kg i.w.	(4)							
where $f = feed$ and $m = meat$									
Transfer from plant to animal muscle									
Concentration in muscle (Bq/kg f.w.) TF _{pm} = CF =	Dimensionless	(5)							
Concentration in plant (Bq/kg d.w.)	Dimensionless	(5)							
where p = plant and m=muscle									
Transfer from soil to milk/meat									
Concentration in milk/meat (Bq/kg f.w.)	Unit: m ² / kg f.w.	(6)							
T _{ag =} Nuclide deposition (Bq/m ⁻²)	Оши. III / к <u>g</u> I.W.	(6)							
where ag = aggregated									

Appendix 2: Bibliographic database

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Andersson, I & Lönsjö, H. (1988). Swedish J. agric. Res. 18: 195-206.	Transfer of ¹³⁷ Cs in two farm Ecosystems. Calculated ef- fects of countermeasures following postulated fallout land contamination.	Case studies on two farms near Barsebäck and Ringhals, with different produc- tion conditions. Sweden.	Simulated depo- sition of Cs-137, 1MBq/hectare.	Crop and animal products on the two farms.	The situation some years after a nuclear accident.	Based on production data of the farms, estimates of the annual transfer of Cs-137 to crop and animal products and of internal radiation doses per person on the farms. Effects of countermeasures, fertilisa- tion and soil managements, are discussed.
Absalom,J.P. Young,S.D. Crout,N.M.J. Sanchez,A. Wright,S.M. Smolders,E. Nis- bet,A.F. Gillett,A.G. (2001). Jour- nal of Environmental Radioactivity, Volume 52 Issue 1 (January 2001), Page 31-43.	Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics	Europe. UK	Cs-137.			Activity concentrations of Cs-137 were measured in 325 samples of soil and potato which were taken from fields with various levels of Cs-137 deposi- tion. The soil-potato transfer factor $TF=Cs_{potato}/Cs_{soil}$, where Cs_{potato} and Cs_{soil} are activity concentrations. (TF, Bq/kg plant/Bq/kg whole soil)
Agnedal, PO. & Eriksson, Å. (1990). Studsvik Report. Studs- vik/NS-90/115.	In-situ studier av migra- tionsparametrar för strontium och cesium.	Lysimeter exps. in field and batch exps. in labora- tory. Sweden.		Results related to nuclide up- take by barley.	3 mineral top- soils, in the lysimeter exp. placed on 2 subsoils, loamy sand and clay.	Calculation of the soil-plant transfer factors of Sr- 90 and Cs-137 and study the parameters which mainly influence root uptake. Transfer factors were highest in poor, acid soils and uptake was influ- enced mostly by the soil organic matter, calcium and potassium contents.
Albers BP, Steindl H, Schimmack W and Bunzl K. (2000). Chemosphere 41, 717-723	Soil-to-plant and plant-to- cow's milk transfer of radio- cesium in alpine pastures: significance of seasonal vari- ability.	alpine pasture	Cs-137	cow's milk	alpine soil	Fallout radiocesium studied in natural sites. Very large scattering of soil-to-plant transfer factors because of the presence of a large number of species and soil adhesion on the vegetation from trampling cattle. Seasonal effects were therefore only observable as a result of the large number of data. The aggregated soil-to-plant transfer factor for a typical alpine pasture was, on average, 0.002 +/-0.001 m(2) kg(-1). The plant-to-milk transfer coefficient was, on average, 0.02 day/l. The Cs -137 concentration in the milk varied within the grazing period only between 1.4 and 2.9 Bq/l., with a significant maximum at the beginning of August.
Albini E., Mascaro L. and Belletti S. JR: Health Physics, 1990, v. 59(4), p. 455-460.	Measurement of Radiocesium Transfer to Milk and Calcula- tion of Resulting Dose in Brescia, Italy, Following the Chernobyl Accident	Italy.	¹³⁴ Cs, ¹³⁷ Cs.	Cow's diet, milk.		Values were obtained for Cs transfer coefficients for cow's diet-to-milk and diet-to-faeces.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Alexakhin R., Firsakova S., Rauret G, Arkhipov N., Vandecasteele M., Ivanov Yu., Fesenko S. and Sanzharova N. Conf.: 1. international conference on 'The radiological consequences of the Chernobyl accident' Minsk, Belarus, 18-22 Mar 1996. INIS-BY020 Proceedings of the first international conference 'The radiological conse- quences of the Chernobyl accident', Luxembourg, 1996, 1192 p., p. 39-47.	Fluxes of Radionuclides in Agricultural Environments: Main Results and still un- solved Problems.	Belarus, Ukraine.	¹³⁷ Cs.	Grain, potato, hay, milk, meat.		The influence of the factors on the Cs 137 fluxes in the main agricultural ecosystems of the Chernobyl accident zone are quantitatively determined.
Amaral ECS., Paretzke HG., Campos MJ., Pires do Rio MA. and Franklin M. JR: Journal of Environmental Radioactivity, 1995, v. ²⁹ (3), p. 237-255.	Transfer of ¹³⁷ Cs from Soil to Chicken Meat and Eggs.		Cs-137	Soil, eggs.		The distribution and biological half-lives of radio- caesium in poultry after prolonged ingestion of contaminated soil was studied. Based on these results, concentration ratios between egg compo- nents and chicken meat of different types from soil were determined. Concentration ratios ranged from $5.5 \times 10-3$ to $1.06 \times 10-2$ for whole consumable eggs, from $2.1 \times 10-2$ to $5.5 \times 10-2$ for meat and $1.1 \times 10-2$ to $3.1 \times 10-2$ for organs.
Andersson, I & Lönsjö, H. (1985). Institutionen för husdjurens utfodring och vård. Rapport 150. (1985). Swedish version.	Konsekvenser för enskilda lantbruksföretag i händelse av en kärnkraftolycka. Fallstu- dier av två enskilda gårdar i närheten av Barsebäcks och Ringhalsverken.	Case studies on two farms near Barsebäck and Ringhals, with different produc- tion conditions. Sweden.	Simulated depo- sition of Cs-137, 1MBq/hectare.	Crop and animal products on the two farms.	The situation some years after a nuclear accident.	Based on production data of the farms, estimates of the annual transfer of Cs-137 to crop and animal products and of internal radiation doses per person on the farms. Effects of countermeasures, fertilisa- tion and soil managements, are discussed. Total transfer, MBq, internal radiation dose, mSv to crop and animal products.
Andersson, I. Lönsjö, H. Rosén, K. (2001) Journal of Environmental Radioactivity. Volume 52, Issue 1, January 2001, P. 45-66	Long-term studies on transfer of ¹³⁷ Cs from soil to vegeta- tion and to grazing lambs in a mountain area in Northern Sweden	Sweden.	Cs-137.			A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kdl), K+
Angeletti; Livio Levi; Emilio Report: Jul 1977. 36 p CEA-R4860.	A comparative study of trans- fer factors of water, iodine and strontium on rye-grass and clover. Development of a model of evaluation of the limits of foliar contamination by wet deposit. Etude comparative des fac-	France.	¹³¹ I, ⁸⁵ Sr.	Clover, rye.		Transfer factors of water, iodine ¹³¹ I and strontium ⁸⁵ Sr on above-ground parts of rye-grass and clover were determined as a function of aspersion intensi- ties. An analysis of the results showed the effect of aspersion intensities, nature of the chemical ele- ment and plant species on the values of transfer factors of iodine and strontium. It also made it possible to propose a simple method of evaluation

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	teurs de transfert de l'eau, de l'iode et du strontium sur le ray-grass et le trefle. Proposi- tion d'un modele d'evaluation des limites de la contamina- tion foliaire par le depot humide. In French.					of contamination limits of the aerial parts of plants by wet deposit, based on transfer values of water on plants only
Artner, C. Gerzabek, M.H. Horak, O. Muech, K. Report: OEFZS4581, May 1991, 9 p.	Investigations on ¹³⁷ Cs and ⁹⁰ Sr soil-to-plant transfer from soils contaminated by Chernobyl fallout. Ermittlung praxisbezogener Transferfaktoren fuer ¹³⁷ Cs und 90Sr aus dem Fallout des Reaktorunfalles in Tscherno- byl. In German.	Austria.	¹³⁷ Cs, ⁹⁰ Sr.	Plants.	Soils.	Radiological models use transfer factors to describe the movement of radionuclides in ecosystems. The soil-to-plant transfer value: $TF = (Bq/kg \text{ plant-fresh} weight)/(Bq/kg \text{ soil-dry weight})$. The highest mean ¹³⁷ Cs-transfer values were obtained for straw of cereals. In most cases ⁹⁰ Sr-transfer was one order of magnitude higher than the ¹³⁷ Cs-transfer. ⁹⁰ Sr showed a significantly lower mobility in the inves- tigated plants as compared to ¹³⁷ Cs.
Ashworth F.M., Prime D. and Clark J.S. In Book (Conf.): 4. International Symposium on Radiation Protection - Theori and Practice. Malvern (UK), 4-9 Jun 1989. Goldfinch, E.P., Proceedings, 1989, 511p. p201-204.	The Concentration and Movement of Chernobyl Radionuclides in North Wales.	England. North Wales.	Cs-134, Cs-137.	Fungi, lichen, moss, grass, fern, tree leaves.	Soil. Weathering; organic matter; soil profile.	The movement both down the soil profile and into vegetation has been investigated. Findings indicate a lack of penetration below root depth and high levels of ¹³⁷ Cs persisting in vegetation where soils contain a high percent of organic matter. Tables for ¹³⁷ Cs and ¹³⁴ Cs according to soil depth are presented. Weatherings through time are given in graphs.
Askbrant S. and Sandalls J. JR: Journal of Environmental Radio- activity, 1998, v. 38(1), p. 85-95.	Root Uptake of ¹³⁷ Cs and ⁹⁰ Sr by Rye-grass on Various Soils in the CIS.	Chernobyl zone.	Radio-isotopes of Cs, Sr and others.	Rye-grass		During 1992 caesium-137 and ⁹⁰ Sr were measured in samples of rye-grass and on five soddy podsolic mineral soils. The concentration ratio (CR) (Bq kg- 1 dw rye-grass/Bq kg ⁻¹ dry soil to 10 cm) for ⁹⁰ Sr always exceeded that for ¹³⁷ Cs but on one peaty soil, the CR for ¹³⁷ Cs exceeded that for ⁹⁰ Sr. On a second peaty soil, both CRs were small and proba- bly very similar. The CRs for ¹³⁷ Cs on the mineral soils ranged from 0.05 to 0.39 and from 0.65 to 0.90 for ⁹⁰ Sr. On the peat soils, the ranges were 0.05 to 0.76 and 0.11 to 0.38, respectively. On the mineral soils, the lowest values of CR were found at a site still heavily contaminated with fuel parti- cles at the time of sampling.
Assimakopoulos P.A., Ioannides K.G., Pakou A.A., Lolis D., Zikopoulos K. and Dusias B.	Radiocesium Levels Meas- ured in Breast Milk One Year after Reactor Accident at	Greece.	¹³⁴ Cs, ¹³⁷ Cs.	Staple food (bread, milk, meat, apples),		With a mean contamination concentration of 16.4 Bq L ⁻¹ the corresponding transfer coefficient was calculated with a value of

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
JR: Health Physics, 1989, v. 56(1), p. 103-106.	Chernobyl.		•	mother's milk.		$fm = 0.06 \pm 0.03 d L^{-1}$.
Assimakopoulos PA., Ioannides KG., Pakou AA. and Mantzios A. JR: Health Physics, 1987, v. 53(6), p. 685-689.	Measurement of the Transfer Coefficient for Radiocesium Transport from a Sheep's Diet to its Milk.	Greece.	¹³⁴ Cs, ¹³⁷ Cs.	Grass, milk.		A daily radiocesium intake was 832 Bq per day per animal. The transfer coefficient, describing the steady-state equilibrium in this model, was measured as fm = 0.058 ± 0.007 d L ⁻¹ .
Assimakopoulos, P.A.; Ioannides, K.G.; Karamanis D.T., Pakou, A.A. Stamoulis K.C., Mantzios A.G. and Nikolaou E. JR: Journal of Environmental Radio- activity, 1994, V. 22, p. 63-75.	Variation of the Transfer Coefficient for Radiocaesium Transport to Sheep's Milk During a Complete Lactation Period.	Greece.	¹³⁷ Cs, ¹³⁴ Cs.	Grass, milk.		Values of transfer coefficients are given in tables and graphs.
Attwood, C.; Fayers, C.; Mayall, A.; Brown, J.; Simmonds, J.R. Report: IAEA-TECDOC904 IAEA, Validation of models using Chernobyl fallout data from southern Finland. Scenario S, (VAMP). Sep 1996, 483 p., p. 199-236.	FARMLAND: Model de- scription and evaluation of model performance. (Food Activity from Ra- dionuclide Movement on Land).	Finland. Simulation.	¹³¹ I, ¹³⁷ Cs, ⁹⁰ Sr.	Crops, vegeta- bles, milk, meat.	Simulated input.	The FARMLAND model can be used to predict activity concentrations in food as a function of time. The effect of deposition at different times of the year can be taken into account. FARMLAND contains a suite of models which simulate radionu- clide transfer through different parts of the food chain. The main foods considered are green vegeta- bles, grain products, root vegetables, milk, meat from cattle and meat from sheep. Isotopes of cae- sium, strontium and iodine are treated in greatest detail.
Auraldsson, HÅ., Ekman, L., Eriksson, Å & Greiitz, U. (1971). Försvarets Forskningsanstalt, FOA 4 C-4473-A3.	Residual radioactivity on pasture available for cows after a previous short grazing period.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	Spraying of I- 131 and Sr-85 on pasture sur- face.	Grass and milk.	Residual transfer of I-131 and Sr- 85 to grass and milk a 2nd time, 5 weeks after initial deposition.	Relative conc. of I-131 and Sr-85 in milk the sec- ond time compared to 1st time was 5.3% and 4.0 % respectively. Correspondingly the relative conc. in grass was 5.2% and 3.9%. All activity values were dated back to the date of deposition
Auraldsson, HÅ., Ekman, L., Eriksson, Å. & Greiitz, U. (1970). Försvarets Forskningsanstalt, Rap- port FOA 4 C4445-28.	Transfer of radiostrontium from pasture to milk.	Experimental animal and pas- ture field station at Kungsängen, SLU, and Upp- sala. Sweden.	Sr-85 in water solutions were spread onto the surface of pas- ture.	Pasture grass.	Grazing period.	Initial deposition of Sr-85 on grass land, 1 uCi/m2, gave about 0.03 μ Ci/l milk from grazing cows. About 40 % of deposited Sr-85 was retained on edible herbage consumed by the cows. μ Ci/m ² pasture surface and μ Ci/l cow milk.
Auraldsson, HÅ., Ekman, L., Eriksson, Å. & Greiitz, U. (1970). Försvarets Forskningsanstalt, Rap- port FOA 4 C4478-A3.	A simultaneous study on the transfer of radioiodine from pasture to milk and from a single oral intake to milk.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	I-125 and I-131 in water solu- tions spread onto the surface of pasture, which was grazed by cows.	Grass and milk.	Grazing period of early June 1970.	2 % of I-131 deposited was consumed by grazing cows. This transfer was lower than before or 6 %, which was attributed to later stage of grass shoot- ing. About 60 % of iodine disappeared during 18 hours after deposition and 6 % more on three days.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Auraldsson, H.Å., Ekman, L., Eriksson, Å. & Greiitz, U. (1970). Försvarets Forskninganstalt, Rapport FOA 4 C-4458-28.	Further Experimental Studies on the Transfer of Radioio- dine from Pasture to Milk.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	Deposition of I- 131 on surface pasture and transfer to milk by oral dose of grass to cows.	Pasture grass and cow milk.	Grazing period.	The ratio of deposited I-131, μ Ci/m ² , to peak con- centration in milk, μ Ci/l, was about 50. Of depos- ited I-131 about 6 % was retained on edible herb- age compared to 40 % for Sr-85. nCi Cs-137/kg d.w. and pCi/l milk
Auraldsson, H.Å., Ekman, L., Eriksson, Å. & Greitz, U. (1970). Försvarets Forskningsanstalt, FOA 4 C-4503-A3.	Transfer of Simulated Fall- out-Particles from Pasture to Grazing Dairy Cattle. 1. Introductory Experiments with Wet Deposited 100-20 mm Particles.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	Sand particles labelled with La- 140 were dis- tributed on grass or given to cows.	Grass and milk.	Grazing period.	Fraction of deposition ingested by cows was as- sessed by assay of radioactivity in faeces. It was found to be about 20 %. Differently designed ex- periments gave similar results. Compare Greitz, U., Ekman, L.& Eriksson, Å. (1974).
Balonov M.I. Book (Conf.), 25. Annual meeting of Fachverband fuer Strahlenschutz e. V. (FS): Environmental radioactiv- ity, radioecology, radiation effects. Bin auf Ruegen (Germany). 28-30 Sep. 1993, p. 554-560.	Consequences of the Cherno- byl accident as the basis for development of ecological and dosimetric models.	Contaminated regions of Rus- sia. Germany.	¹³⁴ Cs, ¹³⁷ Cs and ⁹⁰ Sr.	Vegetation and food.	Different agro- chemical charac- teristics and types of soil.	The transfer factor from soil to vegetation and to food ration of man for Cs-134 and Cs-137 de- creases with the half-period of 1 to 1.5 years and depends on soil type and agrochemical characteris- tics.
Ban-nai, T., Muramutsu, Y,; Yanagisawa, K. JR: Journal of Radioanalytical and Nuclear Chemistry, Sep. 1999, v. 241 (3), p. 529-531.	Transfer of some selected radionuclides (Cs, Sr, Mn, Co, Zn, and Ce) from soil to root vegetables.	Japan. Radio- tracer experi- ments.	¹³⁷ Cs, ⁹⁰ Sr, ⁶⁰ Co, ⁵⁴ Mn, ⁶⁵ Zn and ¹⁴¹ Ce.	Root vegetables (radish, carrot and turnip).	Andosol - a typical soil type in Japan.	The averages of Tfs of ¹³⁷ Cs and ⁹⁰ Sr for edible parts of the three vegetables were 0.02 and 0.14 (Bq/g fr.w.plant / Bq/g dry w.soil). Noticed that Tfs for edible parts of root vegetables were markedly lower than those for leaf vegetables.
Ban-nai, Tadaaki; Muramutsu, Yasuyuki; Yanagisawa, Kei JR: Journal of Radiation Research, 1995	Transfer factors of some selected radionuclides (radio- active Cs, Sr, Mn, Co, and Zn) from soil to leaf vegeta- bles.	Japan	Cs and Sr	Vegetables: cabbage, Chi- nese cabbage, komatsuma, spinach and lettuce.	Experiments on Andosol as a representative of Japanese soils	Transfer factors for Cs and Sr for edible parts of vegetables were 0.11 and 0.24. Tf of Sr was higher for older (outer) leaves than younger ones.
Ban-nai, Tadaaki; Muramutsu, Yasuyuki; Yoshida, Satoshi, Ya- nagisawa, Kei Conf: Nuclear cross-over research international workshop on improve- ment of environmental transfer models and parameters, Tokio, 5-6 Feb.1996 Available from Japan Atomic Indus- trial Forum, Inc	Studies on the transfer of Cs, Sr, Co, Mn and Zn from soil to plants and from medium to mushrooms by using radio- tracer.	Japan	Cs and Sr	Vegetables: cabbage, Chi- nese cabbage, komatsuma, spinach and lettuce and different kinds of mushrooms.		Transfer factors for Cs and Sr for edible parts of vegetables were 0.11 and 0.24. TF of Sr was higher for older (outer) leaves than younger ones.
Becker, A.; Biesold, H.; Handge, P. Report: Schriftenreihe Reaktorsi- cherheit und Strahlenschutz.	Analysis of radioiodine trans- fer via the air-grass-cow-milk pathway.	Germany.	I-131.	Animal feeds, plants, milk.		The transfer factors air/pasture vegetation, pasture vegetation/milk and air/milk are calculated.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Ergebnisberichte, Untersuchungen,	Analysen ueber den Transfer					
Studien, Gutachten,	von Radiojod ueber den Luft-					
1988, 52 p.	Wiede-Kuh-Milch-Pfad. In German.					
BMU1988-181; GRS-A1397 Beckmann, C.; Faas, C.	Radioactive contamination of	Germany,	¹³⁷ Cs.		Different soil	The vertical distribution patterns of caesium are
Conf.: 27. Colloquium Spectro-	soils in Lower Saxony, Ger-	Saxony.	C5.		parameters,	dependent on the different physico-chemical soil
scopium Internationale (CSI) Pre-	many, after the Chernobyl	Sunony.			seasonal and	properties. The maximum gamma-activity for 137 Cs
symposium on measurements of	accident.				weather varia-	of 33.3 kBq m ⁻² was found in a depth range of 0-20
radionuclides after the Chernobyl					tions.	cm (January 1, 1989). This was correlated with
accident. Bergen, Norway,						areas that had received heavy rainfall on May 4,
9-14 Jun 1991.						1986. On January 1, 1989 approximately 60% of
JR: Analyst						the Chernobyl caesium was still in the top 0-2 cm
Mar 1992, v. 117(3), p. 525-527.						of the topsoil.
Belli M., Blasi M., Borgia A.,	First Results of a Radiologi-	Italy.	Cs-137.	Maize.	Clay, loam,	The ¹³⁷ Cs transfer factors relative to dry and wet
Poggi M., Sansone U., Menegon S.	cal Research on the Agricul-				gravel, sand/clay,	maize weight are given according to soil, planting
and Nazzi P.	tural Environment on the				clay/loam.	and harvesting date and plant parts in table. The
Book (Conf.): 4. Cadarache interna- tional Symposium on Radioecology.	North-Eastern Region of Italy (Friuli-Venezia Giulia).					values range between 0.028 and 0.17 with a mean of 0,075 and a standard deviation of 0,048.
Cadarache (France). 14-18 Mar	(Filuii-venezia Giulia).					of 0,075 and a standard deviation of 0,048.
1988.						
Vol. 2. Cadarache (France). Section						
Documentation - CEN/Cadarache.						
p. E144- E153.						
Belli M., Sansone U., Piasentier E.,	¹³⁷ Cs Transfer Coefficients	Italy.	¹³⁷ Cs.	Grass, milk.		Mean values of transfer factors from feed-to-milk
Capra E., Drigo A. and Menegon	from Fodder to Cow Milk.					for ¹³⁷ Cs are given in tables for different parts of
S.						country.
JR: Journal of Environmental Radio-						
activity,						
1993, V. 21, p. 1-8. Beresford N. A., Gashchak S.,	The transfer of ¹³⁷ Cs and ⁹⁰ Sr		¹³⁷ Cs, ⁹⁰ Sr	Pasture, milk,		TF.
Lasarev N, Arkhipov A., Chy-	to dairy cattle fed fresh herb-		CS, 51	faeces, soil.		11.
orny Y., Astasheva N., Arkhipov	age collected 3.5 km from the			140003, 3011.		
N., Mayes R. W., Howard B. J.,	Chernoby ¹ nuclear power					
Baglay G., Loginova L. and Burov	plant.					
N.	_					
JR: Journal of Environmental Radio-						
activity,						
2000, v. ⁴⁷ , p. 157 ⁻¹ 70.						
Beresford NA., Mayes RW.,	The effectiveness of alginates	UK.	Cs-137.			In the event of a nuclear accident the radiation dose
MacEachern PJ., Dodd BA. and	to reduce the transfer of ra-					to human populations arising from radiostrontium
Lamb CS. JR: Journal of Environmental Radio-	diostrontium to the milk of					ingested as contaminated milk is a major cause of
	dairy goats.					concern. We report a study to determine if calcium alginate incorporated into the diet can be used as an
activity, 1999, v. 44(1), p. 43-54.						arginate incorporated into the diet can be used as an

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						effective countermeasure to reduce radiostrontium transfer to the milk of dairy goats. When Ca- alginate was included into a pelleted ration at 5% dry weight the transfer of radiostrontium to the milk of the goats was reduced by approximately 50%.
Bergeijk, K.E., van; Noordjik, H.; Lembrechts, J.; Frissel, M.J. JR: Journal of Environmental Radio- activity, 1992, v. 15, p. 265-276.	Influence of pH, soil type and soil organic matter content on soil-to-plant transfer of radio- cesium and strontium as analyzed by a nonparametric method.	Netherlands.	¹³⁴ Cs, ¹³⁷ Cs, ⁸⁵ Sr, ⁸⁹ Sr and ⁹⁰ Sr.	Edible plant parts.	Sand, clay and loam with differ- ent organic mat- ter contents.	Transfer of Cs in clay or loam was lower than in sand by five or three times. For Sr the transfer in clay or loam was about 1.4 times lower than in sand.
Bertilsson, J., Andersson, I. & Johanson, K.J. (1988). Health Physics, 55, 855-862.	Feeding green cut forage contaminated by radioactive fallout to dairy cows.	Sweden.	Cs-137.			Based on production data of the farms, estimates of the annual transfer of Cs-137 to crop and animal products and of internal radiation doses per person on the farms. Effects of countermeasures, fertilisa- tion and soil managements, are discussed.
Berzero, A., Borroni, P.A., Od- done, M., Crespi, V.C., Genova, N., Meloni, S. Conf.: 27. Colloquium Spectro- scopium Internationale (CSI) Pre- symposium on measurements of radionuclides after the Chernobyl accident. Bergen, Norway, 9-14 Jun 1991. JR: Analyst Mar 1992, v. 117(3), p. 533-537.	Distribution of radionuclides in the environment in North- ern Italy after the Chernobyl accident.	Northern Italy.	¹³⁷ Cs.	Grass, vegeta- bles, milk.	Different soil parameters, time distributions.	An environmental radioactivity monitoring pro- gramme in which several matrices such as soil, grass, vegetables and cows' milk was carried out. The radioactivity distribution and its variation with time is presented, discussed and compared with other available data. Detection limits, precision and accuracy are also reported, and depth profiles in soils for ¹³⁷ Cs are presented and correlated with soil quality parameters.
Biesold, H.; Handge, P. Report: GRS75 Dec. 1989, 59 p.	Compilation of transfer fac- tors and ecological parame- ters for calculation of ra- dionuclide transport through food chains. Zusammenstellung von Transferfaktoren und oecolo- gischen Parametern zur Bere- chung des Radionuklidtrans- ports durch Nahrungshetten. In German.	Germany. Summary for Guidelines.	Different ra- dionuclides.	Animal feeds, meat, milk, plants.		In connection with establishing administrative guidelines the transfer factors for soil-plant, feed- milk, and feed-meat are summarized. Individual results of national and international studies were taken into account. For ecological parameters such as yield, growth time, storage time, and the crops' water and carbon content, national statistics and handbooks of agricultural practice were used.
Boikat, U.; Koehler, W.; Khostravi, A. Conf: 12. Annual meeting on radio- activity and environment.	Studies of the soil -> plant transfer of cesium on perma- nent pastures. Untersuchungen zum Caesi-	Germany. Simulation on fallout measure- ments.	Cesium.	Plants.	Marshy soils.	Based on pot experiments (¹³⁴ Cs) and fallout meas- urements for marshy soils. Transfer coefficient estimated is higher by a factor of 10-20 as com- pared to the calculations of the German Commis-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Norderney, Germany F.R. 2-8 Oct. 1978. INIS-mf5840.	um-Transfer Boden -> Pfllan- ze auf Daerweiden. In German.					sion on Radiological Protection. The authors de- mand exact determination and documentation of the types of plants, period of growth, and environ- mental parameters for future measurements.
Bonka H., Kreh R. Book (Conf.): 25. Annual meeting of Fachverband fuer Strahlenschutz e.V. (FS): Environmental radioactiv- ity, radioecology, radiation effects. Binz auf Ruegen (Germany), 28-30 Sep 1993, p.750-755. FS93-67-T	Changes of the Specific Cs- activity in Plants, Honey and Venison in Aachen after 1986. Veraänderung der Spezifi- schen Cs-aktivität in Pflan- zen, Honig und Wildfleisch nach 1986 in Aachen. In German.	Germany.	¹³⁷ Cs.	Plants, honey, meat.		This report deals with the long-term changes. Table of transfer factors of ¹³⁴ Cs and ¹³⁷ Cs are given in tables.
Bonka, H. Book (Conf.): 15. Regional congress of the International Radiation Pro- tection Association (IRPA) on the radioecology of natural and artificial radionuclides. Visby, Sweden, 10-14 Sep 1989 FS89-48-T; Feldt, W. (ed.), The radioecology of natural and artificial radionuclides. Proceedings. Koeln (Germany, F.R.); 1989, 609 p., p. 147-152.	Measured radioecological parameters after the Cherno- byl accident.	Germany.	¹³¹ I and ¹³⁷ Cs.	Plants, meat, milk.		After the Chernobyl accident the radioactivity in the environment in Aachen was measured in detail. The change of the different radionuclies in the eco- system made it possible to obtain radioecological parameters especially for iodine and caesium. The most important data obtained like deposition veloc- ity, washout coefficient, retention factor, removal rate constant, and transfer factor food-milk, food- beef, and soil-grass are reported.
Bonka, H.; Köster, G.; Kuppers, J. In Book (Conf.): 4. International Symposium on Radiation Protection - Theori and Practice. Malvern (UK), 4-9 Jun 1989. Goldfinch, E.P., Proceedings, 1989, 511p. p341-346.	Transfer in milk, meat and grass obtained by the post Chernobyl measurements.	Germany. Field data.	I-131, Cs-137.	Grass, milk, meat.		The radioactivity measurements after the Chernobyl accident allowed in a unique way to study the transfer factor food-milk for I-131; food-meat and soil-grass for Cs-137. Values are given in Figures.
Borzilov V.A. and Klepikova N.V. In Book: Merwin, S.E.; Balonov, M.I. (eds.) The Chernobyl papers. Volume1. Doses to the Soviet popu- lation and early health effects stud- ies. Richland, WA (USA). Research Enterprises.1993, p. 47-68.	Effects of Meteorological Conditions and Release Composition on Radionuclide Deposition after The Cherno- byl Accident.	Russia.	¹³⁷ Cs, ⁹⁰ Sr, ¹³¹ I, ^{239,240} Pu.		Meteorological conditions.	Physico-mathematical modelling of the atmos- pheric transport and dispersion of radionuclides released during the Chernobyl accident. The results of computer simulations agree with actual meas- urements of radionuclide surface contamination both within 30-km zone around the Chernobyl reactor and at remote distances.
Bretthauer E.W., Mullen A.L. and Moghissi A.A. JR: Health Physics, Mar. 1972, v. 22, p. 257-260.	Milk Transfer Comparisons of Different Chemical Forms of Radioiodine.	USA.	Radio-iodine.			Ion-exchange analysis indicated that, regardless of the chemical form administered, 97% of the iodine in the milk was inorganic.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Bruk G.Y., Shutov VN. Balonov MI., Basalayeva LN., Kislov MV. JR: Radiation Protection Dosimetry, 1998, v. 76(3), p. 169-178.	Dynamics of ¹³⁷ Cs Contents in Agricultural Food Products Produced in Regions of Rus- sia Contaminated After the Chernobyl Accident.	Chernobyl zone.	Cs-137.			TF from soil to milk and potatoes.
Bunzl K., Kracke W. JR: Science of the Total Environ- ment May 1987, v. 63, p. 111-124.	Soil to plant transfer of ²³⁹⁺²⁴⁰ Pu, ²³⁸ Pu, ²⁴¹ Am, ¹³⁷ Cs and ⁹⁰ Sr from global fallout in flour and bran from wheat, rye, barley and oats, as obtained by field measurements.	Netherlands.	²⁴¹ Am, ¹³⁷ Cs, ²³⁹ Pu, ²⁴⁰ Pu, ⁹⁰ Sr.	Wheat, rye, barley and oats, flour, bran, cereals.	Soils.	The soil-to-plant transfer factors of $^{239+240}$ Pu for wheat, rye and barley flour were between 0.00026 and 0.00078 (oats 0.017) and for bran between 0.0048 and 0.02 (oats 0.014). For 241 Am the corre- sponding values were somewhat lower. For the wheat, rye and barley flour the transfer factors of 137 Cs were between 0.013 and 0.018 (oats 0.069) and, for the bran, between 0.08 and 0.10 (oats 0.16). The corresponding values for 90 Sr were significantly higher: for flour between 0.08 and 0.14 (oats 1.2) and for bran between 0.62 and 0.93 (oats 1.5).
Bunzl K., Albers BP., Schimmack W., Belli M., Ciuffo L. and Mene- gon S. JR: Journal of Environmental Radio- activity, 1998, v. 48(2), p. 145-158.	Examination of a relationship between ¹³⁷ Cs concentrations in soils and plants from alpine pastures.	Germany, Italy.	Cs-137.			An essential prerequisite of the soil/plant transfer factor concept is the presence of a statistically significant relationship between the contents of a given radionuclide in the soil and plant. The results showed that increased plant ¹³⁷ Cs concentrations were not significantly ^{as} sociated with increased soil ¹³⁷ Cs contents. The relation between potassium and radiocesium revealed a very strong b ^{ut} negat ^{ive} correlation between ⁴⁰ K and ¹³⁷ Cs in the plants.
Carini F. JR: Journal of Environmental Radio- activity, 1999, v. 46, p. 77-97.	Radionuclides in Plants bear- ing fruit: an overview.					TF.
Carini, F . (2001) Journal of Environmental Radioactivity Volume 52, Issue 2-3, January 2001, P. 237-279	Radionuclide transfer from soil to fruit	Europe.	caesium, stron- tium, plutonium and americium	in fruit plants		Studies were made during 1990-1997 on the trans- fer of Cs-137 from soil to vegetation (herbage) and to grazing lambs on a mountain farm with an uncul- tivated grazing area of about 10 km2. The farm is situated in an area in Northern Sweden.
Castren, O. Report, Studies on environmental radioactivity in Finland 1971-1975, Annual report, STL-A21, Feb. 1977, p. 73-76.	UNSCEAR transfer coefficients P ₂₃ (milk and P ₂₃₄ for ⁹⁰ Sr and ¹³⁷ Cs in Finland.	Finland. Simulation.	Cs-137, Sr-90.	Milk.	Estimation made for northern temperature zone.	The transfer coefficients from deposition to milk (P_{23}) and from deposition to human body (P_{234}) were calculated on bases of results of the survey programs in Finland and compared with the UNSCEAR estimates for the northern temperature zone.
Castren, O.; Paakkola, O.; Rantavaara, A.	Radioactivity in Finnish milk. In Finnish.	Finland.	Cesium 137, strontium 90.	Milk.		Paper gives results of the country-wide survey of strontium-90 and cesium-137 levels in milk in

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Report: Studies on environmental radioactivity in Finland 1971-1975, Annual report, Feb. 1977, p. 41-64. STL-A21						Finland. The annual means weighted for production were calculated.
Cazzoli, S.; Lorenzelli, R.; Salvi, S.; Lamma, A.; Esposti, R.D.; Milani, U. Conf. (Book): Workshop on the transfer of ra- dionuclides in natural and semi- natural environments, Desmet G. et al. (Ed.) Udine, Italy, 11-15 Sep. 1989. Elsevier Applied Science, 1990, p. 649-656.	Experimental measurements of the transfer factors of radioactive contaminations from soil to agricultural prod- ucts following Chernobyl.	Italy. A hill- mountainous area.	Cs-137 and Cs- 134.	Agricultural products, crops.		Study of transfer factors for Cs-137 and Cs-134 from soil to agricultural products.
Choi Y.H., Lee C.W., Kim S.R., Lee J.H., Jo J.S. (1998). Journal of Environmental Radioactivity Volume 39, Issue 2, 1 February 1998, P.183-198	Effect of application time of radionuclides on their root uptake by Chinese cabbage and radish - an interactive code for calculating concen- trations of radionuclides in food products	Asia. Korea	Mn-54, Co-60, Sr-85, Cs-137	Chinese cabbage and radish,		Promising results were obtained using ammonium- ferric-hexacyano-ferrate (AFCF) as a countermea- sure to reduce radiocaesium transfer rye-grass and clover grown on sandy soil and loamy soil was tested. As for rye-grass, ploughing was equally effective. TF Concentration in fresh plant at harvest (Bq /kg)// Applied activity decay-corrected to harvest (Bq/m ²)
Clooth G and Aumann D.C. JR: Journal of Environmental Radio- activity, 1990, v. 12, p. 97-119.	Environmental transfer Pa- rameters and Radiological Impact of the Chernobyl Fallout In and Around Bonn (FRG).	Germany.	¹³⁷ Cs, ¹³⁴ Cs, ¹³¹¹ .	Plants, milk.		Soil-to-plant concentration factors and transfer coefficients from feed to milk were determined. The F_m values (geometric means) were: for ¹³⁴ Cs, 3.7*10-3 (d/l); for ¹³⁷ Cs, 3.6*10-3 (d/l). For the 1986 grazing season, an F_m value for ¹³¹ I was $4.2*10^{-3}$ (d/l).
Cojocariu T., Cutrubinis M., Tur- tureanu A. Report (Conf.): 28. annual meeting of the European Society for New Methods in Agricultural Research Annual meeting of the International Union of Radioecology (IUR) Work- ing Group Soil-to-Plant Transfer Brno (Czech Republic), 26-29 Aug 1998, 202 p., p. 53. INIS-CZ-0022	¹³⁷ Cs Soil- Wheat Plant Transfer in Greenhouse Con- ditions.	Romania.				TF.
Coughtrey, P.J. Report: EUR12608	Radioactivity transfer to animal products.	UK.	²⁴¹ Am, ¹³⁴ Cs, ¹³⁷ Cs,	Animal feed, meat, milk, eggs.		Transfer factors derived after 100 d continuous intake and at equilibrium. Recommended transfer

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
1990, 151 p.			2 ³⁹ Pu, ²⁴⁰ Pu, ¹⁰³ Ru, ¹⁰⁶ Ru, ⁸⁹ Sr, ⁹⁰ Sr.			factors for animal products in conditions of con- tinuous discharge and models for application to field conditions after a nuclear accident are also presented. Transfer of caesium to animal products is more effective than that for the other elements. Transfer to meat of lamb, fattening pig, and chick- ens is generally more effective than that for other animals and other products.
Cristaldi, A., D'Arcangelo, E., Teradi, L.A., Mascanzoni, D., Mattei, T. & Van Axel Castelli, I. (1988). XIXth ESNA Conference (Ed. M. Gerzabek), 29 August - 2 September 1988, Vienna, Austria. Österreichisches Forschungszentrum Seibersorf, Report OEFZS-4489LA- 210/89, pp. 274-282.	Chernobyl accident one year later: genetic damage and ¹³⁷ Cs accumulation in wild rodents in Rome, Italy.	County of Gävle- borg, Sweden.				Micronucleus test showed based on the fact chro- mosome ruptures or mitosis anomalies in ertthro- blasters generate microonuclides in cells of rodents. There were differences in micronuclei frequences between animals from the fallout area and those from non-fallout districts.
Daburon F., Archimbaud Y., Cousi J., Fayart G., Hoffschir D., Chevallereau I., Le Creff H. and Gueguen L . JR: Journal of Environmental Radio- activity, 1991, v. 14, p. 73-84.	Radiocesium Transfer to Ewes Fed Contaminated Hay after Chernobyl Accident: Effects of Vermiculite and AFCF (Ammonium Ferri- cyanoferrate) as Countermea- sures.	France.	¹³⁷ Cs, ¹³⁴ Cs.	Hay, milk.		The mean transfer coefficients to milk were 0.075 days litre ⁻¹ , and 0.11 days kg ⁻¹ to meat.
Delvaux B., Kruyts N., and Cre- mers A. (2000). Environ. Sci.Technol. 34. 1489-1493	Rhizospheric mobilization of radiocesium in soils.	Belgium, lab conditions	Cs-137.	Ryegrass	47 soil horizons from 17 pedons, forest and mea- dow ecosystems in various Euro- pean countries. Contamination was either ap- plied to the soil in solution, or the Cs was mixed in agar and formed a layer below the soil.	The soils varied in many properties (e.g clay 0.7 - 66%; organic carbon 0.1 -69%; CEC 1-112 cmolc /kg; pH 3.5 -7.8). The results showed that K depletion in the rhizosphere is a capital driving force in ¹³⁷ Cs uptake, and that the soil radiocesium interception potential of the soil had a strong, negative correlation to the soil-plant uptake factor. Vermiculitic minerals and plant roots compete for radiocesium. Soil-plant transfer factors (g/g) using plant dry matter ranged linearly with radiocesium interception potential so that when RIP = 100, TF = ~0.2 g/g and when RIP = 1000, TF = ~1 g/g
Desmet, G.; Sinnaeve, J. Report: EUR12550; 1992.	Evaluation of data on the transfer of radionuclides in the food chain post- Chernobyl action.	Europe. CEC.	Long-lived nuclides, ^{134/137} Cs.	Plants, milk, meat, fish.	Soils, sediments, aquatic systems.	Impact of chemical speciation on the radionuclide transfer in soils and plants. Validation of soil-to- plant parameters.
Dreicer, M. and Klusek, C.S.	Transport of ¹³¹ I Trough the	USA,	I-131.	Grass, milk.		The time integrated activity was used to calculate a

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
JR: Journal of Environmental Radio- activity, 1988, v. 7, p. 201-207.	Grass-Cow-Milk Pathway at a Northeast US Dairy Follow- ing the Chernobyl Accident.	New Jersey.				milk transfer coefficient of 0.001d liter ⁻¹ .
Edvarson, K., Ekman, L., Eriks- son, Å., Fredriksson, L. & Greitz, U. (1965). Försvarets Forskningsan- stalt, FOA 4-4438-4623.	Studies on the Relationship Between ¹³⁷ Cs Deposited on Pasture and Its Concentration in Milk.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	Water solutions of 20 or 50 mCi I-131 were sprayed on pasture and grazed by cows.	Grass and milk.	Cultivated pas- ture on a clay soil.	About 10 % of I-131 deposited was consumed by the cows. The ratio between deposition of I-131 per unit area and the concentration in milk was about 10 %. pCi/m ² of pasture and pCi/1 of milk.
Ehlken, S., Kirchner, G. Book (Conf.) 25. Annual meeting of Fachverband fuer Strahlenschutz e. V. (FS): Environmental radioactiv- ity, radioecology, radiation effects. Binz auf Ruegen (Germany). 28-30 Sep. 1993, p.673-678.	Soil-to-grass transfer of ⁹⁰ Sr, ¹³⁴ Cs and ¹³⁷ Cs in various soils in Northern Germany Transfer von ⁹⁰ Sr, ¹³⁴ Cs und ¹³⁷ Cs vom Boden in Gras auf Böden Norddeutschlands In German.	Northern Ger- many.	⁹⁰ Sr, ¹³⁴ Čs and ¹³⁷ Cs.	Grass plants.	Different soil matrix.	Differences in TFs between grass plants growing on different soils range up to a factor of about 100 for ¹³⁷ Cs, but are less than one order of magnitude for ⁹⁰ Sr. Nuclide concentrations in grass show marked seasonal trends. TFs soil-to-grass are presented in graphs.
Ehlken,S., Kirchner, G. JR: Journal of Environmental Radio- activity, 1996, v.33 (2), p.147-181.	Seasonal variations in soil-to- grass transfer of fallout stron- tium and cesium and of potas- sium in North German soils.	North German.	¹³⁴ Cs, ¹³⁷ Cs, ⁹⁰ Sr and ⁴⁰ K.	Grass plants.	Both mineral and organic soils. Seasonal fluctua- tions.	Tfs on different soils ranged up to a factor 100 for Cs, but were less than one order of magnitude for Sr. Tfs were higher if grass plants were cropped repeatedly.
Ekman, L., Eriksson, Å. & Greitz, U. (1973). Försvarets Forskningsan- stalt, Rapport FOA 4 C 4573-A4	Transfer of simulated fallout particles from pasture to grazing dairy cattle. II. Ex- periments with wet deposited 43-60 and 100-200 um parti- cles.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	Silica sand particles labelled with La-140 and Ce-141.	Amounts of labelled particles consumed by cows as obtained by measure- ments of faeces.	Grazing period.	On average 18 (6-39) and 21 (6-27) % of the smaller and larger wet deposited particles was consumed by grazing cows. As investigated, it is very difficult to sample grass in a manner similar to the way cows graze.
Ekman, L., Eriksson, Å. & Greitz, U. (1973). Försvarets Forskningsan- stalt, Rapport FOA 4 C 4573-A3.	Transfer of simulated fallout particles from pasture to grazing dairy cattle. III. Ex- periments with wet deposited 1 um and 100-200 um parti- cles and dry deposited 100- 200 um particles.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	Silica sand particles labelled with La-140 and Ce-141.	Amounts of labelled particles consumed by cows as obtained by measure- ments of faeces.	Grazing period.	On average 15 (6-25) % of wet deposited particles was consumed by grazing cows. Retention of wet deposited 1 um particles (same as world wide fall- out) was higher than of 100-200 um particles. Retention of dry deposited particles was 1-2 %.
Eriksson Å, Lönsjö H. and Karlström F. (1994). Inst. för ra- dioekologi, Report SLU-REK-73.	Beräknade effekter av radio- aktivt nedfall på jord- bruksproduktionen i Sverige. II Jordbruksgrödornas förore- ning.	Estimates for Swedish condi- tions	Sr-90, Cs-137, Sr-89 and I-131, of 11.3, 14.7, 1920 and 14400 kBq per m ² respectively.	Vegetative crops.	Soils in the dif- ferent agricultural districts. Five depositions dur- ing the growth season were considered.	Caesium-contaminated soil was used as substrate for a pot experiment with cutting-derived plant of Salix viminalis. The total uptake of Cs-134 and Cs- 137 was approximately 0.2 % of the caesium pre- sent in the soil. Almost 90 % of the assimilated caesium was found allocated in the roots. The total amount of the caesium in plants increased over time. From given depositions the nuclide contents and its changes with time in the products were calculated.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Eriksson Å. (1994). Inst. för radioe- kologi, Rapport SLU-REK-76.	A database model for calcula- tions of the transfer of ⁹⁰ Sr and ¹³⁷ Cs in complex agricul- tural environments.	Estimates for Swedish condi- tions	Sr-90 and Cs- 137.	All agricultural products were considered.		Summary in Eriksson & Andersson (1994) (Rap- port SLU-REK-75.) Early fallout gave low con- tamination level of grass to be used as winter fod- der. Pasturing in spring was delayed but no restric- tions on the use of grain. Later fallouts caused increased restrictions especially in pasturing and preparations of winter fodder. Serious contamina- tion of the grain crops could be expected from depositions in the early autumn and later. A new model.
Eriksson Å., Rosén K. & Haak E., (1998). Inst. för radioekologi. Rap- port SLU-REK-80	Retention of simulated fallout nuclides in agricultural crops. I. Experiments on leys.	Field experimen- tal station at Uppsala. Swe- den.	Experimental depositions of the nuclides, Cs- 134, Sr-85.	Grass crops.	Field plots with normal soils cultivated during the whole growth period.	In 1986 a large number of farms in Chernobyl- affected area in the county of Vasternorrland in northern Sweden were investigated for radiocae- sium transfer to grass and cereal grain. The aim was to study the impact of soil and crop rotation on sensitivity Transfer factor and the seasonal influ- ence of fallout time and development stage of the crops on the size of the nuclide transfer where studied.
Eriksson Å., Rosén K. and Haak E., (1998). Inst. för radioekologi, Rapport SLU-REK-81.	Retention of simulated fallout nuclides in agricultural crops. II. Deposition of Cs and Sr on grain crops.	Field experimen- tal station at Uppsala. Swe- den.	Experimental depositions of the nuclides, Cs- 134, Sr-85.	The harvest products of seed crops, barley, summer wheat and peas.	Field plots with normal soils cultivated during the whole season.	Experiments with artificial wet depositions of Cs- 134 and Sr-85 during the growth period were car- ried out. The studies are complementary to the experiences after the Chernobyl fallout. The aim was to get a description of the relative transfer to the harvest products of new clover-grass leys and old grass leys after initial depositions of tracer nuclides at different times during the growth pe- riod. The reduction in transfer with time, from deposition to sampling, depends partly on dilution by growth and partly on fall-off to the ground. The Reduction half-time for the nuclide content showed a range 10 - 14 days. The data obtained in the experiments can extend the basis for prediction of the consequences of fallout events at different times to new as well as to old leys in the field. Transfer factor and the seasonal influence of fallout time and development stage of the crops on the size of the nuclide transfer where studied.
Eriksson, Å. (1983). (Ed. Å. Eriksson). Inst. för Radioekologi, Rapport SLU-REK-55, pp. 111:1-	Resuspension och inandning av deponerat ¹³⁷ Cs med jord- bruksdamm. Långsiktiga	Estimates for Swedish condi- tions.	Cs-137.			The work aimed at an estimation of farmers' dose obtained by inhalation of Cs-137 resuspended after fallout on agricultural land. The deposition level

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
26. Eriksson, Å & Rosén, K. (2000).	konsekvenser av radioaktiv beläggning i jordbruket i Malmöhus län Naturlig Radioaktivitet i	Sweden.	K-40, Th-232,			was assumed to be 1 MBq per square meter. Inhala- tion can occur of dust resuspended from contami- nated soil, from harvest products drying and worked in the field or in the stables for feeding the animals. At an average farm 37 ha ploughed land with a staff of two people each person could obtain a dose by inhaled Cs-137 of about 2.5 microSv during the fallout year. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g
Kungl. Skogs- och Lantbruksakade- miens Tidskrift. Årg. 139, Nr 5. pp 1-41. (In Swedish with English summary.)	Svenska odlade jordar och grödor.	Sweden	and Ra-226 (U- 238, Pb-210)			d.w. soil)
Eriksson, Å, & Rosén, K. (1992). Proceedings. Conference at Tromsö November 21-22, 1991. The radio- logical and radiation protection problems in Nordic regions. Ed. Baaril, J., Oslo, 1992. Tromsö, Norway, paper 4, pp 1-10.	Transfer of caesium on grass- land after Chernobyl in the northern parts of Sweden and Implication for preparedness and counter actions.	Sweden.	Cs-137			The field experimental treatments were 0, 50, 100, and 200 kg K per ha. It was found that the highest annual transfer to grass, 4-10 % of the total deposi- tion per unit area, occurred on permanent grass- lands from one pasture on peat soil and from one pasture in the mountain district. The total transfer to arable crops from peat soil in control treatments was about 0.5 % of the total deposition. From the mineral soils the corresponding transfers were about 0.05 %. The potassium treatments were effective already on the 50 -100 kg level, although 200 kg K per ha gave the highest reduction in total caesium transfer with 60-80 % on grassland. The effect was observed already in the 1st cut. In the barley crops the potassium applications caused a relative reduction in caesium transfer to the same extent as on the grassland but on a lower absolute level. Among the vegetables, the order in caesium transfer to the crop took place in the order: Let- tuce>Potatoes>Carrots>Leek. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Eriksson, Å. & Fredriksson, L. (1981). Inst. för Radiobiologi, Rap- port SLU-IRB-52.	Naturlig radioaktivitet i mark och grödor.	50 provtagning- sytor à ca 50 m2 i Västergötland, vissa med an- knytning till Ranstad. Sweden.	Natural radiation from radionu- clides of ura- nium, thorium radium, and potassium.	Plough layer and subsoil and cereal crops were sampled.	Mainly mineral soils.	Concentration ratios between nuclide contents in crops and soils and TF:s were established. Conc. ratios for thorium were not dependent on plant and soil characters, while those for uranium were. Ra/Ca-ratio in plant was dependent on Ra/Ca-ratio in upper soil.
Eriksson, Å. & Rosén, K. (1987). Proc. IUR Workshop Soil-Plant Transfer Factors, 13-16 April 1987,	Observations on the transfer of ¹³⁷ Cs from soils to barley crops in Sweden after the	Sweden.				

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Eggham, England, pp.	Chernobyl fallout in 1986.					
Eriksson, Å. & Rosén, K. (1987). Proc. Nordiska sällskapet för strålskydd, 26-28 August 1987, Mariehamn, Finland,	Överföring av nedfallscesium till fodergrödor och spannmål i Gävleborgs och Västernorr- lands län 1986.	Sweden.	Cs-137.			Ett 70-tal olika gårdar i Tjernobyldrabbade områ- den har undersökts med avseende på deposition av cesium. Studien omfattar jord, spannmål och fo- dergrödor. Cesium överföring till fodergrödor har varit relativt liten och betydligt mindre till spann- målsgrödor Transferfaktorerna via upptag har varit höga för alla grödor, detta beroende på deposition och jordart. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Eriksson, Å. & Rosén, K. (1989). Nordisk Jordbruks-forsknings Före- ning (NJF) Proceedings. Seminar Nr 158. 21-23 augusti 1989. Beitostö- len. NJF-utredning/RAPPORT Nr 59, Beitostölen, Norway, pp 40-45. (Oral presentations).	Chernobyl caesium in Swed- ish agricultural soils. In Deposition and Transfer of Radionuclides in Nordic Terrestric Environment.	Sweden.	Cs-137.			1987 startades 11 olika kaliumgödslingsförsök på olika jordtyper för att utröna effekten av olika gödselmedel.Försen har visat att mellan 0.8% till %% av deponerat cesium har tasgits upp av grödan. Ofta har cesium till 2:a skörd blivit något större än till 1:a skörd. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Eriksson, Å. & Rosén, K. (1989). The Radioecology of Natural and Artificial Radionuclides. Pro- ceedings. Ed. W. Feldt, Verlag TÜV Rheinland GmbH, Köln. Visby, Sweden, pp 141-146.	Caesium transfer to agricul- tural crops for three years after Chernobyl.	Sweden.				In 1986 about 50 farms were selected for sampling at fixed sites of the soil surface layer and of the grassland and grain crops to come. It was found that the transfer level was much higher for the grassland than for the grain crops. On ploughed land the transfer by root uptake to grain crops was about one magnitude lower than the transfer to the grass crops. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Eriksson, Å. & Rosén, K. (1991). The Chernobyl fallout in Sweden. Results from a research programme on environmental radiology (Ed. L. Moberg). The Swedish Radiation Protection Institute, Stockholm, pp 291-304.	Transfer of caesium to hay grass and grain crops after Chernobyl.	Sweden.	Cs-137.			Cs-137-transfer was much higher to grass than to barley. Transfer to grass during the first year de- pends on interception capacity of plant cover and on dilution by growth, i.e. on soil fertility and fertilization. It decreased 2-10 times the following years. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Eriksson, Å. (1966). Unpublished?	Radioaktivt jod i atmosfäriskt nedfall och dess intag i livsmedelskedjan.		I-131			Review of literature, especially the entry of I-131 by milk to man after the bomb tests. Dose commit- ted in 1962 was only 10 % of that for taking countermeasures.
Eriksson, Å. (1969). Inst. för Ra- diobiologi, Rapport RIRU-12.	Några markfaktorers inflytan- de på ¹³⁷ Cs:s förhållande i jord och upptagning i växt.	Licentiat disserta- tion. Sweden.				Comprehensive literature review and discussion of how chemical and physical soil factors soil influ- ence sorption, desorption, mobility and bioavail- ability of Cs-137 as exemplified by laboratory and pot experiments.
Eriksson, Å. (1970). Grundförbät-	Det radioaktiva nedfallet i	Sweden.		Crop and animal		The article gives the trend of the fallout after nu-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
tring 23, 1970: Spec.nr. 5, 23-30.	marken.			products, and transfer to man.		clear weapon tests in 1961-62, and the resulting intake with food and accumulation of Sr-90 and Cs- 137 in the body of man during the following years. curie and rad units.
Eriksson, Å. (1972). Försvarets Forskningsanstalt, Rapport FOA 4 C-4491-A4.	Plant Uptake of ¹³⁷ Cs from Different Depths in a Homo- geneous Subsoil Layer.	Microplot exp. at Uppsala-Näs field station. Sweden.	889 mCi/m ² Cs- 137 to different depths in the soil profile.	Grain of peas, white mustard, oats, barley and ley grass.	Normal vegeta- tion period.	The relative uptake of Cs-137 decreased with depth, but varied with crop species. Root uptake of Cs-137 from the 7 cm depth decreased in the order: peas> white mustard>oats>ryegrass>barley. nCi/m ² /mCi/m ² .
Eriksson, Å. (1976). Inst. för Ra- diobiologi, Rapport SLU-IRB-33.	Studies on the Transport of the Fission Products Through the Food Chains. IV: On the Relationship Between ¹³⁷ Cs in Fallout and ¹³⁷ Cs in Grass and Milk.	Studies on ¹³⁷ Cs fallout on 7 SLU- farms 1963-65 and on 3 private farms 1966-68 nearby Uppsala, Sweden.	Country wide bomb fallout in Sweden of Cs- 137 in the early 60-ties	Grass and milk.	Survey on 7 SLU-farms and 3 other farms near Uppsala in 1963- 67.	Mean TR, m^2/kg , for grass was 4 in 1963 and 3 in 1964 and 1965. Ratio, m^2/l , for milk varied with a factor of 4; range 0.05-0.1 kg/l. Highest value was on coarse and peaty soils, lowest on clayey soils. TRd, m^2/kg for grass and the ratio Bq/l/ Bq/m ² = m^2/l for milk/grass
Eriksson, Å. (1977). Inst. för Ra- diobiologi, Rapport SLU-IRB-40.	Fissionsprodukter i svensk miljö.	Uppsala. Swe- den.		Plant and animal products.		Fissionsprodukter i svensk miljö. Doctoral Disser- tation. Comprehensive in depth treatment of agri- cultural radioecology on the base of lab, pot and microplot exp. and of extensive field surveys of bomb fallout.
Eriksson, Å. (1977). Inst. för Ra- diobiologi, Rapport SLU-IRB-42.	Direct Uptake by Vegetation of Deposited Materials. Re- tention of Nuclides and Simu- lated Fallout Particles in Pasture Grass. Inst. för Radi- obiologi,	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.	Wet material, ions and parti- cles, was depos- ited with drop- lets of a simu- lated precipita- tion of 1 mm.	Pasture grass.	Clay soil/ vegeta- tion period.	Interception and retention in grass of nuclides in ionic form and of labelled particles were studied. The interception on grass decreased in the order: wet-deposited nuclides > wet-deposited particles and smaller particle > larger particles. Bq/kg d.w./ Bq/m ² = m ² /kg d.w.
Eriksson, Å. (1977). Inst. för Ra- diobiologi, Rapport SLU-IRB-46.	Transport av radioaktiva klyvningsprodukter från åker- och betesmark till husdjur och människa.	Uppsala. Swe- den.				Transfer of Cs-137 and Sr-90 through food chains is investigated. On basis of field data, coefficients are calculated for transfer of Cs-137 to grain crops, pasture grass and milk. Transfer of both Cs-137 and Sr-90 through food chains is treated.
Eriksson, Å. (1978). Inst. för Ra- diobiologi, Rapport SLU-IRB-46.	Transport av radioaktiva klyvnings-produkter från åker- och betesmark till hus- djur och människa.	Different sites in Sweden.		Plant and animal products		Summary of Dissertation, at SLU, Uppsala 1978. Compare SLU-IRB-40. Transfer factors derived in SLU-REK 40.
Eriksson, Å. (1979). Inst för Radio- biologi, Rapport SLU-IRB-47.	Jordbruksgrödors upptag av markdeponerad radiojod från olika jordtyper.	Exp. with 1 lysimeter, 4 micro plots and 2 field plots, all under field conditions. Sweden.		7 types of agri- cultural crops.	8 mineral soils during a vegeta- tion period.	Accumulated, direct uptake from atmosphere and indirect uptake from soil of radioiodine were calcu- lated for continuous deposition. Soil uptake con- tributed should not be neglected when estimating dose commitment for I-129 released to atmosphere.

Sweden.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Eriksson, Å. (1983). Commission of the European Communities, Vol. 1, Seminar on "The Transfer of Radioactive Materials in the Terres- trial Environment Subsequent to an Accidental Release to Atmosphere", 11-15 April 1983, Dublin, Ireland. Luxembourg, pp. 353-362.	Behaviour of ⁹⁹ Tc in the environment as indicated by a five-year field lysimeter experiment.	Work based on Field experiments with artificial depositions of Tc-99 in soils from different parts of the coun- try. Sweden.	Tc-99	Clover and wheat	Annual crops cultivated on 8 different soil types.	A seven year study on the plant uptake of Tc-99 from eight Swedish soils was carried out. The test crops were red clover for two years, then spring wheat for 3 years and red clover for another two year period. The high initial uptake was reduced rapidly during the first years. The availability half time was 0.1 years between the first and the second season and about 2.4 years at the end of the period calculated on the deposition at start. Extremely high root uptake. Transfer calculated as a ratio between Tc-content in plant dry matter and Tc- content in soil initially at deposition on dry weight basis. Cf. also Eriksson (1986).
Eriksson, Å. (1986). (Cf. Eriksson 1983). Inst. för Radioekologi, Rap- port SLU-REK-61, pp 231-240.	Soil plant transfer of Tc-99 in a lysimeter experiment 1978- 84. 1st International Contact Seminar in Radioecology 8- 11 July 1985, Uppsala, Swe- den.	Work based on Field experiments with artificial depositions of Cs-137 in soils from different parts of the coun- try. Sweden.	Tc-99.	Clover and wheat.		A seven year study on the plant uptake of Tc-99 from eight Swedish soils was carried out. The test crops were red clover for two years, then spring wheat for 3 years and red clover for another two year period. The high initial uptake was reduced rapidly from the 1st year, when 39 % was found in the crop. Next year 8 % and in the 7th year about 1 % was found in the same type of crop. The transfer to the wheat crop was much lower than that to the clover. The environmental half-time seemed to range from 0.1 to about 2.4 years during the period of study. Accepting the figure 2.4 for the following years it can be estimated that within 10 years the uptake by fodder crops will be of the same size of order as that of Sr-90.
Eriksson, Å. (1986). (Eds. R. A. Bulman & J. R. Cooper). Elsevier Applied Science Publishers, London, pp. 121-127.	Speciation of fission and activation products in the environment	Work based on Field experiments with artificial depositions of Cs-137 in soils from different parts of the coun- try. Sweden.	Pu-238.	Fodder crops. Clover for 1976- 1979, wheat for 1980-1984.	Eight different soils from the main agricultural districts in Swe- den.	A short description is given of the changes ob- served in the plant availability of Pu-238 in eight soils during a nine-year experimental period. With clover as test crop in the first period the plant up- take of Pu-238 was reduced with availability half- times ranging from 0.8 - to 2.= years. There were indications that the reduction in availability of Pu observed was reversible upon soil management that causes aeration and drying of the soil. Plant con- tent, Bq Pu-238 and TFsp, based on the ratio Bq/kg dry w. of plant/Bq/kg dry soil, are given.
Eriksson, Å. (1986). Inst. för Ra- dioek, Rapport SLU-REK-61, pp 101-113.	Lysimeter studies on the plant availability of transuranics in Swedish soils in 1976-84. Proc. 1st International Con-	Work based on Field experiments with artificial depositions of	Transuranic elements.	Clover and wheat.	Experiments over many years.	Experimental conditions are described for the three nuclides Pu-238, Np-237 and Am-241. It was found that with clover as test crop the uptake of Pu was reduced with time while the uptake of Np and

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	tact Seminar in Radioecology 8-11 July 1985, Uppsala, Sweden.	Cs-137 in soils from different parts of the coun- try. Sweden.				Am was not reduced. Placing Pu at deeper horizon effectively reduced the uptake by plants. The rela- tive uptake of Np was considerably higher than that of Pu and Am. Transfer expressed acc. to the equa- tion TF=square meter of deposition found per kg dry matter of the crop.
Eriksson, Å. (1986). Proc. Int. Contact Seminar in Radioecology, Piazenca, Italia 9-11 Sept 1986.	Near the upper Limit for the Root Uptake of Cs-137.	Nine Chernobyl fallout sites in Sweden.	Variable with site.	Straw and grain of cereals.	8 organic and one mineral soil.	Uptake of Cs-137can be high in the short term situation. The uptake, however, largely depends on labile soil-K. The high availability of Cs-137 was due to placement in the sowing layer. Highest TC- value was close to limit for Swedish field condi- tions. kBq/kg d.w. and TC and TF as defined in the publication.
Eriksson, Å. (1986). Proc. Int. Contact Seminar in Radioecology, Piazenca, Talia, 9-11 Sept 1986.	Consequences in Sweden of the Chernobyl event: Agricul- ture.	Pasture mi- croplots and survey of Cher- nobyl fallout sites in Sweden.	Variable with site.	Grass and cereal straw and grain.	Many soils.	Tables and figures showing distribution Cs-137 transfer grass and to cereal straw and grain are shown and discussed as effects of fertilisation on the transfer. kBq/kg d.w. and TC and TF as defined in the publication.
Eriksson, Å. (1987). Försksledarmö- tet. Del 4, pp. 10.1 - 10.8. Uppsala.	Konsekvenserna av Tjernobyl för svenskt jordbruk: Följder- na för åkermarkens och grö- dornas cesiuminnehåll.	Sweden	Chernobyl fall- out			Chernobyl fallout caused for the society, and had impact on farming in C-, U-, X-, Y-, Z- and AC- counties. The fallout time, April, was favourable and caused low contamination of crops. Restriction of cow grazing existed on some places up to the end June.
Eriksson, Å. (1987). International Agrophysics, 3, 157-163.	A convenient method for determination of radium in environmental samples.	Analytical method devel- oped in the labo- ratory for deter- mination of small amounts of ra- dium. Sweden.	Ra-226			A methodological study for determination of Ra- 226 by Rn-222.
Eriksson, Å. (1987). Rapport Allmänt 108. SLU Konsulentavdelningen	Konsekvenserna av Tjernobyl för svensk jordbruk: Följderna för åkermarkens och grödornas cesiuminnehåll.	Uppsala. Swe- den.	Cs-137.			Radiocesiums uptag i olika grödor på olika jordty- per i olika distrikt efter Tjernobyl nedfallet.
Eriksson, Å. and Andersson, I. (1994). Inst. för radioekologi, Report SLU-REK-75.	Beräknade effekter av radio- aktivt nedfall på jord- bruksproduktionen i Sverige. III. Djurprodukternas föroren- ing.	Estimates for Swedish condi- tions	Sr-90, Cs-137, Sr-89 and I-131.	Animal products were considered to be produced on local feeds.	Five depositions during the growth season were considered.	The work has given a new model for calculation of the long term situation in agricultural environ- ments. The aim has been to facilitate the calculation procedures necessary after fallouts and to increase the possibilities to analyse the importance of alter- native pathways of the nuclides. This may broaden the basis for discussion of appropriate remedial

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						measures to be taken in contaminated agricultural systems. From a given deposition the nuclide con- tent and its changes with time in the products was calculated.
Eriksson, Å. Haak, E. & Karlström, F. (1976). Inst. för Radiobiologi, Rapport SLU-IRB-32.	Studies on the Transport of Fission Products Through the Food Chains. III: Analysis of the Relationship Between Cs in Cereal Grain and Cs De- posited in 1964.	Grain samples from 840 farms in Sweden were sampled and analysed for Cs137 content. Sweden.	Fallout from bomb tests in the early 1960-ties.	Winter and spring sown cereals sampled in June, July and August 1964.	Mainly mineral soils.	Regression of Cs-137 content in grain on monthly Cs-137 deposition showed that in southern region the influence of deposition in June was larger than that in July. For other regions the influence of depositions in June and July was about the same.
Eriksson, Å., Johanson, K.J. & Lönsjö, H. (1990). Inst. för radioe- kologi, Rapport SLU-REK-65.	Livsmedelsproduktion efter kärnvapenkrig. Rapport över fallstudie utförd på uppdrag av Statens jordbruksnämnd.	Middle Swedish conditions.	Deposition 350- 600 km from weapon detona- tions. Fallouts of Cs-137, Sr-90, Sr-89 and I-131 are considered.	The transfer to grass, cereals, meat and milk and doses to plants, animals and people are estimated.	District with clay soils. Different parts of the sea- son.	Uptake of nuclides by barley in lysimeters was positively and negatively correlated with exchange- ability and Kd-values determined in batch experi- ments of soils respectively.
Eriksson, Å., Lönsjö, H. & Rosén, K. (1988).Proceedings. IVth Interna- tional Symposium of Radioecology, 14-18 March 1988, Chadarache, France, pp.	Transfer of cesium to grass- land crops in the Chernobyl fallout areas in Sweden in 1986 and 1987.	Sweden.				
Fabbri S., Piva G., Sogni R., Fus- coni G., Lusardi E. and Borasi G. JR: Health Physics, Mar. 1994, v. 66(4), p. 375-379.	Transfer kinetics and Coeffi- cients of ⁹⁰ Sr, ¹³⁴ Cs, and ¹³⁷ Cs from Forage Contaminated by Chernobyl Fallout to Milk of Cows.	Italy.	Cs-134, Cs-137, I-131.	Forage, milk		TFs were 0.0008 d L ⁻¹ for 90 Sr, 0.0029 d L ⁻¹ for 134 Cs, and 0.0031 d L ⁻¹ for 137 Cs.
Fesenko S.V., Spiridonov S. I., Sanzharova N. I. and Alexakhin R. M. JR: Journal of Environmental Radio- activity, 1997, v. 34(3), p. 287-313.	Dynamics of ¹³⁷ Cs Bioavail- ability in a Soil-Plant System in Areas of the Chernobyl Nuclear Power Plant Acci- dent Zone with a Different Physico-chemical Composi- tion of Radioactive Fallout .	Chernobyl zone.	Radio-isotopes of Cs and Sr.			Based on a 6-year (1987-1992) observation period and a dynamic model describing the behaviour of radiocaesium in meadow ecosystems are presented. It has been shown that the type of deposition and soil characteristics are main factors that signifi- cantly affect (up to five times) the changes in bioavailability of this radionuclide in the soil-plant system. The rates of decrease of ¹³⁷ Cs uptake by plants can differ by factor of 3-5, being dependent on soil properties. The effect of these factors de- pends on the time lapsed after the deposition.
Fesenko S.V., Colgan P.A., Sanzharova N.I., Lissianski K.B., Vazquez C. and Guardans R. JR: Radiation Protection Dosimetry	The Dynamics of the Transfer of Caesium-137 to Animal Fodder in Areas of Russia Affected by the Chernobyl	Russia.	¹³⁷ Cs.	Grasses, maize, beets, milk and milk products.	Different soil types (sand, clay, peat).	The aggregated transfer factor (Bq.kg ⁻¹ per Bq.m ⁻²) was found to increase in the order fodder beet <maize<perennial and<br="" grasses="" grasses<natural="">decreased with increasing clay content in the soil.</maize<perennial>

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
1997, v. 69(4), p. 289-298.	Accident and Doses Resulting from the Consumption of Milk and Milk Products.					Tables and graphs are presented.
Foerstel, H.; Goeres, W.; Steffens, W. Conf. (Book): 3. International symposium on radiological protec- tion - advances in theory and prac- tice. Inverness, Scotland, 6-11 June 1982.	Variation of the transfer factor soil-plant during the time of equilibrium after contamination with ⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co and ⁵⁴ Mn.	Germany	⁹⁰ Sr, ¹³⁷ Cs	Cereals	Two types of soil: parabrau- nerde and podsol.	Dependence of transfer factor soil/plant from type of soil and fertilization. The trans- fer factors in plants grown on podsol are much higher than in those grown on parabraunerde.
Forsberg, S. Rosén, K. Fernandez, V. Juhan, H. (2000). Journal of Environmental Radioactivity. Vol- ume 50, Issue 3, September 2000, P. 235-252.	Migration of ¹³⁷ Cs and ⁹⁰ Sr in undisturbed soil profiles under controlled and close-to- real conditions	Europe.	Radiocaesium, Radiostrontium, Sr-90, Cs-137.		Soil types were loam, silt loam, sandy loam and loamy sand.	The study shows that there is a large variation depending on local conditions and crop type in the accumulation of natural radioactive elements by the plants. The result shows that the average contents of the nuclides ²²⁶ Ra and ²³² Th, Bq per kg dry weight, is of the same size of order, 40, 50 and 80 Bq per kg in the southern, in the western and in the middle regions of Sweden, respectively. Considering also the daughters of the nuclide series it is found that the total nuclide activity will reach a sum of 300-600 kBq per square meter of the plough layer. Transfer factors of Cs-137 and Sr-90 (Bq/g d.w. plant // Bq/g d.w. soil)
Forsberg, S., Rosén, K. & Bréchi- gnac, F. (2001). Journal of Environ. Radioactivity Vol. 54 No 2, pp 253- 265.	Chemical availability of ¹³⁷ Cs and ⁹⁰ Sr in undisturbed lysimeter soils maintained under controlled and close-to- real conditions.	Europe.	Cs-137, Sr-90.		loam, silt loam, sandy loam and loamy sand, and were representa- tives of important European soil	The study was part of a larger project on radionu- clide soil-plant interactions under well-defined conditions. Soil samples were taken from several depths in each soil in 1997 and 1998 and the sam- ples were sequentially extracted with H2O, NH4Ac, NH2OH·HCl, H2O2 and HNO3. Extracta- bility of Cs-137 decreased in the order: HNO3>Residual >NH4Ac>H2O2>NH2OH·HCl> H2O. More than 80% was found in the acid di- gestible or residual fractions, and 11 ^{-17%} in labile fractions. Soil type differences were small. Extrac- tability of Sr-90 decreased in the order: NH4Ac>NH2OH·HCl>HNO3>H2O2 H2O. 31 ^{-58%} was found in easily available fractions. Differences between soil types were quite small. Transfer factors of Cs-137 and Sr-90 (Bq/g d.w.plant // Bq/g d.w. soil).
Franke, B. Ratka, R. Sand, H. van de. Report, Institut fuer Energie- und Umweltforschung e.V., Heidelberg	On the assessment of the radionuclide migration rate from the soil into plants. Contribution to partial study	Germany.	Cerium, cesium, cobalt, iodine, maganese, plu- tonium, ruthe-	Plants.	Soils.	The arithmetical values given in the recommenda- tions of the Commission on Radiation Protection are subjected to a critical analysis as to their origin and comparability with experimental data from

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
(Germany, F.R.), Oct 1978, 122 p.	26 of the model study 'Biblis, radiation and ecology'. rev. ed. Zur Abschaetzung des Trans- fers von Radionukliden aus dem Boden in Pflanzen. Beitrag zur Teilstudie 26 der Modellstudie Radiooekologie Biblis In German.		nium, strontium and other radio- isotopes.			literature. The review of literature for the nuclides Co, Cs, Mn, Sr, and Zn revealed transfer factors varying over a range of several orders of magni- tude. The major part of the studies indicates factors which are distinctly higher than the ones given by the Commission.
Fredriksson L. (1963) Försvarets Forskningsanstalt, Rapport FOA 4 A 4323-4623 (1963).	Plant Uptake of Fission Prod- ucts Under Swedish Condi- tions. VI: A New Experimen- tal Technique for Studies of Plant Absorption of Nutrients and Fission Products under Field Conditions.	Sweden.				A micro-plot experimental technique, suitable for tracer and fallout nuclide experimentation under field conditions was described. The micro-plots consisted of 0.25 m2 steel frames, which were filled with different plough layer soils and placed on in-situ clay subsoil and on constructed sandy subsoil down to 1 m depth. It is to be considered as a good approach to combine the high precision of pot experiments with field accuracy. Later it has been used to a large extent for soil-plant-transfer of Sr-90 and Cs-137.
Fredriksson, L, Eriksson, B. & Eriksson, Å. (1961). Försvarets Forskningsanstalt, Rapport A 4189- 4623.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. III. Accumulation of Sr-89 in the Aerial Parts of different Weed Species at varying Ca-level in soil.	Pot exp. in an open vegetation hall. 4.5 l Mi- scherlich pots. Sweden.	Not updated.	Vegetation of 8 weed species.	An acid pod- solised sandy soil to which 4 lime treatments was employed.	Liming effectively decreased Sr-90 uptake. Sr-90 uptake varied with the species. μ Ci Sr-89/g Ca and pCi Sr-89 in soil accumulated in the plants.
Fredriksson, L. & Eriksson, Å. (1961). Försvarets forskningsanstalt, Rapport FOA 4 A 4187-4623	Studies on Plant Accumula- tion of Fission Products Under Swedish Conditions. I. Plant accumulation of Sr-90 in Pot Experiments in Rela- tion to Uptake under Field conditions.	Pot exp. in an open vegetation hall. 4.5 l Mit- scherlich pots. Sweden.	Not updated.	17 Plant species.		Based on the observed root uptake of Sr-90, Ci/g d.w., a forecast of the range of soil-to-plant trans- fer, pCi/kg d.w./mCi/km ² under field conditions are discussed. µCi Sr-90/g d.w. in the pot exp. pCi/kg d.w./ mCi/km ² under field conditions.
Fredriksson, L. & Eriksson, Å. (1961). Försvarets forsknining- sanstalt Rapport FOA 4A-4188-4623	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. II. Influ- ence of Lime and Phosphate Fertilizers on the Accumula- tion of Sr-89 in Red clover grown in 29 different Swed- ish Soils.	Pot experiments with 4 treatments. A. None; B: Superphosphate; C: lime; D: Su- perphosphate and lime. Sweden.	Not updated.	Clover	20 mineral soils and 1 organic soil.	Comprehensive data of influence of nutrient regime on plant uptake of Sr-89. Functional relationships between Ca and Sr in plant and soil are discussed. nCi/g d.w. and μ Ci/g Ca

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Fredriksson, L. & Eriksson, Å. (1965). Försvarets Forskningsanstalt, Rapport 4A 4457-4623	The Lysimeter Installation at Uppsala-Näs Field Station.	Sweden.				Technical data about are given about construction of a lysimeter installation built at Uppsal-Näs field exp. station, later to be used for studies of the behaviour of Sr-90 and Cs-137under field condi- tions.
Fredriksson, L. & Eriksson, Å. (1966). Försvarets forskningsanstalt, Rapport FOA 4 A 4485-4623	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. VII: Plant Absorption of ⁹⁰ Sr and Cs from Soil as influenced by Soil Organic Matter.	Leaching and pot experiments with Sr-90 and Cs- 137. Survey of Cs-137 uptake on 70 fields. Swe- den.	4 μCi Sr-90 and 40 μCi Cs-137 in the pot ex- periment.	Terrestial vege- tation, clo- ver/hay	10 mineral and 11 organic soils in the pot ex- periment.	Range in pot exp.: 4.6-19.4 and 2.9-12.4 for Sr-90, 0.64-6.01 and 0.46-90.11 for Cs-137 on mineral and organic soils respectively. Range in field survey 1.7-5.7, of which 3-25% was derived from soil and 75-97% from aerial deposition. nCi/g d.w. nCi/kg d.w.
Fredriksson, L. & Eriksson, Å. (1968).Försvarets Forskningsanstalt, Rapport 4 C-4354-28.	Expected Content of ⁹⁰ Sr and ¹³⁷ Cs in Swedish Crops and Milk at a Total Deposition in the Plowlayer of 1 Ci ⁹⁰ Sr and 1 Ci ¹³⁷ Cs per km2.	Analysis of Sr- 90 and Cs-137 from micro plot exp. and the fallout from bomb tests over Sweden in the 60-ties. Sweden.	1 Ci/km ² of Sr- 90 and of Cs- 137.	Many agricul- tural crops and milk.	Many mineral soils.	Based on analysis of Sr-90 and Cs-137 in crop products and milk, and deposition in the plow layer 1 Ci/km2, expected contents of Sr-90 and Cs-137 in crop products and milk, and range of them are evaluated. Sr-90: nCi/kg d.w., nCi/g Ca. Cs-137: nCi/kg d.w.
Fredriksson, L. & Eriksson, Å. (1970). Annals of the Agriculture College of Sweden, 36, 3-18	Plant Uptake of Fission Products Under Swedish Conditions. I. Uptake of ⁹⁰ Sr in Pot Experiments in Rela- tion to Uptake under Field conditions.	Pot exp. in an open vegetation hall. 4.5 l Mit- scherlich pots. Sweden.	Not updated.	17 Plant species.		Based on the observed root uptake of Sr-90, Ci/g d.w., a forecast of the range of soil-to-plant transfer, pCi/kg d.w./mCi/km2 under field conditions are discussed. μ Ci Sr-90/g d.w. in the pot exp. pCi/kg d.w./ mCi/km ² under field conditions.
Fredriksson, L. & Åberg, B. (1961).Försvarets forskningsanstalt, Rapport FOA 4A 4176-4623	Radioaktiv beläggning: mark, vegetation, husdjur och födo- ämnen.	Sweden.				Radioactive kontamination of ground/soil, vegeta- tion, animals and food due to fallout is discussed as well as practical countermeasures in case of fallout.
Fredriksson, L. (1963). Försvarets forskningsanstalt, Rapport FOA 4 A 4322-4623.	Studies on Plant Accumula- tion of Fission Products Under Swedish Conditions. V: Uptake by Pasture and Ley Plants of ⁹⁰ Sr and ¹³⁷ Cs in Swedish Field Experiments.	Field microplot exp. on a natural pasture and a grazing ley, near Upppsala. Swe- den.	Water solutions of 100 μ Ci Sr-90 and 225 μ Ci Cs- 137 per m ² was sprayed on field plots early in spring.	4 cuts of grass in the year of con- tamination.	A sandy soil and a clayey soil.	Transfer to grass of Sr-90 was much higher than of Cs-137. Both declined with cut number. The transfer to grass of both nuclides was affected by lime and fertilizer regime. pCi/g Ca of Sr-90: nCi/g d.w. and nCi/g K of Cs-137.
Fredriksson, L. (1963). Försvarets Forskningsanstalt, Rapport FOA 4 A-4321-4623	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. IV: Influence of Non- Exchangeable and Exchange- able Potassium and of Ex- changeable Calcium in Soil	Pot exp. in an open vegetation hall. 4.5 l Mit- sherlich pots. Sweden.	50.0 μCi/pot.	Clover vegeta- tion, about 2 months at har- vest.	178 Swedish mineral soils. 4.5 l Misherlich pots.	Influence of soil factors on uptake of Cs-137 was studied. Regression of pCi Cs-137/g K/mci/km2 on K-AL, Kres (K-HCl-K-AL) and Ca-AL (all with negative signs of the regr.coeff.) in the 178 soil explained about 43 % of the variation, i.e. $R2 = 0.43$.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	on the adsorption of ¹³⁷ Cs by Red Clover in Pot Experi- ments with 178 Swedish Soils.					
Fredriksson, L. (1970). Annals of the Agriculture College of Sweden, 36, 41-60.	Plant Uptake of Fission Products under Swedish Conditions. III: Uptake of ¹³⁷ Cs Trifolium pratense as Influence by potassium and calcium level in the soil.	Pot exp. in an open vegetation hall. 4.5 l Mit- sherlich pots. Sweden.	50.0 μCi/pot.	Clover vegeta- tion, about 2 months at har- vest.	178 Swedish mineral soils. 4.5 l Misherlich pots.	Influence of soil factors on uptake of Cs-137 was studied. Regression of pCi Cs-137/g K/mCi/km ² on K-AL, Kres (K-HCl-K-AL) and Ca-AL (all with negative signs of the regr.coeff.) in the 178 soil explained about 43 % of the variation, i.e. $R2 = 0.43$.
Fredriksson, L. (1970). Annals of the Agriculture College of Sweden, 36, 61-89.	Plant Uptake of Fission Prod- ucts under Swedish Condi- tions. IV: Uptake of 90Sr and ¹³⁷ Cs from some Tropical and Sub-tropical Soils.	Pot exp. in a closed vegetation hall. Sweden.	Contamination not updated.	Green matter of Winter rape.	3 soils from Brazil and 3 from Equador.	Wide variation in nuclide uptake between soils. Uptake of both Sr-90 and Cs-137 much higher in these South American soils than in Swedish min- eral soils. Liming and K-fertilization were effective to decrease uptake of Sr-90 and Cs-137 respec- tively.
Fredriksson, L., Eriksson, Å. & Haak, E. (1970). Annals of the Agriculture College of Sweden, 36, 19-39	Plant Uptake of Fission Prod- ucts under Swedish Condi- tions. II. Uptake of ⁸⁹ Sr by Trifolium as influenced by the calcium and phosphate status in the Soil.	Pot exp. in an open vegetation hall. 4.5 l Mit- scherlich pots. Sweden.	Not updated.	Clover	20 mineral soils and 1 organic soil.	Comprehensive data of influence of nutrient regime on plant uptake of Sr-89. Functional relationships between Ca and Sr in plant and soil are discussed. nCi/g d.w. and uCi/g Ca
Fredriksson, L., Eriksson, Å. & Lönsjö, H. (1966). Försvarets Forskningsanstalt, Rapport 4A 4486- 4623.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. VIII: Uptake of ¹³⁷ Cs in Agricul- tural Crops as Influenced by Soil Characteristics and Rate of Potassium Fertilization in a Three Year Micro-plot Ex- periment.	3 year micro plot exp. at Uppsala- Näs field station with K- fertilization and two N-fertilisers $Ca(N0_3)_2$ and H_4NO_3 . Sweden.	241 μCi/0.25 m2.	Straw and grain of oats, peas and white mustard.	3 topsoils, a loam, a clay loam and silty clay, placed on sandy subsoil.	Cs-137-uptake decreased very substantially with increase of clay content and with in-creased K- fertilization and was usually lower for CaNO3 and for NH4NO3. For crops Cs-137-uptake increased in the order oats < white mustard < peas. pCi/g d.w. and nCi/g K
Fredriksson, L., Eriksson, Å., Haak, E., Söderman, O. & Auralds- son, H.Å. (1970). Försvarets Forsk- ninganstalt, FOA 4 A-4484-4623.	Studies on the Transport of Fission Products Through the Food Chains. II. ¹³⁷ Cs in Swedish Grain Crops 1962- 1967.	Study on Cs-137- transfer on 7 Swedish farms in 1963. Sweden.	Bomb fallout of Cs-137 accumu- lated up to 1963.	Pasture grass and forage crops.	Various soils.	During the vegetation period 1963 contents of Cs- 137/kg d.w. and K in cattle feed and of Cs-137/l milk was determined. Results are discussed with special reference too prevailing fallout situation. nCi Cs-137/kg d.w. and pCi/l milk
Fredriksson, L., Eriksson, Å., Haak, E., Söderman, O. & Auralds- son, H.Å. (1970). Försvarets Forsk- ningsanstalt, FOA 4 C-4435-28.	Studies on the Transport of Fission Products Through the Food Chains. II. ¹³⁷ Cs in Swedish Grain Crops 1962- 1967.	Mainly arable mineral soils. Sweden.	Bomb fallout from the early 60-ties.	Cereal grain of barley, oats rye and wheat.	Country wide survey of Cs-137 content in cereal grain.	During 1962-67 the Cs-137-content in about 1700 samples of cereals was determined. The peak mean value in grain, 875 pCi, was obtained in 1963. Then it decrease roughly by one-half every year.
Fredriksson, L., Eriksson, Å., Lönsjö, H. & Haak, E. (1968).	Migration and Plant Avail- ability of Fission Products in	The first 3 year results of the		Straw and grain of barley	4 NPK-levels on 3 topsoils placed	Plant uptake of Cs-137 was much more influenced by conditions in the topsoils than in the subsoils.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Försvarets Forskningsanstalt, Rap- port C-4357-28.	a Lysimeter Experiment. 1. Plant Uptake and Leaching of ¹³⁷ Cs.	lysimeter exp. at Uppsala-Näs field station. Sweden.			on sandy and on clayey subsoils.	Increased applications of NH4NO3 increased Cs- 137-uptake. pCi/g d.w. and nCi/g K
Fredriksson, L., Haak, E. & Eriks- son, Å. (1968). Försvarets Forsk- ningsanstalt Rapport FOA 4A 4378- 28.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. IX: Plant Uptake of ⁹⁰ Sr and ⁴⁵ Ca as Influenced by Soil Chemi- cal Properties.	Pot exp. in an open vegetation hall. Sweden.	11.4 μCi Sr-90 and 30.6 μCi Ca-45 per 4.5 1 Mitscherlich pot.	Clover vegeta- tion, about 2 months at har- vest.	169 mineral soils from south and middle Sweden.	Influence of soil factors on uptake of Sr-90 and Ca- 45 was studied. Regression of pCi Sr-90/g Ca/mci/km2 on pH, Ca-AL, CEC and P-AL (all with negative signs of the regr.coeff.) in the 169 soil explained about 90 % of the variation, i.e. $R2 =$ 0.91.
Fredriksson, L., Haak, E. & Eriks- son, Å. (1969). Försvarets Forsk- ningsanstalt, FOA 4 C4395-28.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. XI: Uptake of ⁹⁰ Sr by Different Crops as Influenced by Lim- ing and Soil Tillage Opera- tions	Four 7-year microplot exp. (1-4) with place- ment of Sr-90, 0- 5, 0-10, 0-20 and 20-25 cm depth. Sweden.	703 μCi Sr-90/ 0.64 m2 in exp. 1-2, 985 μCi Sr- 90/0.64 m ² in exp. 3-4.	Mainly cereals and peas, but also other agri- cultural crops.	Three sandy soils and one clay, all with the subsoil in situ. The 4 exps. were lo- cated to different agr. distr. in Sweden.	Placement effects were evident but variable with site, crop and lime status and with year. The deeper the placement of Sr-90 was placed the lower was the uptake by the crops. nCi/g d.w.
Fredriksson, L., Lönsjö, H. & Eriksson, Å. (1969). Försvarets Forskningsanstalt, FOA 4 C4387-28.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. X: Absorption of ⁹⁰ Sr and ¹³⁷ Cs from Soil by Vegetable Crops.	4-year micro-plot exp. at Uppsala- Näs field station. Sweden.	90.8 μCi Sr-90; 241 μCi Cs-137.	Vegetables	Two mineral soils, one loam and one clay loam.	Content in edible parts. Sr-90: Spinach, Lettuce> Radishes>Beans, Carrots> Beets, Parsnips> Cauli- flower, Cabbage >potatoes. Cs-137: Lettuce, Spin- ach, Cauliflower> Radish, Cabbage, Carrots> Parsnips, Beans>Beets, Potatoes. Sr-90: pCi/d.w., nCi/g Ca. Cs-137: pCi/g d.w., nCi/g K.
Fredriksson, L., Lönsjö, H. & Eriksson, Å. (1969). Försvarets Forskningsanstalt, FOA 4 C-4405- 28.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. XII: Uptake of ¹³⁷ Cs by Barley and Peas from 12 Different Top Soils Combined with 2 Sub- soils in a Long-Term Mi- croplot Experiment.	Microplot exp. at Uppsala-Näs field station. Sweden.	0.241 mCi Cs- 137/0.25 m ² .	Straw and grain of barley and peas.	12 mineral top- soils on a sandy and a clayey subsoil.	Decreasing clay content and increasing organic matter content in soils enhanced Cs-137 uptake in crops. Cs-137 uptake was about 5 times higher in seed of peas than in grain of barley. pCi/g d.w. and nCi/g K. pCi/kg d.w./Ci/km2
Frissel MJ, Deb DL, Fathony M, Lin YM, Mollah AS, Ngo NT, Othman I, Robison WL, Skarlou- Alexiou V, Topcuoglu S, Twining JR, Uchida S, Wasserman MA. Journal of Environmental rRadioac- tivity 58 (2002) 113-128.	Generic values for soil-to- plant transfer factors of radio- cesium.		Cs			The paper describes a generic system for ¹³⁷ Cs, mainly based on a reference soil-to-plant transfer factor which depends solely on soil properties such as nutrient status, exchangeable K-content, pH and moisture content. Crops are divided into crop groups, cereals serving as reference group. The transfer of other crop groups can be calculated by multiplying data for cereals by a conversion factor.
Frissel M. J. Conf: Nuclear cross-over research international workshop on improve-	Behaviour of radionuclides in soils and their uptake by crops.	Netherlands.	Cs and Sr.	Crops.	Adsorptive prop- erties of soils analysed.	Significance of transfer factor is discussed. Uptake Cs and Sr from soils by food crops and counter- measures which can be applied in case of an acci-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
ment of environmental transfer models and parameters, Tokio, 5-6 Feb.1996 Available from Japan Atomic Indus- trial Forum, Inc						dent.
Frissel M.J. Book (Conf.): 25. Annual meeting of Fachverband fuer Strahlenschutz e.V. (FS): Environmental radioactiv- ity, radioecology, radiation effects. Binz auf Ruegen (Germany), 28-30 Sep 1993, p.567-573. FS-93-67-T	Parameters for Radiological assessment Models, Default Values, Reliability, Uncer- tainties and geographical Limitations.	IUR.	¹³⁷ Cs, ⁹⁰ Sr.	Cereals, clover, onion, bean, cucumber, po- tato.	Clay, sandy and peaty soils.	Transfer coefficients for milk and meat (in d/l, d/kg and for Cs in d/m2) are presented in tables and graph.
Frissel, M.J. Report (Conf.): 28. annual meeting of the European Society for New Methods in Agricultural Research Annual meeting of the International Union of Radioecology (IUR) Work- ing Group Soil-to-Plant Transfer Brno (Czech Republic), 26-29 Aug 1998, 202 p., p. 56. INIS-CZ0022	A preliminary classification of soil ecosystem as a means to estimate expected soil to plant transfer of radionu- clides.	Netherlands.	¹³⁷ Cs, ⁹⁰ Sr.	Cereal, vegeta- bles.	Different soil types and condi- tions.	The classification is based on reference soil to-plant transfer values (TF's). For Cs, cereals appeared to be a suitable reference crop for Cs, whereas green vegetables were used for Sr. The TF units are either (Bq/kg crop)/(Bq/m2) or (Bq/kg crop)/(Bq/kg soil). The availability of Cs and Sr decreases with time during 20 to 30 years (the longest time series avail- able). Therefore it may be more appropriate to use transfer parameters for 'Steady state releases' and 'Accidental releases'.
Fuerh, F. Conf: Technical meeting on radiol- ogy. Bonn, Germany, F.R. 2-3 Oct. 1979. INKA-Conf79-395-008.	Uptake of radionuclides from soil. Determination of transfer factors for practical use. Die Aufnahme von Radionuk- liden aus dem Boden. Ermitt- lung praxisgerechter Transfer- faktoren. In German.	Germany F.R. Simulation.	⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co, ⁵⁴ Mn.	Different plants.	Different types of soil. 0 to 1 cm soil layer and 0 to 20 cm top- soil, AP horizon.	Dependence of transfer factor for radionuclides on certain soil properties, on the type of plant and its stage of growth at the time of harvesting, on the part of the plant.
Fulker M.J. JR: Journal of Environmental Radio- activity, 1987, v. 5, p. 235-244.	Aspects of environmental Monitoring by British Nu- clear Fuels plc Following the Chernobyl Reactor Accident.	UK. West Cumbria.	¹³⁷ Cs, ¹³⁴ Cs, ¹³¹¹ .	Grass, milk.		Transfer of radionuclides from deposition on grass to milk is shown in tables and compared with a model prediction.
Fulker M.J., McKeeverJ., Birch C.P. Book (Conf.): International sympo- sium on environmental impact of radioactive releases, Vienna, Austria, 8-12 May 1995. IAEA, Oct 1995, 874 p., p. 734-737. IAEA-SM339/198P; STI/PUB	Validation of the Modelling of ¹²⁹ I Transfer Through the Air-Grass-Milk Pathway.	UK.	1291.			Transfer coefficient from grass to milk 5 x 10 ⁻³ Bq/l per Bq/d for intake by cows.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
971			1		,	
Gaare, E., and Staaland, H., (1994) In: H. Dahlgaard (Ed.): Nordic Radioecology. Elsevier Science Publishers, Amsterdam. ISBN 0- 444-81617-8, pp. 303-335.	Pathways of fallout radio- ceasium via reindeer to man	Norway and some other Nor- dic countries	Cs-134 and Cs- 137	Lichen - rein- deer foodchain. Reindeer meat.	Strong seasonal variation	Like other animals reindeer are exposed to radioac- tive fallout through their food, and because they alone utilize lichens as forage, a high level of ra- diocaesium is found in their muscle. The lichen intake of reindeer varies from 70 - 80% of the diet in winter to 10 - 20% in summer. This factor, cou- pled with the short biological half-life of caesium in the reindeer body (10 - 20 days), leads to a strong seasonal variation: radiocaesium in the meat is five times higher in late winter compared to the late summer time. Predictions show that it will take about 20 years before radiocaesium burdens are the same as those prior to the Chernobyl accident. Estimates indicate that the effective half-life of radiocaesium in the meat of grazing reindeer is 3 - 4 years for the post Chernobyl period.
Gaare, E.; Jonsson, B.; Skogland, T. Report: NEI-NO294 Apr 1991, 72 p.	Chernobyl. Final report on NINA's radioecological pro- gramme 1986 to 1990. Tsjernobyl. Sluttrapport fra NINA's radiooekologipro- gram 1986-1990. In Norwegian.	Norway.	¹³⁷ Cs.	Plants, fish.	Soils.	This report summerises the results from a post- Chernobyl research program on aquatic and terres- trial ecosystems in contaminated areas. Pathways, processes and factors determining the Cs-137 con- centration in soil, plant, water, fish and wild animal were investigated.
Gastberger M., Steinhäusler F., Gerzabek MH. and Hubmer A. JR: Journal of Environmental Radio- activity, 2001, v. 54, p. 267-273.	Fallout strontium and cae- sium transfer from vegetation to cow milk at two lowland and two Alpine pastures.	Austria	¹³⁷ Cs, ⁹⁰ Sr, stable Sr	Pasture, milk.		⁹⁰ Sr transfer coefficient ranged from 0.0005 to 0.0012 d/l and correlated with the stable strontium transfer coefficient (0.0006-0.0013 d/l with the lower values found on intensively managed pas- tures. The ¹³⁷ Cs transfer coefficient ranged from 0.0009-0.0045 d/l.
Gastberger M., Steinhäusler F., Gerzabek MH., LettnerH. and Hubmer A. JR: Journal of Environmental Radio- activity, 2000, v. 49(2), p. 217-233.	Soil-to-plant transfer of fall- out caesium and strontium in Austrian lowland and Alpine pastures.	Austria.	Cs-137 Sr-90.	Pastures.		The areal contamination, the depth distributions in the soil and the soil-to-plant transfer-factor ^s were determined for ¹³⁷ Cs and ⁹⁰ Sr at four Austrian pastures. Two of these are intensively used lowland pastures at about 500 m above sea level, and the other two are Alpine pastures at 1600 and 1300 m. At the latter, the vertical migration velocity in the soil is slower and the soil-to-plant transfer is sig- nificantly higher than at the lowland pastures (for both nuclides). A strong positive correlation exists between the ¹³⁷ Cs and ⁹⁰ Sr soil-to-plant transfers, indicating that some of the parameters typical of Alpine environments have a similar effect on the

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						plant uptake of these fallout nuclides, e.g. low biological activity in the soil and short vegetation periods.
Gerald Kirchner. JR: Journal of Environmental Radio- activity, 1998, v. 38(3), p. 339-352.	Applicability of Compartmen- tal Models for Simulating the Transport of Radionuclides in Soil.	Germany.	Radionuclides.			The applicability of multi-compartmental models to describe the transport of radioactive trace sub- stances in soil is reconsidered. A compartmental approach provides a valid model of the transport processes only if the number of compartments is set to a specific value which is determined by the physical flow conditions in the soil studied. It is demonstrated that describing diffusional transport by the commonly used serial compartmental model results in apparently time-dependent residence times. Modifications of compartment models made in order to account for complex sorption behaviour of the radionuclides are discussed. Consequences for the design and interpretation of field studies are outlined.
Gerzabek, M.H. Report: OEFZS4666, Jan 1993, 22 p.	The soil-to-plant transfer of radionuclides. Feasibilities and limits of the transfer concept. Der Boden-Pflanze Transfer von Radionukliden. Moe- glichkeiten und Grenzen des Transferfaktorenkonzeptes. In German.	Austria.	Sr-90, Cs-137.	Plants.	Soils.	⁹⁰ Sr exhibited three to ten times higher transfer factors as compared to ¹³⁷ Cs. The contamination source has a distinct impact on the plant availability of radionuclides. In semi-natural environments radiocaesium can be bound to the biomass to a great extent, which results in significantly higher biological half-lives as compared to agricultural ecosystems.
Gerzabek, M.H. Horak, O. Artner, C. Mueck, K. Report: OEFZS4568, Jan. 1991, 60 p.	Radionuclide transfer in the soil - plant system. Untersuchung des Radionuk- lidtransfers im System Boden - Pflanze. In German.	Austria.	¹³⁷ Cs, ⁹⁰ Sr and ²²⁶ Ra.	Cereal grains, potatoes.	Four different soil types.	The chemical and physical characterization of the soil profiles proves the large differences in their properties. Transfer factors for cereal grains ranged from 0.036 (rye) to 0.22 (wheat) with a mean value of 0.1. The Sr-transfer into straw was 3.8 (rye) to 49 (maize) times higher than into grains. The mean concentration ratio between potato tubers and shoots was 1: 25. A significant correlation exists between exchangeable calcium and the Sr-transfer into grains of barley. The strontium uptake diminishes with increasing exchangeable calcium concentrations.
Gerzabek, M.H. Report: OEFZS4560, 1990, 80 p., p. 1-31.	Report on research in Austria (Concerning the conse- quences of the Chernobyl	Austria.	Cs-137, I-131, Sr-90.	Vegetables, cereals, pastures.	Austrian soils, seasonal charac- teristics.	The Cs-137 activity deposition per km ² due to the Chernobyl fallout varies between 0.08 Ci and 2.05 Ci, the Sr-90 app.20 to 40 times lower. The most

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	accident).					severe problems were due to the direct contamina- tion of early vegetables, winter cereals and pastures with iodine and cesium. The cesium migration in the Austrian soils was greatest in the first hours and days after the fallout. At special sites cesium from Chernobyl fallout was detected down to 30 cm depth. Investigations of the radionuclide soil to plant transfer in the field resulted in quite low transfer factors into cereal grains (e.g.: Cs: maize: 0.0018, wheat: 0.0055. Sr: maize: 0.010, wheat: 0.10) and leaf vegetables as compared to the litera- ture.
Gouthu S., Arie T., Ambe S. and Yamaguchi I. (1997). Journal of Radioanalytical and Nuclear Chem- istry, Aug. 1997, v. 222 (1-2), p. 247-251.	Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr and Cs from soil.	Laboratory con- ditions	Ru, Co, Sr and Cs	32 plant species	Horticultural soil, contaminated after seeding with dilute acid multi tracer solution.	Look at results in terms of possible phytoremedia- tion, simply a screening
Green N., Wilkins, B.T., Hammond, D.J. JR: Journal of Radioanalytical and Nuclear Chemistry, Dec 1997, v. 226(1-2), p. 195-200.	Transfer of radionuclides to fruit.	N.W. England	¹³⁷ Cs, Pu and Am	Fruit	Hamble loam, Adventurers peat and Fyfield sand. Soil contami- nated winter 1983/1984 prior to planting	Transfer factors from this lysimeter experiment showed that the transfer factors used in NRPB's FARMLAND model are too high for fruit. TF (in (concentration/kg plant (fresh mass))/(concentration/kg of soil (dry mass)) Cs- 137 (a) Apples: Field site = $8.6 \times 10-4$, Loam = $9.4 \times 10-4$, sand = $1.85 \times 10-3$, peat $3.7 \times 10-2$, model = $2.4 \times 10-2$ (b) Strawberries: Field site = $9.4 \times 10-4$, Loam = $9.0 \times 10-4$, sand = $4.2 \times 10-3$, peat $6.4 \times 10-3$: TF of Sr-90 (a) Apples: Field site = $1.2 \times 10-2$, peat $1.2 \times 10-2$, sand = $2.5 \times 10-2$, peat $1.2 \times 10-3$, model = $4 \times 10-2$ (b) Strawberries: Field site = $2.2 \times 10-2$, Loam = $1.0 \times 10-1$, sand = $2.1 \times 10-1$, peat $1.2 \times 10-2$.Root transfer factors were deter- mined as follows (units = kg fresh product/kg of dry soil): Fruit vegetables Cs = $1.0 \times 10-2$, Sr = $8.5 \times 10-2$; Root vegetables Cs = $2.5 \times 10-2$, Sr = $1.2 \times 10-2$
Green, N.; Wilkins, B.T.; Hammond, D.J. JR: Journal of Environmental Radio- activity, 1994, v. 23(2), p. 151-170.	Transfer of ¹³⁷ Cs and ⁹⁰ Sr along the Soil-Pasture-Cows' Milk Pathway in an Area of Land Reclaimed from the Sea	UK. Lancashire coast.	¹³⁷ Cs, ¹³⁴ Cs, ⁹⁰ Sr.	Grass, milk.	Soil's types and profiles	Soil-plant transfer factors for ¹³⁷ Cs of marine origin were at least five times less than the values cur- rently recommended by the IUR for use in generic assessments. For ⁹⁰ Sr, ingestion of soil was not an important contributor to uptake, ad soil-plant trans- fer factors were similar to the generic values rec- ommended by the IUR.
Green, N.; Wilkins, B.T.;	Transfer of radionuclides to	Lancashire coast	¹³⁷ Cs ^{239/240} Pu	Cereals, green		This paper summarises the results of a study of the

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Hammond, D.J.; Davidson, M.F. JR: Journal of Environmental Radio- activity, 1996, v. 31(2), p. 171-187.	crops in an area of land re- claimed from the sea.	of UK.	and ²⁴¹ Am, ⁹⁹ Tc, ⁹⁰ Sr.	vegetables, potatoes.		transfer of ¹³⁷ Cs, ⁹⁰ Sr, ^{239/240} Pu, ²⁴¹ Am and ⁹⁹ Tc to several groups of crops, including green vegetables, potatoes and cereals. In many cases, the observed transfer factors were generally close to or slightly lower than values derived from the application of radionuclides to soil in a soluble form.
Green, N.; Wilkins, B.T.; Poult- ney, S. JR: Journal of Radioanalytical and Nuclear Chemistry, Dec. 1997, v. 226 (1-2), p. 75-78.	Distribution of radionuclides in potato tubers. Implication for dose assessments.	UK, model FARMLAND.	Cesium 137, strontium 90, americium 241, plutonium isoto- pes.	Potatoes.		A study of distribution of ¹³⁷ Cs, ⁹⁰ Sr, Pu and Am in potato tubers has been carried out. Cs-137 was uniformly distributed throughout the tuber, whereas up to about 50% of the Sr-90 activity was found in the peel. The values of soil-plant transfer factors currently assumed in the NRPB model FARMLAND are reasonable for general assessment purposes.
Greitz, U., Ekman, L. & Eriksson, Å. (1974). Försvarets Forskningsan- stalt, Rapport FOA 4 C-40005-4.3.	Transfer of Simulated Fallout Particles from Pasture to Grazing Dairy Cattle.	Experimental animal and pas- ture field station at Kungsängen, SLU, Uppsala. Sweden.				Fraction of deposition ingested by cows was as- sessed by assay of radioactivity in faeces. It was found to be about 20 %. Differently designed ex- periments gave similar results. Compare Ekman, L., Eriksson, Å. & Greitz, U. (1973).
Grzybowska, D. Włodek, S. Report (Conf.): Radioecology ap- plied to the protection of man and his environment, Rome, Italy, 7-10 Sep 1971. Proceedings, May 1972, v. 2, p. 1069-1079. EUR4800(vol.2)	Contribution to the study of soil-plant transfer factors of ⁹⁰ Sr, ¹³⁷ Cs and ²²⁶ Ra. Contribution a l'etude du transfert de Sr-90, Cs-137 et Ra-226 du sol vers les plan- tes. In French.	Poland.	⁹⁰ Sr, ¹³⁷ Cs and ²²⁶ Ra.	Plants.	Soils.	The study of soil-plant transfer factors of ⁹⁰ Sr, ¹³⁷ Cs and ²²⁶ Ra.
Haak, E. & Eriksson, E. (1973). Försvarets forskningsanstalt, Rap- port FOA4 C-4559-A3.	Studies on plant accumulation of fission products under Swedish condition. XV. Uptake of ¹³⁷ Cs by wheat as influenced by type and rate of N-fertilization under field conditions.	3 soils x 3 N- types x 3 N-rates in split-plot designed mi- croplot exp. at Uppsala-Näs field station. Sweden.	Contamination of Cs-137 not updated.	Straw and grain of wheat.	3 topsoils - clay, a sandy clay loam and a loam - were placed on sandy subsoil.	Cs-137-transfer was much higher on the sandy soil than on the two clayey soils. On the sandy soil it increased with N-rate and was usually higher for ammonium nitrate and urea than for calcium ni- trate. pCi/kg d.w. and pCi/ g K
Haak, E. & Eriksson, Å. (1973). Försvarets Forskningsanstalt, Rap- port FOA 4 C-4557-A3.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. XIV: Uptake of ¹³⁷ Cs by Wheat and Timothy from six different soils as Influenced by Type and Rate of K-fertilization	Pot experiments in an open vege- tation hall. Swe- den.	$\begin{array}{c} \text{Cs-137-transfer} \\ \text{to plant is con-} \\ \text{verted to a deposition of 1 } \mu\text{Ci} \\ \text{Cs-137} /\text{m}^2 \\ \text{soil.} \end{array}$	Straw and grain of wheat. Herb- age of timothy.	3 mineral soils on sandy subsoil. 3 rates of 3 types of N-fertilizers. CaN = calcium nitrate, AN = ammonium ni-	Cs-137 uptake was highly negatively related to contents of clay and K-AL. N-type and N rate of fertilization influenced Cs-137-uptake, more on the sandy soil on which also the uptake increased with N-rate and usually more for AN and U than CaN. pCi/kg d.w.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	and by type and rate of N- fertilization in pot experiment				trate, U = urea.	
Haak, E. & Lönsjö, H. (1975). Inst. för Radiobiologi, Rapport SLU-IRB- 30.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. XVI: Uptake of ⁹⁰ Sr by Barley and Peas from 12 Different Top- soils Combined with 2 Sub- soils in a Long-Term Micro- plot Experiment.	8-year microplot exp. at Uppsala- Näs field station. Sweden.	90.8 μCi Sr-90/ 0.25 m ² .	Straw and grain of barley and peas.	12 topsoils placed on two subsoils, sand and clay.	Range of pCi/kg/mCi/ha for grain on sandy and clayey subsoil respectively. Topsoils: 18-61 and 13-35 for barley, 17-82 and 12-78 for peas. Years: 18-58 and 10-46 for barley, 25-67 and 20-46 for peas. Variation in Sr-90-transfer with year and topsoil. pCi/kg/ mCi/ha nCi/kg Ca /mCi/ha
Haak, E. (1983). (Ed. Å. Eriksson). Inst. för Radioekologi, Rapport SLU-REK-55, pp. V:2:1-15.	Variation i transportkoeffici- enter mark/växt för ¹³⁷ Cs och ⁹⁰ Sr. Långsiktiga konsekven- ser av radioaktiv beläggning i jordbruket. L Malmöhus lõn	Work based on Field experiments with artificial depositions of Cs-137 and Sr-90 in soils from different parts of the country. Sweden.	Cs-137, Sr-90 and Sr-85.	Experimental experiences of the long term transfer of the nuclides to grass and grain crops in Swedish agriculture.	Different soil types from the large agricultural regions of Swe- den.	Data are presented on the residence half-time of the nuclides on different pastures and on grain crops on ploughed land. For the pastures with initially high uptakes residense half-times of about 10-12 years was found, for crops on ploughed land considerably longer. The effective half-time could be estimated to 8-10 years on pastures and 22-23 years on ploughed land. Transfer expressed acc. to the equation TF=square meter of deposition found per kg dry matter of the crop.
Haak, E. (1983). (Ed. Å. Eriksson). Inst. för Radjoekologi, Rapport SLU-REK-55, pp. 1:1-30.	Transport och oralt intag av deponerat ¹³⁷ Cs (⁹⁰ Sr) med jordbruksprodukter. Långsik- tiga konsekvenser av radioak- tiv beläggning i jordbruket. 1. Malmöhus län	Work based on Field experiments with artificial depositions of Cs-137 in soils from different parts of Sweden.	Cs-137.	Estimated con- sequences of fallout for the Swedish agricul- ture	Conditions in Malmöhus län.	The study aimed at estimates of the consequences of Cs-137 fallout over the county, transfer to foods and internal and external doses to consumers and farmers. The effects of agricultural counter meas- ures could be evaluated. Ploughing contaminated land and fertilization with potassium as well as suitable changes in farm management could be efficient for reduction of internal radiation doses from food intake. The effects were less on the external doses. Transfer expressed acc. to the equation TF=square meter of deposition found per kg dry matter of the crop and per kg fresh weight of animal products. Estimates of doses.
Haak, E. (1983). Commission of the European Communities, Vol. II, Seminar on "The Transfer of Radio- active Materials in the Terrestrial Environment Subsequent to an Ac- cidental Release to Atmosphere", 11-15 April 1983, Dublin, Ireland. Luxembourg pp. 639-649.	Long term transfer of Cs-137 and Sr-90 within to Swedish agroecosystems as described by a stepwise model includ- ing corrective measures.	Kalkyler. Work based on Field experiments with artificial deposi- tions of Cs-137 and Sr-90 in soils from different parts of the coun- try. Sweden.	Cs-137, Sr-90.	Estimated con- sequences of fallout for the Swedish agricul- ture		The transfer of Cs-137 and Sr-90 to foods after fallouts in different counties of Sweden has been estimated with the aid of known factors in the agriculture, soil conditions, crop production and intensity in animal husbandry. The effects of cor- rective measures to reduce the transfer are dis- cussed. Transfer expressed acc. to the equation TF=square meter of deposition found per kg dry matter of the crop and per kg fresh weight of ani- mal products.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Haak, E. (1983). Inst. för Radioeko- logi, Rapport SLU-REK-57.	Långsiktiga konsekvenser av radioaktiv beläggning i jord- bruket. II. Transport av ¹³⁷ Cs och ⁹⁰ Sr från mark till jord- bruksprodukter olika län (M, L, N, 0, Ps, H, F, B och C).	Work based on Field experiments with artificial depositions of Cs-137 and Sr-90 in soils from different parts of the country. Sweden.	Cs-137, Sr-90.	Estimated con- sequences of fallout for the Swedish agricul- ture		The transfer of Cs-137 and Sr-90 to foods after fallouts in different counties of Sweden has been estimated with the aid of known factors in the agriculture, soil conditions, crop production and intensity in animal husbandry. The effects of cor- rective measures to reduce the transfer are dis- cussed. Transfer expressed acc. to the equation TF=square meter of deposition found per kg dry matter of the crop and per kg fresh weight of ani- mal products.
Haak, E. (1986). Inst. för Radioek, Rapport SLU-REK-61, pp 247-254.	Effect of K-fertilization, liming and placement on crop uptake of cesium and stron- tium. Proc. 1st Int. Contact seminar in Radioecology 8-11 July 1985, Uppsala, Sweden.	Work based on Field experiments with artificial depositions of Cs-137 in soils from different parts of the coun- try. Sweden.	Cs-137 and Sr- 90.	Field grain crops.	Different soil types from the large agricultural regions of Swe- den. Experiments over many years.	Remedial measures to reduce the crop uptake of Cs-137 and Sr-90 were carried out under different conditions and at several sites in Sweden. The influence of liming and placement by ploughing was tested on the plant uptake of Sr-90 and that of potassium fertilisation on the uptake of Cs-137. It was found that compared to even distribution of the nuclide in the plough-layer the shallower place- ments resulted in higher plant uptake. K- fertilisation reduced the caesium uptake considera- bly and more efficient than liming did with regard to Sr-90. Transfer expressed acc. to the equation TF=square meter of deposition found per kg dry matter of the crop.
Haak, E., Eriksson, Å. & Karlström, F. (1973). Försvarets Forskningsanstalt, Rapport C-4525- A3.	Studies on Plant Accumula- tion of Fission Products under Swedish Field Conditions. III: Entry of 90Sr and ¹³⁷ Cs into the Herbage of Contrast- ing Types of Pasture.	Two pasture sites were contami- nated with Sr-90 and Cs-137 in early spring 1961, some plots also with Cs-137 in 1964. Swe- den.	150 μCi Sr-90 and 405 μCi Cs- 137 in 1961, some plots with 485 μCi in 1964.	Several cuts of herbage/year, grass species mainly. Six years reported.	Natural pasture on Lövsta sandy soil and grasing ley on Risslinge clay soil. Both sites near Upp- sala.	Sr-90-transfer to herbage was larger than Cs-137- transfer at both sites already in 1st year. In the following years nuclide transfer decreased more slowly. Larger nuclide transfer on Lövsta than Risslinge. Effects of liming and fertilisation were observed. nCi/kg d.w. and nCi/g Ca for Sr-90; nCi/kg d.w. and pCi/g K for Cs-137.
Haak, E., Eriksson, Å. & Rosén, K. (2000). XXXth Annual Meeting of ESNA/ jointly organised with IUR working group soil-to-plant-transfer. Proc. Nov. 2000. Martin H. Gerza- beck (ed.) pages 8-14	Retention of simulated fallout nuclides in grass and grain crops.	Microplot exp. under field conditions. Sweden.	Experiments with wet deposi- tions of Cs-134 and Sr-85.	Grass of leys. Straw, leafs, ears and grain of cereals.	Vegetation peri- ods.	Migration of Cs-137 and Sr-90 in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil-plant interac- tions. TRd and FRd as defined.
Haak, E., Eriksson, Å., Lönsjö, H. & Rosén, K. (1998). Inst. för ra- dioekologi, Rapport SLU-REK-82.	Överföring av Caesium-137 till jordbruksprodukter I Skåne och Blekinge efter en	Sweden.	Cs-137	Produkter från olika typer av jordbruk.	Olika marktyper och nedfallstid- punkter.	A mixed solution of the radionuclides was applied to the soil surfaces in culture boxes placed in a greenhouse at 4 different times during plant

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	kärnenergiolycka. Uppsala. (Transfer of Cs137 to Agri- cultural Products in Southern Sweden after a Nuclear Acci- dent)					growth. Soil-to-plant transfer factor (TF) was de- termined on the basis of radioactivity in unit area of soil.
Haas G., Schupfner R., Mueller A. JR: Journal of Radioanalytical and Nuclear Chemistry, 1995, v. 194 (2), p. 269-276.	Transfer of Natural and Man Made Radionuclides from Plants to Roe Deer and Farm Animals.	Germany.	¹³⁷ Cs, ²²⁸ Ra, ²²⁸ Th, ²³² Th, ⁴⁰ K	Milk, eggs, meat, fish.		Feed-to-animal concentration ratios are given in table for bull, roe deer, cow and hen.
Halliwell C.M. and Rose C.L. (1995).J. Radiol Prot. 15. 3-36	Validation of two field mod- els for radionuclide concen- tration in crops, using field data.	Scotland and N.W. England	Cs-137, Sr-90, Pu-239,240 and Am-241	Ryegrass	Scottish/ North- ern English soils (non-calcerous gleys and peaty gley). "Natural" fallout deposition	Showed tendencies in the models for overpredict- ing/underpredicting certain radionuclide concentra- tions at the different sites. They state that it is unlikely that more successful model predictions cannot be made without taking into account the influence of soil characteristics on transfer factors. Used a set TF in the calculations, no TF data.
Handge, P. Meurin, G. Conf: 12. Annual meeting on radio- activity and environment, Norderney, Germany F.R., 2-8 Oct. 1978. INIS-mf5888	Determination of potential radiation exposure via terres- trial food chains by the re- lease of radioactive material from nuclear facilities. Ermittlung potentieller Strah- lenexpositionen ueber terrest- rische Nahrungsketten durch Ableitung radioaktiver Stoffe aus kerntechnischen Anlagen. In German.	Germany F.R. Compiled data.	Cs-134, Cs-137, Sr-90.	Milk, plants.	Soil properties.	The relevant transfer coefficients for the different plant species vary, depending on the soil properties, between 0.02 and 6.0 [pCi/kg fresh weight of vege- tation: pCi/kg dry weight of soil] for Sr and be- tween 1.10-3 and 0.2 [pCi/kg fresh weight of vege- tation: pCi/kg dry weight of soil] for Cs. The sensi- tivity analysis shows that already a variation of the transfer coefficients for Sr from 0.5 up to 2.5 [pCi/kg fresh weight of vegetation: pCi/kg dry weight of soil] and for Cs from 3.10-2 up to 2.10-1 cause variations in the level of radiation exposure for individual exposure pathways by factors of 2 to 4. Correspondingly higher values are to be ex- pected by still larger transfer of Sr and Cs from the ground to vegetation. For transfer coefficients >- 2.5 [pCi/kg fresh weight of vegetation : pCi/kg dry weight of soil], however, removal of radioactive substances from the ground by the plants must not remain without consideration any longer
Handl J, Pfau A. and Huth F.W. JR: Health Physics, 1990, v. 48(5), p. 609-618.	Measurements of ¹²⁹ I in Hu- man and Bovine Thyroids in Europe - Transfer of ¹²⁹ I into the Food Chain.	Germany.	I-129.	Grass, milk, meat.		The long-term transfer of radioiodine from soil to the plant and translocation within the soil were studied. During the 4 y. of the experiment, the transfer factor plant/soil decreased from 0.3 to $2.2*10^{-3}$. The mean value of the transfer factor milk/feed was $2.4*10^{-3}$ d kg ⁻¹ . The values of the transfer factor cow meat/feed obtained ranged between $3.0*10^{-4}$ (kidney) and $5.4*10^{-2}$ d kg ⁻¹ f.w.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Handl J. and Pfau A. Book (Conf.): 4. Cadarache interna- tional Symposium on Radioecology. Cadarache (France). 14-18 Mar 1988. Vol. 2. Cadarache (France). Section Documentation - CEN/Cadarache. p. E92 - E97.	Transfer of some Chernobyl Fallout Nuclides in the Ani- mal-Product Food Chain.	Germany, Neth- erlands.	Cs-134, Cs-137.	Grass; hay and grass silage harvested be- tween May and Sept. 1986. Milk, meat.		Mean value of transfer factors are presented from 5 feeding experiments and are for milk/feed in range from 3.0 to $8.6*10^{-3}$ day/kg. The mean transfer value for feed/meat is $1.4*10^{-2}$ d/kg which is about half the recommended value of $3.0*10^{-2}$ d/kg.
Hansen, H.S., and Andersson, I., (1994) In: H. Dahlgaard (Ed.): Nor- dic Radioecology. Elsevier Science Publishers, Amsterdam. ISBN 0- 444-, 81617-8, pp. 197-211.	Transfer of Cs-137 to cows milk in the Nordic countries	Nordic countries	Cs-137	Milk from cows, diary milk and milk from indi- vidual farms.	Short after depo- sition	In 1986 and 1987 the levels of Cs-137 were highest in Finland and Norway, intermediate in Sweden, the Faroe Islands and Iceland (Cs-137 from global fallout only) and lowest in Denmark. The aggre- gated transfer coefficient (T_{agg}) to cows' milk was 2-10 times higher in the Faroe Islands, Iceland and Norway compared to that in Denmark, Finland and Sweden for all years after 1986.
Haunold, E. JR: Pflanzenarzt, Jul-Aug 1986, v. 39(7-8), p. 154-155.	Radionuclide uptake of plants from the soil. Die Aufnahme von Radionuk- liden aus dem Boden durch die Pflanze. In German.	Austria.	⁹⁰ Sr, ¹³⁷ Cs.	Different agri- cultural plants.	Different soil conditions.	Mean transfer factors for Cs and Sr and different agricultural plants are given. Activities in the plant mass are calculated for different soil conditions and advices for plant cultivation are given.
Haunold, E. Horak, O. Gerzabek, M. Report, Forschungszentrum Seibers- dorf G.m.b.H. Inst. fuer Landwirt- schaft, Aug 1986. 48 p. OEFZS4369. LA163/86.	Environmental radioactivity and its impact on agriculture. I. The behaviour of radionu- clides in soils and plants. Umweltradioaktivitaet und ihre Auswirkung auf die Landwirtschaft. I. Das Ver- halten von Radionukliden in Boden und Pflanze. In German.	Austria.	¹³⁴ Cs, ¹³¹ I, ¹³⁷ Cs, ¹⁰⁶ Ru, ⁸⁹ Sr, ⁹⁰ Sr.	Different types of crop.	Soils.	The behaviour of radionuclides in soil and their uptake by plants. Soil-plant transfer factors are presented for the most important types of crops. With reference to fresh weight and vegetative plant matter, the range for Cs is between 0.01 and 0.03, for Sr between 0.1 and 1.2. The application of transfer calculations in practice is discussed.
Haunold, E.; Horak, O.; Gerzabek, M. Report, OEFZS4369 Aug. 1986, 48 p. Available from INIS under the Re- port Number.	Environmental radioactivity and its impact on agriculture. I. The behaviour of radionu- clides in soils and plants. Umweltradioaktivitaet und ihre Auswirkung auf die Landwirtschaft. I. Das Ver- halten von Radionukliden in Boden and Pflanze. In German.	Austria.	Cs-137, Cs-134, Sr-89, Sr-90, I-131	Different types of crops with reference to fresh weight and vegetative plant matter.		Tf for Cs estimated between 0.01 and 0.03; for Sr between 0.1 and 1.2. The application of transfer calculations in practice is discussed.
Heeschen, W. JR: Deutsche Tieraerztliche Wo- chenschrift,	Radionuclide transfer from forage plants into milk. Transfer von Radionukliden	Germany.	¹³¹ I, ¹³⁷ Cs, ⁹⁰ Sr.	Forage, milk, butter, cheese.		There is a lot of information regarding the transfer of radionuclides (iodine, caesium, strontium) which allows the transfer factor being calculated with high

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
9 Jun 1987, v. 94(6), p. 364-367.	aus Futterpflanzen in die Milch. In German.					certainty. The transfer coefficients (forage-) plant/milk laid down in Paragraph 45 of the Radia- tion Protection Ordinance (Strahlenschutzverord- nung) amount to 1.0x10-2 for iodine-131, 1.2x10-2 for caesium-137 and 2.0x10-3 for strontium-90. More recent calculated factors are markedly lower at the average.
Heine, K., Wiechen, A. Conf: 5. International Congress of the International Radiation Protec- tion Association. Jerusalem, Israel, 9-14 March 1980. Book of papers. 1980, v.3, p. 397- 400.	Studies of the transfer factors of Sr-90 and Cs- 137 in the foodchain soil-plant-milk.	Gorleben, Ger- many.	¹³⁷ Cs and ⁹⁰ Sr.	Plants, milk.		Transfer factors of Sr-90 and Cs-137 were deter- mined by low-level measurements of soil, plant and milk samples. The values of the Cs-137 TF (soil- plant) were higher in sandy than in loamy soils. The plant-milk transfer factors for Sr-90 agreed well for the different locations but for Cs-137 varied markedly. The highest values for TF plant- milk were found at farms with sandy soils.
Heine, K., Wiechen, A. JR: Kieler Milchwirtschaftliche Forschungsberichte, 1979, v. 31(4), p. 283-295.	Studies on the transfer factors of Sr-90 and further fallout- radionuclides in the food chain 'soil-plant-milk' in the surroundings of Gorleben. Untersuchungen zum Ueber- gang von Sr 90 und anderen Fallout-Radionukliden in der Nahrungskette Boden- Bewuchs-Milch in der Umge- bung von Gorleben. In German.	Gorleben, Germany.	⁹⁰ Sr and other radionuclides.	Milk. Plants.		To verify data for transfer factors arrived from the international literature for the ecological conditions of Germany, low-level measurements of soil, plant and milk were performed. TF of Sr 90 for the transition soil-plant range between 0.08 and 1.11 (pCi/kg plant wet weight: pCi/kg soil dry weight).TF of Sr-90 for the transition plant-milk range between 0.0013 and 0.0019. The mean value 0.0016 agrees well with the values 0.0014 and 0.002 evaluated by Ng et al. from literature respectively by Wiechen from radiological surveillance data. Therefore, the Sr-transfer factor 0.0008 enclosed in the Richtlinie should have to be doubled.
Heine, K.; Wiechen, A. JR: Milchwissenschaft, May 1979, v. 34(5), p. 275-280.	Studies on the Cs-137- transfer in the foodchain soil- plant-milk under the ecologi- cal conditions in a given environment. Untersuchungen zum Cs- 137-Uebergang in der Nah- rungskette Boden-Bewuchs- Milch an einem gegebenen Standort. In German.	Germany, F.R.	Cs-137.	Milk.	Different types of soil.	TFs for the Cs transition soil-plant range between 0.018 and 0.015 (pCi/kg plant wet weight: pCi/kg soil dry weight). Higher value was generally found for sandy soils than for the loamy soils of Elbe. Cs-137 TFs of the transition plant-milk range between 0.0023 and 0.057 (pCi/l : pCi/daily intake). The highest TFs are determined for the pastures which have sandy soils. More than 2/3 of all TFs for plant-milk are lower than the value 0.012 published by Strahlenschutz-kommission in 1977.
Helton J.A., Jonson J.D., Rollstin J.A., Shiver A.W., Sprung J.L. Report, NUREG/CR6134;	Uncertainty and sensitivity analysis of chronic exposure results with the MACCS	Simulation mo- del. USA.	Cs-134, Cs-137, Sr-90, I-131.	Milk, meat, crops, legumes, plants and drink-	Number of envi- ronmental and seasonal influ-	MACCS model with 75 variables for evaluation of reactor accident consequences. Domination of dry deposition velocity, transfer of cesium from animal

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
SAND93-2370 Jan. 1995, 90 p.	reactor accident consequence model.			ing water.	encing factors.	feed to milk and meat; transfer ⁹⁰ Sr from soil to legumes and crops; contribution of ground concen- tration of I-131if accidents occur during the grow- ing season.
Henrich, E. ; Schoener, W. Report: RP BALUF-STS87-03, CA Bundesanstalt fuer Lebensmit- teluntersuchung und -forschung, Vienna (Austria), 1987, 42 p.	Determination of transfer factors and effective half- times in several domestic animals for cesium-137 from the Chernobyl reactor acci- dent. Part 1: several prob- lems. Ermittlung von Transferfakto- ren und effektiven Halbwerts- zeiten bei diversen Nutztieren fuer Caesium-137 aus dem Reaktorunfall Tschernobyl. Teil 1: Allgemeine Probleme. In German.	Austria.	Radio-nuclides.	Animal feed, meat.		The Chernobyl accident contaminated fodder-hey and grass has been fed to cows, bulls, calves, lambs and swine (fed with whey). Transfer factors fodder- to-meat and fodder-to-milk as well as the efficiency of radioactivity reducing additives had to be deter- mined. Correlation of live-animals measurements with the meat contamination was investigated. The correlation was satisfactory except with swine.
Hinton T. G., Stoll J. M. and To- bler L. JR: Journal of Environmental Radio- activity, 1995, v. 29(1), p. 11-26.	Soil Contamination of Plant Surfaces from Grazing and Rainfall Interactions.					Contaminants often attach to soil particles, and their subsequent environmental transport is largely determined by processes that govern soil move- ment. We examined the influence of grazing inten- sity on soil contamination of pastures. Soil loadings (g soil kg-1 dry plant) increased 60% when grazing intensity was increased by a factor of four (p = 0.003). Rain and wind removed soil from vegeta- tion in the ungrazed control plots, but when grazing sheep were present, an increase in rain from 0.3 to 9.7 mm caused a 130% increase in soil contamina- tion. Multiple regression was used to develop an equation that predicts soil loadings as a function of grazing density, rainfall and wind speed (p = 0.0001, r2 = 0.78).
Hoffman FO. Amaral E. Report (Conf.): Workshop in radio- ecology. Neuherberg (Germany; F.R.), 5-7Nov. 1986. ISH128	The use of Chernobyl fallout to test model predictions of the transfer radioiodine from air to vegetation to milk.	USA.	I-131.	Pastoral vegeta- tion, milk.		Comparison of observed values with model predic- tion indicates a tendency for the models to overpre- dict the air-vegetation-milk transfer of Chernobyl I- 131 by one to two orders of magnitude. It's mainly due to the transfer from air to pasture vegetation. Differences between model predictions and obser- vations can be explained by : 1) overestimation of the fraction of the total amount of I-131 in air that was presented as molecular vapour; 2) over- estimation of wet and dry depositions; 3) Overesti-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						mation of initial vegetation interception of material deposited during sever thunderstorms; 4) underestimation of the rates of weathering and growth dilution of material deposited on vegetation during periods of spring growth; 5) underestimation of the amount of uncontaminated feed consumed by diary cows, and 6) overestimation of the diet-to-milk transfer coefficient for I-131.
Hoffman, F.O. Gardner, R.H. Eckerman, K.F. Report: NUREG/CR2612; ORNL/TM8099. Jun 1982, 75 p.	Variability in dose estimates associated with the food- chain transport and ingestion of selected radionuclides.	USA. Simulations.	⁹⁰ Sr, ¹³⁷ Cs.	Different input.		For 90Sr, the parameters for soil retention, soil-to- plant transfer, and internal dosimetry contribute most significantly to the variability in the predicted dose for the combined exposure to all terrestrial pathways. For ¹³⁷ Cs, the meat transfer coefficient, the mass interception factor for pasture forage, and the ingestion dose factor are the most important parameters.
Hoffman, F.O., Miller, C.W., Shaeffer D.L., and Garten Jr. C.T. JR: Nuclear Safety, Jul 1977, v. 18(3), p. 343-354.	Computer Codes for the Assessment of Radionucldes Released to the Environment.	USA. Computer simulation.	Radio-nuclides. Computer data input.	Computer data input.	Computer data input.	The capabilities of 83 computer codes in the areas of environmental transport and radiation dosimetry are summarized in tabular form. The incorporation of terrestrial and aquatic food-chain pathways has been a more recent development and reflects the need for satisfying the current requirements. The characteristics of the conceptual models employed by these codes are reviewed. The article includes 100 references.
Hoffman, F.O., Shaeffer, D.L.; Baes, C.F.; III Little, C.A.; Miller, C.W.; Dunning, D.E.; Jr. Rupp, E.M.; Shor, R.W. Conf: Direct use of geothermal energy. San Diego, CA, USA. 31 Jan - 2 Feb 1978 Report: CONF-7801332	Evaluation of uncertainties in radioecological models.	USA.	Iodine-131.	Animal feeds, milk.		This paper presents results of statistical analyses for seven selected parameters commonly used in envi- ronmental radiological assessment models. The uncertainty is also estimated for the annual dose rate predicted by a multiplicative chain model for the transport of molecular iodine-131 via the air- pasture-cow-milk-child's thyroid pathway.
Hoffmann, F.O. JR: Health Physics, Mar. 1978, v. 35, p. 413-416.	A Review of Measured Val- ues of the Milk Transfer Coefficient (fm) for Iodine.	USA.	I-131.	Milk		TF for milk.
Horak O., Mück K., Gerzabek M.H. Book (Conf.): International sympo- sium on environmental contamina- tion following a major nuclear acci- dent, Vienna, Austria, 16-20 Oct 1989.	¹³⁷ Cs Soil to Plant Transfer Factors Derived from Pot Experiments and Field Stud- ies.	Austria.	Cs-137	Crop plants, leaf vegetables, fruits, potato tubers		TF.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
IAEA, 1990, 451 p., v. 2, p. 29-36.						
IAEA-SM306/4. Horak, O. JR: Agro Zucker, 1986 v. 4, p. 11-12.	Radioactive uptake by plants. Die Aufnahme radioaktiver Stoffe durch Pflanzen In German.	Austria.	¹³⁴ Cs, ¹³¹ I, ¹³⁷ Cs, ¹⁰⁶ Ru, ⁹⁰ Sr.	Several agricul- tural plants.	Soils.	Fundamentals of radionuclide uptake by plants both by leafs and by roots. Iodine, cesium, stron- tium and ruthenium are considered and a table of the measured concentrations in several agricultural plants shortly after the Chernobyl accident is pre- sented. Another table gives the Cs and Sr transfer factors soil plants for some plants. Using those estimates of future burden can be obtained.
Howard BJ., Beresford NA., Mayes RW. and Lamb CS. JR: Journal of Environmental Radio- activity, 1993, v. 19, p. 155-161.	Transfer of ¹³¹ I to Sheep Milk from Vegetation Contami- nated by Chernobyl Fallout.	UK. Feeding experiment.	I-131.	Herbage.		The transfer coefficient (F_m) of ¹³¹ I from Chernobyl contaminated herbage was 0.29 ± 0.017 day litre ⁻¹ .
Howard BJ., Hove K., Strand P., Pronevich V. Book (Conf.): International sympo- sium on environmental impact of radioactive releases, Vienna, Austria, 8-12 May 1995. IAEA, Oct 1995, 874 p., p. 247-258. IAEA-SM339/198P; STI/PUB 971	Aggregated Transfer Coeffi- cients. A simple approach to modelling transfer of ra- dionuclides to food products from semi-natura ^{1 e} cosystems.	Nordic countries.	¹³⁷ Cs.	Sheep meat, Goat milk, cow milk, beef, rein- deer, fungi, berries, game animals	O _{rga} nic soils, clay/sand soils.	Tag values with information on soil groups give potentially a robust, rapid method of predicting areas where there might be high, long term radio- caesium contamination of food products from semi- natural ecosystems.
Howard, B.J., Beresford, N.A., and Hove, K., (1991) Health Physics, Vol 61, No. 6, 715 - 725.	Transfer of radiocaesium to ruminants in natural and semi-natural ecosystems and appropriate countermeasures.	Norway, Sweden and Finland and some other coun- tries	Cs-134 and Cs- 137	Reindeer and lamb, meat, milk and milk- products	Short and long time after deposi- tion	The duration and extent of radiocaesium contami- nation of ruminants will be more severe in unim- proved ecosystems compared with agricultural areas. Countermeasures have been developed and used successfully to reduce radiocaesium levels in ruminants grazing in unimproved ecosystems. A part from decontamination by altering farming practices and providing uncontaminated feeds, sustained reductions of 50 to 80% in the radiocae- sium concentrations of both milk and meat have been achieved in many ruminants species when AFCF is given via a sodium chloride lick or as a substined-release bolus.
Howard, J., Hove, K., Prister, B., Sobolev, A., Ratnikov, A., Trav- nikova, I.; Averin, V., Tronevitch, V.,; Strand, P., Bogdanov, G. Conf.: 1. international conference on 'The radiological consequences of the Chernobyl accident' Minsk,	Fluxes of radiocesium to milk and appropriate countermea- sures.	Belarus, Russia, Ukraine.	¹³⁷ Cs.	Animal fodder, milk.	Soils, fertilizers.	Combining information about soil type, transfer rates for each major soil type, deposition, pasture size and grazing strategies can be a useful method of quantifying transfer of radiocesium to milk. Effective Countermeasures are available to reduce radiocesium transfer.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Belarus, 18-22 Mar 1996. INIS-BY020 Proceedings of the first international conference 'The radiological conse- quences of the Chernobyl accident', Luxembourg, 1996, 1192 p., p. 349-362.						
Hove, K., and Strand, P. (1990) In: Environmental contamination following a major nuclear accident, Proceedings of an international symposium. IAEA, Vol 1, Vienna, IAEA-SM-306/40, 215 - 223.	Predictions for the duration of the Chernobyl radiocaesium problem in non-cultivated areas based on a reassessment of the behaviour of fallout from nuclear weapons tests.	Norway, non- cultivated areas	Cs-134 and Cs- 137	Lamb	Grazing season	Levels in lamb meat of 13 - 100 Bq/kg of weapon tests Cs-137 were observed per kBq/m ² in both the 1966 - 1972 and 1986 - 1988 periods. Transfer factors from Chernobyl radiocaesium were of simi- lar magnitude (24 - 136 Bq/kg per kBq/m ²) in 1986 - 1988 shortly after the Chernobyl accident.
Hove K., Lönsjö H., Andersson I., SormunenCristian R., Hansen, H.S., Indridason K., Joensen H.P., Kossila V., Liken A., Magnusson S., Nielsen S.P., Paasikallio A., Pálsson S.E., Rosén K., Selnæs T., Strand P. and Vestergaard T. (1994) In: H. Dahlgaard (Ed.): Nordic Radioecology. Elsevier Sci- ence Publishers, Amsterdam. ISBN 0-444-81617-8, pp. 211-228.	Radiocaesium transfer to grazing sheep in Nordic environments.	Nordic countries	Cs-134 and Cs- 137	Soil - herbage - lamb food chain	Spring	Soil to herbage radiocaesium transfer factors were high on the organic and acidic soils of the Faroe Islands, Iceland, Norway and Sweden averaging 18-82 Bq/kg Cs-137 herbage on a soil deposition of 1 kBq/m2 Cs-137, and much lower on the sandy soils of Denmark and clay soils in Finland (0.4- 0.8). Herbage to lamb concentration factors were generally more homogenous, with values ranging from 0.25 - 0.70 indicating that absorption of ra- diocaesium from herbage was similar in each of the counties: A Cs-137 deposition of 1 kBq/m2 soil gave rise to much lower meat radiocaesium concen- trations at the sites in Denmark, the Faroe Islands and Finland (0-5-3.0 Bq/kg) than Iceland, Norway and Sweden (20-47 Bq/kg).
Häkkinen U.L., Lakanen E. In Book: Comparative Studies of Food and Environmental Contami- nation. Proceedings of a Sympo- sium, Otaniemi, 27-31 Aug. 1973, p.249-258.	The Adsorption and Extrac- tion of ⁹⁰ Sr and ¹³⁷ Cs in Fin- nish Soils.	Finland	⁹⁰ Sr, ¹³⁷ Cs.			
Ivanov Y.A., Lewyckyj N., Lev- chuk S. E., Prister B. S., Firsako- va S. K., Arkhipov N. P., Arkhi- pov A. N., Kruglov S. V., Alexak- hin R. M., SandallsJ. and Askbran S. JR: Journal of Environmental Radio- activity, 1997, v. 35(1), p. 1-21.	Migration of ¹³⁷ Cs and ⁹⁰ Sr from Chernobyl Fallout in Ukrainian, Belarussian and Russian Soils.	Chernobyl zone.	Radio-isotopes of Cs and Sr.			The experimental results showed that the type of soil and its water content had a significant influ- ence on the radionuclide distribution pattern in the soil profile. In undisturbed well-drained sandy and sandy loamy soils, the radionuclides were retained in the upper soil layers. However, in peaty boggy soils and flooded meadows, there was a greater downward migration. In tilled soils, the radionu- clides were distributed more or less homogeneously

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
			137.0			within the cultivated soil layer: the depth and ho- mogeneity of the nuclide distribution depended on the soil texture and the way that the soil had been managed. The vertical migration rates of the ⁹⁰ Sr were always higher than that of ¹³⁷ Cs. In a compari- son of migration rates between ¹³⁷ Cs and ⁹⁰ Sr in different types of soils, ⁹⁰ Sr appeared to migrate fastest in sandy loam and sandy soils, and ¹³⁷ Cs migrated fastest in peaty, boggy soils.
Joensen H.P. JR: Journal of Environmental Radio- activity, 1999, v. 46, p.345-360.	Long-Term Variation of Radiocaesium on the Food Chain of Lamb in the Faroe Islands.	Faroe Islands	¹³⁷ Cs	Pasture, lamb meat.		TF.
Johanson, K.J. (1987). Försöksle- darmötet. Del 4, pp. 9.1 - 9.3. Upp- sala.	Konsekvenser av Tjernobyl för svenskt jordbruk. Det radioaktva nedfallet och dess biologiska verkningar.	Sweden.	Chernobyl fall- out			Radioactive fallout was small in cities and impor- tant agricultural districts. The main fallout occurred in areas of high sensitivity for cesium, meagre soils areas. The most dangerous is that accidental can be transferred to distant areas from release power.
Jones DR., Paul L. and Mitchell NG. JR: Journal of Environmental Radio- activity, 1999, v. 44, p. 55-69.	Effects of ameliorative meas- ures on the radiocaesium transfer to upland vegetation in the UK.	UK. Plot experi- ments.	Cesium-137, strontium-90.			The use of soil amendments to immobilize ¹³⁷ Cs in the soil and/or reduce its uptake ^{by} plants was inves- tigated. The ¹³⁷ Cs concentration and transfer coeffi- cient of vegetation from both treated and control plots exhibited a seasonal variation with peaks in early summer and were affected by plant species. Some treatments, particularly muriate of potash and clinoptilolite, produced marked reductions in the ¹³⁷ Cs transfer coefficient of the bulk vegetation and individual species.
Karlén, G.& (Rosén, K.) (1994). Inst. för radioekologi, Report SLU- REK-74.	Intervjuundersökning av jordbrukare erfarenheter efter Tjernobyl-olyckan.	Field work. Sweden.	Cs-137.			
Karlen, G.; Johanson, K.J.; Ber- tilsson, J. (1995) Journal of Envi- ronmental Radioactivity 1995, v. 28(1), p. 1-15.	Transfer of ¹³⁷ Cs to cow's milk: investigations on dairy farms in Sweden.	Sweden.	Cs-137.	Fodder, milk.	Seasonal varia- tions.	Accumulated doses for the whole growth season, based on weekly labour time are estimated, mSv per farm unit: 24-39 for Gss, 21-38 for Ss, 4-8 for Nn. Collective dos for farmers, manSv per farm, are 64-172, 81-241, 12-37 respectively.
Katana H., Bunnenberg C. and Kühn W. Book (Conf.): 4. Cadarache interna- tional Symposium on Radioecology. Cadarache (France). 14-18 Mar 1988. Vol. 2. Cadarache (France). Section	Studies on the Translocation of Cs-134 from Leaves to Fruit of Apple Trees.	Germany.	Cs-134.	Apple trees.		The present study concern the translocation of cesium in apple trees from different plant parts into fruit in view of its possible contribution to fruit contaminati _o n. Translocation coefficients fT (Bq kg ⁻¹ /Bq m ⁻²) are given in table in relation to age and different application technique.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Documentation - CEN/Cadarache. p. E72 - E78.			•			
Keller, C. JR: Naturwissenschaftliche Rund- schau, Jul 1980, v. 33(7), p. 282-284.	Uptake of radionuclides from soil. Aufnahme von Radio- nukliden aus dem Boden. In German.	Germany. Experiment.	⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co, ⁵⁴ Mn.	Potatoes, sugar beets, winter wheat, spring barley, clover, alfalfa ray grass.		The transfer factors for the radionuclides ⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co and ⁵⁴ Mn are reported about. Potatos, sugar beets, winter wheat, spring barley, clover, alfalfa and ray grass, and in some cases also field vegetables were used. The influence of soil proper- ties on the transfer factors is investigated.
Kiefer, J. JR: Umwelt, Nov. 1986, no.7, p. 534-536.	Biological radiation effects. Extrapolating from high radiation loads to low values. Biologische Strahlenwirkung. Von hohen Strahlenbelastun- gen wird auf niedrige Werte extrapoliert. In German.	Germany.	¹³¹ I, ¹³⁷ Cs, ⁹⁰ Sr.			The Chernobyl reactor accident gave rise to the spreading of totally different versions and evaluations of short-term and long-term biological radiation effects. The topical discussion refers to the radionuclides iodine 131, cesium 137 and strontium 90 explaining the radionuclide migration (food chain, transfer factors).
Kirchmann, R. Fagniart. Report (Conf.): Meeting of the IUR workgroup on soil-to-plant transfer factors, Saint-Paul-lez-Durance (France), 16-18 Apr. 1984, 185 p., p.56-64. INIS-mf10171	Workshop soil-plant transfer factors of radionuclides: results obtained at Mol.	Belgium.	⁶⁰ Co, ¹³⁷ Cs, ⁸⁵ Sr, ⁹⁹ Tc.	Plants.	Soils.	This report presents experiments performed at Mol during the year 1983 in the framework of the UIR working group. Materials and procedures used are briefly mentioned. Next, results on radionuclide transfer are presented especially of ⁶⁰ Co, ¹³⁴ Cs, ⁸⁵ Sr and ⁹⁹ Tc.
Kirchner G., Ehlken S. Report (Conf.): 28. annual meeting of the European Society for New Methods in Agricultural Research Annual meeting of the International Union of Radioecology (IUR) Work- ing Group Soil-to-Plant Transfer Brno (Czech Republic), 26-29 Aug 1998, 202 p., p. 66. INIS-CZ0022	Soil-to-Plant Transfer Fac- tors: Limitations of a Simple Concept.	Germany.				TF.
Kirchner, G. Book (Conf.): 15. Regional congress of the International Radiation Pro- tection Association (IRPA) on the radioecology of natural and artificial radionuclides. Visby, Sweden, 10-14 Sep 1989 FS89-48-T; Feldt, W. (ed.), The radioecology of natural and artificial radionuclides.	Analysis of the transport of Chernobyl fallout nuclides through the pasture-cow-milk food chain using a time- dependent model.	Germany, Bremen.	¹³¹ I and ¹³⁷ Cs.	Plants, milk.	Time depend- ence.	Following the Chernobyl accident, activity concen- trations in grass and in milk from one particular cow grazing were analyzed continuously in order to monitor the time-dependent transfer via the grass- cow-milk food chain. From these data weathering half lives on grass are calculated. Using a three compartment model, transfer rates for the transport of I-131 and Cs-137 into milk are determined. Transfer coefficients from feed to milk for use with equilibrium food chain models are derived. Gener-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Proceedings. Koeln (Germany, F.R.); 1989, 609 p., p. 196-201.						ally, results are in the range of transfer data re- ported in the literature.
Kirchner, G. and Baumgartner, D. Conf.: 27. Colloquium Spectro- scopium Internationale (CSI) Pre- symposium on measurements of radionuclides after the Chernobyl accident. Bergen, Norway, 9-14 Jun 1991. JR: Analyst, Mar 1992, v. 117(3), p. 475-479.	Migration rates of radionu- clides deposited after the Chernobyl accident in various North German soils.	Germany.	⁹⁰ Sr, ¹³⁴ Cs, ¹³⁷ Cs and ²³⁹ Pu + ²⁴⁰ Pu.		Eutric Cambisol, Orthic Podsol and Eutric Histo- sol	Distributions of ⁹⁰ Sr, ¹³⁴ Cs, ¹³⁷ Cs and ²³⁹ Pu + ²⁴⁰ Pu in the soil profiles were determined. Sampling was performed more than 3 years after deposition of Chernobyl fallout nuclides. Migration rates calcu- lated with a compartmental model showed no sig- nificant differences between Cs originating from either atomic weapons or Chernobyl fallout. This result indicates that Chernobyl Cs may have reached sorption equilibrium with the soil matrix 3 years after the accident.
Kirchner, G . JR: Health Physics, Mar. 1994, v. 66(6), p. 653-665.	Transport of Iodine and Ce- sium via the Grass-Cow-Milk Pathway after the Chernobyl Accident.	Germany.	Cs-137, I-131.	Feed and milk.		Mean values of equilibrium feed-to-milk transfer coefficients are $3,4\pm 0,4 \ 10-3 \ d \ L^{-1}$ for 131 I and $5,4 \pm 0,5 \ 10-3 \ d \ L^{-1}$ for 137 Cs.
Knatko VA., Gurkov VV., Asi- mova VD., Shpakovskaya EB. and Shimanovich EA. JR: Journal of Environmental Radio- activity, 1994, v. 22, p. 269-278.	Soil-Milk Transfer of ¹³⁷ Cs in an Area of Byelorussia after the Chernobyl Accident.	Belarus.	137Cs.	Grass, milk.	Different soil types.	An analysis of relationship between the TF and soil contamination shows a decreasing trend in the TF values with increasing soil contamination levels. TF values (Bq l^{-1} / kBq m ⁻²) were of about 0.5 and 0.4 for regions where soil contamination was 1000 kBqm ⁻² and 2000 kBq m ⁻² respectively.
Knatko, V.A.V.A. Ageets, V.U.V.U. Shmigelskaya, I.V.I.V. Ivashkevich, I.I.I. (2000). Journal of Environmental Radioactivity, Volume 48, Issue 2. April 2000. P, 171-181	Soil-to-potato transfer of ¹³⁷ Cs in an area of Belarus: regression analysis of the transfer factor against ¹³⁷ Cs deposition and soil character- istics - Evidence for non- linearity with reference to substrate concentration		Cs-137	potato which were taken from fields	325 samples of soil	TRd depends on surface/weight ratio of the plant part considered. Changes in TRd-values were rapid during early growth, slower in later growth stages. Top recovery was about 5-6 % of Cs-134 and 2 % of Sr-85. Results can be used for prediction pur- poses.
Koehler, H. Leising, C. Wirth, E. JR: Bundesgesundheitsblatt, Apr 1986, v. 29(4), p. 106-109.	Reliability of transfer factors used by mathematical models for radioecological assess- ment. Zuverlaessigkeit von Trans- ferfaktoren in radiooekologi- schen Rechenmodellen. In German.	Germany.	¹³⁷ Cs, ⁹⁰ Sr.	Plants.	Soils.	The main causes of the large variability of transfer factors are analysed primarily using Cs-137 and Sr- 90 as an example, and proposals are discussed for achieving a more reliable determination of transfer factors on the basis of available information.
Kopp P., Görlich W., Burkart W., Zehnder H.J. Book (Conf.): International sympo- sium on environmental contamina-	Foliar Uptake of Radionu- clides and Their Distribution in the Plant.	Switzerland.	Cs-134, Sr-85, Ca-45	Strawberries, berry bushes.		Radionuclides, especially cesium and to a lesser extent strontium are taken up by plants from the top surface of leaves and transported through the plants to the edible portion. This process is completed

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
tion following a major nuclear acci- dent, Vienna, Austria, 16-20 Oct 1989. IAEA, 1990, 451 p., v. 2, p. 37-46. IAEA-SM306/50.						after about 6 hours. Iodine is also taken up, but not to the same extent. Shovering of the plants within a few hours of deposition removes most of the radionuclides from the leaves.
Kopp P., Oestling O. and Burkart W. In Book: Desmet G. (ed.) Reliability of Radioactive transfer models., Elsevier, London, 1988, p. 167-176.	Transfer of Radionuclides to Food Plants: Root Versus Foliar Uptake.	Switzerland.	¹³⁷ Cs, ¹³⁴ Cs.			TF.
Kopp, P.; Goerlich, W.; Burkart, W. Conf. (Book): Workshop on the transfer of radionuclides in natural and semi- natural environments. Udine, Italy, 11-15 Sep. 1989 Elsevier Applied Science, 1990, p. 583-590.	The transfer of cesium-134 and -137 from sewage sludge to plants.	Semi-natural environment; refused deposite site Switzerland.	Activities to May 1, 1986: 900 Bq/kg dry weight of ¹³⁴ Cs; 1600 Bq/kg of ¹³⁷ Cs and 20 Bq/kg of ⁹⁰ Sr.	Vegetable edible parts: roots, sterm, leaves.	Sludge was de- posited as a root deep layer (20cm) on a layer of clay.	Tf varied by a factor of 2.5 between similar kind of plants (leafy vegetables): 0.26 (kale) and 0.68 (chicory); and by a factor of three between different samples of the same plants (beans): 0.05 and 0.14.
Kostiainen E, Rantavaara A. In: Bréchignac F (ed.). Radioprotection. Proceedings Volume I of the Inter- national Congress: The Radioecol- ogy – Ecotoxicology of Continental and Estuarine Environments ECORAD 2001, Aix-en-Provence, France, 3-7 September, 2001. Ra- dioprotection – colloques 2002; 37 (C1): CI-509-514.	Transfer of ¹³⁷ Cs and ⁹⁰ Sr from Finnish soils to cereal grains.	Finland.	¹³⁷ Cs, ⁹⁰ Sr	Wheat, rye, oats, barley	Different soil types.	The transfer of ¹³⁷ Cs and ⁹⁰ Sr from soil to cereal grains in various regions in Finland was studied. The aggregated transfer factors from the mean regional ¹³⁷ Cs deposition (kBq m ⁻²) to cereal grains were calculated. The TFs (m ² kg ⁻¹ (d.w.)*10 ⁻³) were highest in organic soils ranging from 0.013 to 0.12, lowest in clay soils, ranging from 0.015 to 0.061, and decreased in the order: oats > rye > barley and wheat.
Krouglov S.V., Filipas A. S., Alexakhin R. M. and Arkhipov N. P. JR: Journal of Environmental Radio- activity, 1997, v. 34(3), p. 267-286.	Long-Term Study on the Transfer of ¹³⁷ Cs and ⁹⁰ Sr from Chernobyl- Contaminated Soils to Grain Crops.	Chernobyl zone.	Radio-isotopes of Cs and Sr.	Grain crops		The level of ¹³⁷ Cs and ⁹⁰ Sr transfer to four grain crops and the change in transfer with time have been studied on two soils. Field experiments were carried out in 1987-1994. Shortly after the deposi- tion, the rate of ⁹⁰ Sr accumulation by crops was comparable with, or even slower, than that of ¹³⁷ Cs, which is in disagreement with the usual findings. In the following years, ¹³⁷ Cs uptake by plants was reduced by a factor in excess of than 50, whereas the soil-to-plant concentration ratio of ⁹⁰ Sr in- creased within one order of magnitude, and has remained on approximately the same level since 1991. Changes of the ⁹⁰ Sr and ¹³⁷ Cs concentration ratios for grain crops with time have been used to

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						evaluate the rate of radionuclide leaching from fuel particles and the ageing processes.
Lakanen E. and Paasikallio A. Report: Ann. Agr. Fenn., Ser. Agro- geol., Chim. Phys., 1970, 9(46), p. 133-138.	The Effects of Soil Factors on the Uptake of Radiostrontium by Plants. Part II.	Finland.	Sr-89.	Timothy.	Different soil types (sand, clay, peat), Ca, pH.	The soils were contaminated by 40 μ Ci of Sr-89 per pot. Timothy was sown, harvested after six weeks and analyzed. The mixing of Sphagnum peat in sand reduced the plant uptake of Sr-89 by factor of 7 and the Sr- 89/Ca ratio by factor of 3. The application of inactive strontium to previously contaminated soils reduced the Sr-89/Ca ratio of the plants in fine sand and heavy clay, but in- creased it in Sphagnum peat.
Lakanen, E. JR: Acta Agriculturae Scandinavica, 1967, 17, 2-3, p. 131-139.	The Effect of Liming on the Adsorption and Exchange Characteristics of the Trace Elements in Soils.	Finland.				
Lakanen E. and Paasikallio A. Report: Ann. Agr. Fenn., Ser. Agro- geol., Chim. Phys., 1968, 7, p. 89- 94.	Effects of Soil Factors on the Uptake of Radiostrontium by Plants. Part I.	Finland. Pot experiment.	Sr-89.	Timothy.	Different soil types (sand, clay, peat), Ca, pH.	The effect of soil types and pH on the uptake of Sr 89 by timothy was studied. The increase of soil pH reduced the uptake of Sr. The effect of soil type was more pronounced and the Sr-89/Ca ratio of the plant clearly decreased in the order: fine sand, heavy clay, Sphagnum peat, and Carex peat.
Lassey K.R. JR: Health Physics, 1979, v. 37, p. 557-573.	The Transfer of Radiostron- tium and Radiocesium from Soil to Diet: Models Consis- tent with Fallout Analyses.	New Zealand.	¹³⁴ Cs, ¹³⁷ Cs, ⁸⁹ Sr, and ⁹⁰ Sr.	Grass, grain, vegetables, milk.	Soil types.	Compartment models are used to predict contami- nation levels due to hypothetical fallout and com- paring the resulting expressions with UNSCEAR's predictive formulae.
Lassey K.R. JR: Health Physics, 1980, v. 39(2), p. 321-325.	The Usage of Transfer Coef- ficients to Describe Radionu- clide Transport fro a Cow's Diet to its Milk.	New Zealand.	Radio-nuclides.	Forage, milk.		The transport of radionuclides from cow's diet to its milk is frequently described in terms of "transfer function" or a "transfer coefficient". The usual definition of transfer coefficient is consistent with dimensions (time / volume), but in some cases the transfer coefficient is supplied with units which belie these dimensions. A further parameter (referred as the transfer rate) with dimensions (volume) ⁻¹ is sometimes used in place of the transfer coefficient. The prolifiration of definitions and supplied units, and the fact that the symbol fm has been used to denote the transfer rate, can lead to a misinterpretation and misuse of published numerical values. Thus, a simple derivation of these parameters, their interpretations and interrelationships seems warranted.
Lengemann FW. and Wentworth R.A.	The Transfer Coefficient of ¹³⁷ Cs into Cows Milk as	USA, NY.	Cs-137.	Milk		TF for milk.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
JR: Health Physics,	Related to the Level of Milk					
Mar. 1978, v. 34, p. 720-722. Lengemann F.W. JR: Health Physics, Mar. 1967, v. 13, p. 521-522.	Production. Predicting the Total Projected Intake from Milk by Man: Modification of the Original	USA.	¹³⁷ Cs, ⁹⁰ Sr, ¹³¹ I.	Grass, milk.		Simplified formula of the transfer of radionuclides into milk as a function of time is given.
Lengemann, F.W., Wentworth R.A. and Hiltz F.L. JR: Health Physics, Mar. 1968, v. 14, p. 101-109.	Equation. Predicting the Cesium-137 Intake from Milk of a Human Population after a Single, Short-Term Deposition of the Radionuclide.	USA.	¹³⁷ Cs.	Milk.		A rapid means of assessing the human dose- commitment of radiocesium following a nuclear incident is presented. The important advantage is that calculations rest upon knowledge of milk levels rather than upon values of surface contami- nation of pasture which are most difficult to obtain and interpret. The effects of practical countermea- sures are also determined.
Lrhr, J. Report: EUR4901; Nov. 1972.	Indirect radioactive contami- nation of the food chain determination of the factors of transfer soil/agricultural produce and soil/milk in the European Community.	CEC.	Cesium 137.	Forage, milk.	Mineral and organic com- pounds; pH values; humidity; seasonal varia- tions.	TFs were evaluated in soil/agricultural and soil/milk transfer of radioactive contamination.
Lönsjö, H. & Haak, E. (1975). Inst. för Radiobiologi, Rapport SLU-IRB- 31.	Studies on Plant Accumula- tion of Fission Products under Swedish Conditions. VII: Uptake of ⁹⁰ Sr by Agricultural Crops as Influenced by Soil Type, Liming Rate and PK- Fertilization in a Long-Term Micro Plot Experiment.	6 year field ex- periment with 3 mineral topsoils on sandy subsoil. Sweden.	90.8 μCi/0.25 m2.	Straw and grain of oats, barley and peas in two 3-year crop rotations	3 mineral soils	Liming clearly decreased Cs-137-uptake by all 3 crops, more for peas in than oats and barley. K- fertilization slightly decreased the uptake: No consistent effect of P-fertilization. pCi/kg d.w. /mCi/ha
Lönsjö, H. & Haak, E. (1986). Inst. för Radioekologi, Rapport SLU- REK-60.	Effekter av djupplacering och kaliumgödsling på jord- bruksgrödors upptag av ce- sium och strontium.	Work based on Field experiments with artificial depositions of Cs-137 in soils at two different sites, one in the Southern and one in the middle part of the country. Sweden.	Cs-134, Sr-89.	Ley crops, cere- als, oil crops and sugar beets.	The soils were representative of the land near Barsebäck in the south and of middle Swedish heavy clays. 3 years in 1982-84	The crop uptake of strontium and caesium nuclides was studied under field conditions with the aid of the micro plot technique. Ley crops, cereals, oil seed crops and sugarbeets were tested in experi- ments with different placement of nuclides and of potassium amendments in four treatments. Fertil- izer treatments as well as deeper placement of the nuclides reduced the uptake by the crops consid- erably.
Lönsjö, H. (1973). Inst. för Radio- biologi, Rapport SLU-IRB-20.	Radiostrontiums sorption och utbytbarhet i ett antal svenska jordar.	Licentiat disserta- tion. Sweden.				Comprehensive literature review and discussion of how chemical and physical soil factors soil influ- ence sorption, desorption, mobility and bioavail- ability of Sr-90 as exemplified by laboratory ex-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						periments.
Lönsjö, H. (1983). (Ed. Å. Eriksson). Inst. för Radioekologi, Rapport SLU-REK-55, pp. 11:1-68.	Extern strålning från depone- rat radiocesium vid jord- bruksdrift. Långsiktiga kon- sekvenser av radjoaktiv be- läggning i jordbruket. J. Malmöhus län	Estimates for Swedish condi- tions	Cs-137, Sr-90.	Estimated con- sequences of fallout for the Swedish agricul- ture		On the basis of comprehensive studies by many workers a survey is given of the agricultural condi- tions that influence the farmer's radiation protec- tion after heavy fallout on the land.
Lönsjö, H. (1986). Inst. för Radioek, Rapport SLU-REK-61, pp 255-265.	Effects of remedial measures on the external radiation exposure from Cs-137 after a farmland contamination. 1st Int. Contact sem. in Radio ecology 8-11 July 1985, Uppsala, Sweden.	Estimates for Swedish condi- tions	Cs-137	Estimated con- sequences of fallout for the Swedish agricul- ture		Effects of different remedial measures, restricted sojourn, deep-ploughing and ground surface decon- tamination on the external radiation of Cs-137 to family farmers, following a contamination of agri- cultural land were calculated. In the reference situation, i.e. where no measures were undertaken, the external dose to the farmer five years after deposition would amount to 1.1 mSv/year on a farm with brick buildings and to about 2.5 on a farm with wooden houses calc. for a dep. of 1 MBq/m ² . A reduction to 25-30 percent of these values might be achieved by deep ploughing and decontamination of the ground surfaces outside buildings.
Lönsjö, H. (1986). Inst. för Radioe- kologi, Rapport SLU-REK-59.	Externstråldoser från radio- cesium deponerat på jord- bruksmark.	Estimates for two Swedish farms in the southern and western parts of the country.	Cs-137.			Two case studies were made on farms near nuclear power stations. The aim was to assess the long-term effects on agricultural enterprises following acci- dental releases of radioactive elements. The exter- nal doses from Cs-137 and Cs-134 were estimated considering specified conditions with regard to the fallout and the distribution of caesium in the soil profile.
Lönsjö, H. (1987). Inst. för Radioe- kologi, Rapport SLU-REK-63.	Konsekvenser för lantbruket efter ett utsläpp av ¹³⁷ Cs från Barsebäcksverket med respektive utan inkopplad filtra-anläggning.	Kalkyler utförda med olika hjälp- medel för att utreda nu- klidtransporten med jord- bruksprodukter efter nedfall i södra Sverige. Sweden.	Cs-137.	Estimated con- sequences of Cs- 137 released.		The estimates show that after the FILTRA - CONSTRUCTION was in operation a release of Cs-137 from the Barsebäck works would cause very limited environmental consequences.
Lönsjö, H., Haak, E. & Rosén, K. (1990). Proceedings. FAO/IAEA/UNEP/WHO Interna-	Effects of Remedial Measures on Long Term Transfer of Radiocaesium from Soil to	Sweden.		Grain of cereals, peas and oil crops. Grass	Various mineral soils.	The situation for a real village of 14 farms after detonation of nuclear weapons in Europe is esti- mated. The fallout corresponding to a weekly dose

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
tional Symposium on Environmental Contamination Following a Major Nuclear Accident, 16-20 October 1989, Vienna, Austria, pp 151-162.	Agricultural Products as calculated from Swedish Field Experiments.			herbage of pas- tures and leys.		in free air of 1 Gy is assumed to appear at different alternative parts of the season. The consequences with regard to the transfer to animal feed, human diet and doses to animals and the farmers are dis- cussed. Relative effects and TFd = $m^2/kg d.w.$
Lönsjö, H., Nilsson, E. & Tuvesson, M. (1986). Proc Int. Contact Seminar in Radioecology, Piazenca, Italia 9-11 Sept 1986. Piacenza, Italy. Università Cattolica del Sacro Cuore, Instituto di Chimica, pp. 161-172.	Consequences in Sweden of the Chernobyl event. III: Distribution of ¹³⁷ Cs in ley crops and measures taken to obtain hay and silage with acceptable nuclide concentra- tions.	Sweden.	Variable with the site.	Grass forage.	Highly contami- nated Chernobyl fallout sites.	Investigation of countermeasure to enable harvest forage with acceptable Cs-137 concentrations and guidelines for advising farmers to decrease levels of Cs-137 enough for to be used for feeding animals with contaminated forage. kBq/kg d.w.
MacNeill G., Duffy JT., Cunning- ham JD., Coulter B., Diamond S., McAulay IR., Moran D. Conf.: 27. Colloquium Spectro- scopium Internationale (CSI) Pre- symposium on measurements of radionuclides after the Chernobyl accident. Bergen, Norway, 9-14 Jun 1991. JR: Analyst Mar 1992, v. 117(3), p. 521-524.	Transfer characteristics of radiocaesium from soils to permanent pasture.	Ireland	¹³⁴ Cs and ¹³⁷ Cs.	Pasture.	Different types of soils. Seasonal varia- tions.	The influence of soil parameters on transfer was investigated. Sampling of soil and pasture grass was undertaken during a period from the Spring of 1987 to the Autumn of 1988. In October 1988 more than 88% of the ¹³⁷ Cs attributable to Chernobyl was mainly confined to the top 10 cm of undisturbed soil, with 79% on average in the top 5 cm. A nega- tive correlation with pH was observed in 1987. In April 1987 concentration ratios for 137Cs in grass ranged from 0.03 to 0.49. In general, comparison of the concentration ratio values showed a decreasing trend over the 18 months.
Madelmont, C.; Bouville, A.; Beckhols, R.; Coulon, R. Book (Conf.) 4. International con- gress of the International Radiation Protection Association: radiation protection as an example of action against modern hazards. Paris, France. Apr. 24 - 30, 1977.	Levels of fallout ⁹⁰ Sr and ¹³⁷ Cs in milk regional varia- tions of transfer factors. Contamination du lait en ⁹⁰ Sr et en ¹³⁷ Cs resultant des re- tombees atmospheriques: variations regionales des coefficients de transfert. In French.	France.	¹³⁷ Cs, ⁹⁰ Sr.	Milk.		On the basis of ten-year results of radioactive moni- toring of the levels of ⁹⁰ Sr and ¹³⁷ Cs in milk at the production stage, a contamination model was de- veloped taking account of regional parameters. Considering the fundamental differences between contamination conditions from the two radionu- clides, an interpretation of the variations of the parameters obtained was attempted as a function of climatic, agronomic and zootechnic factors. Gen- eral contamination models should be fitted to the specific environmental conditions, which is most interesting as it allows more accurate estimates as to consequences and predictions of ¹³⁷ Cs and ⁹⁰ Sr deposits in a specific area.
Malm, J., Uusi-Rauva, A., Paakkola, O., Rantavaara, A. JR: Journal of Environmental Radioactivity,	Uptake of caesium-137 from peat and compost mould by vegetables in a greenhouse experiment.	Finland. Experi- ment.	Cs-137.	Cucumber, tomatoes, pars- ley, radish, lettuce.		The transfer factors (activity in plant dry weight/activity in soil dry weight) varied from 0.66 to 1.8 for peat and from 0.060 to 0.19 for compost mould. Addition of potassium did not have any

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
1991, v.14 (2), p. 123-133.			-			clear effect on the transfer factors.
Mascanzoni, D. (1983). (Ed. Å. Eriksson). Inst. för Radioekologi, Rapport SLU-REK-55, pp. V: 3:1- 14.	En traktors skärmningsförmå- ga med avseende på strålnin- gen från en med ¹³⁷ Cs belagd markyta. Långsiktiga konse- kvenser av radioaktiv belägg- ning i jordbruket. I Malmöhus län	Estimates for Swedish condi- tions	Cs-137.			Measurements indicate that a tractor can reduce the gonad dose of the driver, which is delivered by Cs-137 deposited on the ground. From a nearby area the protection factor may be ~2.5 but less from larger distance, >5 m. Tractors are open in some directions and higher protection factors require special constructions.
Mascanzoni, D. (1986). Inst. för Radioek, Rapport SLU-REK-61, pp 145-150.	Experimental work on trans- port of Co57, Mn54 and Ni63 to fodder crops from eight Swedish soils. 1st Int. Con- tact sem. in Radio ecology 8- 11 July 1985, Uppsala, Swe- den.	Work based on Field experiments with artificial depositions of nuclides in soils from different parts of the coun- try. Sweden.	Co, Mn and Ni.	Fodder crops. Clover for 1976- 1979, timothy for 1980-1984.	Eight different soils from the main agricultural districts in Swe- den.	The root uptake of three activation products, Co- 57, Mn54 and Ni-63 were studied in a long term field experiment. The data obtained were used for calculation of transfer factors. Transfer factors of the dimension (Bq/kg dry plant)/(Bq/kg dry soil) were calculated for Mn, Co and Ni for clover and Ni for timothy period.
Mascanzoni, D. (1986). Inst. för Radioekologi, Rapport SLU-REK- 62.	The aftermath of Chernobyl in Sweden. Levels of Cs-137 in foodstuffs.	Sweden.	Cs-137 and Cs- 134.	Estimated con- sequences of fallout for the Swedish agricul- ture after Cher- nobyl		Summary of laboratory data on the caesium content in foodstuffs analysed at the laboratory after Cher- nobyl.
Mascanzoni, D. (1986). Proc. Int. Contact Seminar in Radioecology, Piazenca, Talia, 9-11 Sept 1986.	Consequences in Sweden of the Chernobyl event: Caesium levels in Food stuffs.	Fallout area of Sweden.	Variable with site.	Cs-137 activity concentrations in various food stuffs.	Many sites all over Sweden.	Countrywide charts of observed Cs-137 fallout levels kBq/m ² and Cs-137 concentration levels in edible products of Fish. Hare, Roe deer, Moose, Reindeer, Honey, Sheep & Goat and tables of vegetables, berries and dairy products. Bq/kg (nCi/kg)
Mascanzoni, D. (1988). Inst. för radioekologi, Rapport SLU-REK-64.	Radioactive Fission and Corrosion Products: Trans- port from Soil to Plant under Swedish Field Conditions.	Doctor disserta- tion. Field ex- periments with artificial deposi- tions of Cs-137 in soils from different parts of the country. Sweden.	Four activation products, Mn- 54, Ni-63, Zn- 65, Co-57 and Sr-90, Cs-137.			Four activation products and two fission products were deposited in eight different soils placed in micro plots. The transfer of the nuclides from these soils to clover, timothy and wheat over the period 1976-1984 was studied. Changes with time of the transfer factors for crops and soils were recorded as well as the differences between the soil types and between the crop products.
Mascanzoni, D. (1989). Journal of Environmental Radioactivity, 1989, v. 10(3), p. 233-249.	Plant uptake of activation and fission products in a long-term field study.	Sweden.	Cs-137, Sr-90, Ni-63, Mn-54, Zn-65.	Wheat, timothy.	Agricultural soils which occur most frequently in Sweden.	A summary version of the Doctor dissertation, SLU-REK-64 (1988). Transfer factors were highest in poor, acid soils and uptake was influenced by soil organic matter, and Ca and K status of the soils. New information on uptake of Ni-63 was provided. The uptake was correlated with Ca status

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						of the soil. Distribution of the nuclides in different soil fractions confirmed competition between Ni- 63/Sr-90 and calcium soil status.
Matthies M., Eisfeld K., Paretzke H. and Wirth E. JR: Health Physics, 1981, v. 40(5), p. 764-769.	Stochastic Calculations for Radiation Risk Assessment: a Monte-Carlo Approach to the Simulation of Radiocesium Transport in the Pasture- Cow-Milk Food Chain.	Germany.	Cs-137.	Grass, milk.		Results from a Monte-Carlo simulation have been ^{pr} esented for the transport of ¹³⁷ Cs via the pasture- cow-milk pathway, taking into account the uncer- tainties and naturally occurring fluctuations in rate constants. This approach permits an estimate of the variation of the physico-chemical behaviour of radionuclides in the environment in a more realistic way than using only the highest transfer coeffi- cients in deterministic approaches, which can lead to non-realistic overestimates.
Mirna, A. JR: Fleischwirtschaft, 1979, v. 59 (12), p. 1836-1839.	Calculation of the transfer factors for the transfer of caesium-137 from feed- ingstuffs to the meat of farm animals. Berechnung von Transferfak- toren fuer den Uebergang von Caesium-137 aus Futtermit- teln in das Fleisch landwirtss- chaftslicher Nutztiere. In German.	Germany, F.R.	¹³⁷ Cs.	Different kind of meat.		The value presented in the article for the transfer of fallout Cs-137 from the food (animal) into the meat is, on an average, six times higher than had been assumed up to day. In pork meat, there was even an increase by 2 tenth powers.
Nalezinski S, Ruhm W and Wirth E. (1996) Health Physics 70, 717- 721	Development of a general equation to determine the transfer factor feed-to-meat for radiocesium on the basis of the body mass of domestic animals	?	Cs-137	monogastric animals and ruminants	N/A	Study carried out so transfer factors can be assessed for animals where poor or no t.f information is available. Overall, the relationship between body mass and transfer factor is T.F = 8.0 x animal body mass (-0.91), with $r = -0.97$. For monogastric ani- mals (including poultry) the relationship is TF = 5.8 x animal body mass (-0.70) with $r = -0.97$, and for ruminants it is TF = 1.9 x animal body mass (- 0.72) with $r = -0.72$.
Nedveckaite, T.; Filistovic, V.; Maceika, E.; Tamulenaite, O. Book (Conf.): International sympo- sium on ionizing radiation. Stock- holm, Sweden, 20-24 May 1996. Amiro, B. (ed.) et al. Protection of the natural environment. Interna- tional symposium on ionising radia- tion. Proceedings, V.1. Stockholm, SSI. 1996, 745 p., p 634-639.	Experimental determination of site-specific transfer pa- rameter of ¹³¹ I, ^{134,137} Cs and ²¹⁰ Pb from fodder into milk and meat.	Lithuania.	¹³¹ I, ^{134,137} Cs and ²¹⁰ Pb.	Animal fodder milk, meat.		Measurements of ¹³¹ I, ^{134,137} Cs in feed and food- stuff during 1978-1994 (approximately 5000 meas- urements) provided opportunity to determine site- specific feed-to-milk (Fm) and feed-to-meat (Ff) parameter values. Plausible explanation of pre- and post-Chernobyl differences includes peculiarity of Chernobyl fallout, differences of physical-chemical forms with different bio-activity and bio- availability. Food-chain modelling and site-specific Fm and Ff values obtained in this study may be

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						used to predict radioiodine, radiocesium activity in food.
Ng Y.C. JR: Nuclear Safety, Jan-Feb. 1982, v. 23(1), p. 57-71.	A Review of Transfer Factors for Assessing the Dose from Radionuclides in Agricultural Products.	USA.	Radio-nuclides.	Variety of plants.	Different soil properties.	A table of transfer factors from U.S Nuclear Regu- latory Commission Regulatory Guide 1.109 is presented. Updated transfer factors suggest changes, both increases and decreases, in the cur- rent estimates.
Ng Y.C., Colsher C.S., Thompson S.E. Report (Conf.): UCRL 82545(Rev.1) CONF- 7903258 13 Jun. 1979, 28 p. Book (Conf): International sympo- sium on biological implications of radionuclides released from nuclear industries. Vol. 2, Vienna, Austria, 26-30 Mar. 1979, p. 295-318.	Transfer factors for assessing the dose from radionuclides in agricultural products.	Simulated be- haviour. Cali- fornia, Liver- more, USA	Radioisotopes.	Milk, meat, different types of crop and plants.	Different soil conditions.	The updated TFs to predict the environmental transport of radionuclides through terrestrial food- chains to man are given. The variation of the TFs with physical and chemical form of the radionu- clide, type of soil and crop leads to recommenda- tion of adopting multiple soil-to-plant concentra- tion factors (CF).
Nilsson, J. (1983). Inst. för Radioe- kologi, Rapport SLU-REK-56.	Nedplöjning av simulerad radioaktiv beläggning på jordbruksmark.	Experiments on a field scale at a site in middle Sweden.	Kieserite (MgSO4 H2O), a mineral con- taining 16 % of magnesium.			Experimentally different equipments for ploughing contaminated land has been compared with regard to placing a surface soil layer below the ordinary plough depth and thereby reduce plant uptake of contaminants.
Nisbet A.F., Woodman R. F.M. JR: Health Physics, Mar. 2000, v. 78, p. 279-288.	Soil-to-plant transfer factors for radiocesium and ra- diostrontium in agricultural systems.	UK. Data base refer- ences.	Radio-cesium, radio-strontium.	Cereals, tubers, legumes, green and root vegeta- bles.	Different types of soil, organic substances, pH, climatic regions.	A data base of soil-to-plant transfer factors for Cs and Sr has been compiled for arable crops from published and unpublished sources. 28 soil-crop combinations, covering 4 soil types and 7 crop groups.
Nisbet A.F., Woodman R.F.M., Haylock, R.G.E. Report: NRPB-R304 London: TSO, 1999.	Recommended soil-to-plant transfer factors for radioce- sium and radiostrontium for use in arable systems.	UK. Data base refer- ences.	Radio-cesium, radio-strontium.	Cereals, tubers, legumes, green and root vegeta- bles.	Different types of soil, organic substances, pH, climatic regions.	A data base of soil-to-plant transfer factors for Cs and Sr has been compiled for arable crops from published, in-house reports and unpublished data. Best estimate values of TFs were calculated for 28 soil-crop combinations, covering 4 soil types and 7 crop groups.
Nisbet, A.F. and Shaw, S. JR: Journal of Environmental Radio- activity, 1994, v. 23, p. 171-187.	Summary of a Five-Year Lysimeter Study on the Time Dependent Transfer of ¹³⁷ Cs, ⁹⁰ Sr, ^{239,240} Pu and ²⁴¹ Am to Crops from Three Contrasting Soil Types. 2 Distributions Between Different Plant Parts.	UK.	Summary ¹³⁷ Cs, ⁹⁰ Sr, ^{239,240} Pu and ²⁴¹ Am.	Carrot, cabbage, barley crops.	Loam, peat, sand soils.	Soil contamination made an important contribution to the ¹³⁷ Cs content of non-edible parts of crops growing in sand and loam due to the low soil-to plant concentration ratios in these soils. For peat soils root uptake and translocation were responsible for most of the ¹³⁷ Cs in unpalatable crop parts. For ⁹⁰ Sr differences in distribution between crop parts were entirely attributed to differences in mobility and translocation due to plant physiological factors. In general, partitioning of ¹³⁷ Cs and ⁹⁰ Sr was simi-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						lar to K and Ca.
Noordjik H., van Bergeijk KE., Lembrechts J., Frissel MJ. JR: Journal of Environmental Radio- activity, 1992, v. 15, p. 277-286.	Impact of Ageing and Weather Conditions on Soil- to-Plant Transfer of Radioce- sium and Radiostrontium.	Netherlands.	¹³⁴ Cs, ¹³⁷ Cs, ⁸⁵ Sr, and ⁹⁰ Sr.	Edible plant parts.	Climatic factors.	Transfer of Cs to edible parts of plant species gradually decreased as a result of ageing. This decrease is estimated to be a factor 1.5 after 1-2 years, up to a factor 4 after 7 years. For Sr the transfer did not change. After correction for ageing effects, annual fluctuations of up to a factor of 10 were found, depending on the plant species due to climatic conditions. The transfer of Sr increased with rainfall or with decreasing intensity of light or temperature. Values of TF are given.
Norges Offentlige Utredninger NOU, (1987) Rapport fra Helsedi- rektoratets raådgivende faggruppe. NOU 1987: 1, Universitetsforlagene, ISSN 0333-2306, ISBN 82-00- 71051	Tsjernobyl-ulykken	Norway	Cs-134 and Cs- 137, I-131 and Sr-90	Soil, vegetation, sheep, reindeer, cattle, milk and milk products	Short time after deposition	Rapporten gir en oversikt over nedfallet etter Cher- nobyl og konsekvensene i Norge.
Ocker, H.D. JR: Deutsche Tieraerztliche Wo- chenschift. 9 Jun. 1987, v. 94(6), p. 360-361.	Transfer of radiation into grain. Uebergang von Radionukli- den in Getreide (Transfer factors). In German.	Germany, F.R.	Cesium 137, Strontium 90.	Cereal grains, potatoes.		Radiocesium Tfs were found to be between 0.001 and 0.04 for cereals and potato plants. Radiostron- tium is much more absorbed by plants and TFs observed 0.1 and 0.35. Deposition of radionuclides on plant parts above ground leads to high contami- nation rates. Especially radiocesium, but also other radionuclides are movable within the plants and transported to the cereal grains and potato tubers.
Ohmomo; Yoichiro Nakamura; Yuji Honma; Yoshifumi Sumiya; Misako. Report: First report on estimation of dose from exposure to natural and manmade radiation in the environ- ment. Sep 1976. p. 41-47. NIRS-R5.	Studies on the estimation of radiation dose to thyroid gland through foods contami- nated by gaseous radioactive iodine. In Japanese.	Japan.	I-131.	Vegetables, leaves, grass, milk.		Specially designed closed system, gaseous radioac- tive iodine exposure chamber, was made in order to investigate the deposition velocity of the nuclide onto leaf vegetables and grass under the different environmental conditions. Deposition velocity of the nuclide onto plant leaves relating to its chemi- cal forms in the air, transfer rate from grass to milk and the consumption rate of those critical foods were discussed in this paper.
Olsen, R.A., (1994) In: H. Dahl- gaard (Ed.): Nordic Radioecology. Elsevier Science Publishers, Am- sterdam. ISBN 0-444-81617-8, pp. 265-287.	The transfer of radiocaesium from soil to plant and fungi in seminatural ecosystem	Seminatural ecosystem, Nor- way	Cs-134 and Cs- 137	Soil - plant uptake, soil - fungi uptake	No specific	The uptake of radiocaesium in plants varied in different species and in different ecosystems. The transfer factor of pooled plant samples from natural pastures var ⁱ ed in 1990 from 0.005 to 0.05 m ² /kg d.w., while the variation in different acid forest soil ecosytems was between 0.08 and 0.3 m ² /kg. The radiocaesium in fungal fruit bodies of different species varied considerably, but was for many species, all of them mycorrhizal basidiomycetes,

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						more than 50 times higher than in plants sampled at the same site.
Oughton, D. H. & Salbu, B. (1992) Journal of Radiation Protec- tion Dosimetry, Vol 41, 217-222	Stable caesium, rubidium and potassium distribution with reference to radiocaesium metabolism studies	Norway.	Cs-134, Cs-137 and stable ana- logues	Ewes, lambs and reindeer calves	Spring	Stable alkali metals, K, Rb and Cs, have been de- termined in tissues of ewes and 9 week old lambs. Stable Cs and Rb, as well as Cs-134 have also been determined in blood samples from reindeer calves. Results support the assumption of specific binding of Cs ions to intracellular components. The concen- trations of Cs in tissues followed the pattern: mus- cle>kidney>liver, varying from 0.09 to 0.23 mg/kg.
Oughton, D. H.; Salbu, B. and Day, J. P., (1991) In: B. Mom- cilovic (Ed): Trace elements in man and animals (TEMA-7), Institute for Medical Research and Occupational Health University of Zagreb, pp 27/15-17.	Stable Cs and Cs-137 transfer and distribution in soil, grass and sheep	Norway	Cs-137	Soil - grass - sheep	No specific	Radiocaesium showed a higher transfer from soil to vegetation than stable Cs, reflecting a larger mobile fraction of Cs-137 than stable Cs. Nevertheless, >80% of Cs-137 was found to be strongly bound to soil components, and radioactive and stable Cs were on equilibrium within the mobile fractions. The Cs-137 transferred from vegetation to tissue was in equilibrium with stable Cs, and the two isotopes were distributed similarly within body tissues.
Oughton, D. H.; Salbu, B.; Riise, G.; Østby, G. & Nøren, A. (1992) Analyst, Vol 117, 481 - 486.	Radionuclide mobility and bioavailability in Norwegian and Soviet soils	Norway and Soviet soils	Cs-137 and Sr- 90	Soil - plant uptake	No specific	Although the levels of Sr-90 are generally much lower than Cs-137 activities, Sr-90 is more easily extractable, and hence more mobile than Cs-137 in the soil. In areas closer to the Chernobyl reactor, a significant proportion of the deposited activity is associated with particles. This is reflected in the higher activities of Sr-90 and the lower extractabil- ity of the Sr-90 in soil samples collected from within the 30 km exclusion zone.
Oughton, D., and Salbu, B., (1994) In: H. Dahlgaard (Ed.): Nordic Radioecology. Elsevier Science Publishers, Amsterdam. ISBN 0- 444-81617-8, pp. 165-185.	Influence of Physico- chemical forms on transfer	Nordic countries	Cs-134, Cs-137 and Sr-90	Soil - plant uptake	Seasonal varia- tions.	Mobility factors have been measured on ca. 200 soil samples collected in Norway, and were observed to range from between < 0.5 to 22% for Cs-137, and from 43 to 95% for Sr-90. Corresponding aggregated transfer factors for Cs ⁻ 137 ranged from 0.008 to 0.33 m ² /kg and for Sr-90 from 0.02 to 0.35. The Cs-137 mobility factors and transfer factors for soil samples in the other Nordic countries were of the same order of magnitude as those seen in Norway.
Oughton, D.H., (1990) IUR Work- ing group on soil-plant transfer: Workshop on The Contamination of Crops because of "Soil Adhesion",	Radiocaesium association with soil components: The application of a sequential extraction technique.	Norway and Byelorussia	Cs-134 and Cs- 137	Soil - plant uptake	No specific	After soil correction, the transfer coefficients for Cs-137 (Bq/kg grass per Bq/m ² soil) were calcu- lated for the Norwegian and Byelorussian sites. Compared to the Norwegian samples, 2.4 - 8.0 x10-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Uppsala, Sweden, pp 182-189.						2 m ² /kg, the samples collected from Byelorussia showed very high levels of soil associated with vegetation, 7.7 - 47 x10-2 m ² /kg. This probably reflects the low bulk density of vegetation growing in the Byelorussian soil
Oughton, D.H., and Salbu, B., (1990) In: Forskningsprogram om radioaktivt nedfall, Norges land- bruksvitenskapelige forskningsråd, pp77-83	Estimering av radionukliders mobilitet i jord v.h.a. mobili- tetsfaktorer	Norway	Cs-137 and Sr- 90	Soil - plant - uptake	variation	Transfer coefficients calculated on the basis of total activity of Cs-isotopes and Sr-90 in vegetation and in soil samples show poor reproducibility, and are subject to seasonal and species variations. Based on sequential extractions, information on radionu- clides in mobile and inert forms can be obtained. Based on these fractions the mobility factors are calculated, which reflect the potentially bioavail- able fraction. These factors show good reproduci- bility, and are not influenced by seasonal variation, and should be most useful for modelling purposes.
Oughton, D.H., Salbu, B., and Strand, P., (1990) On the validity of environmental transfer models, Biomovs, Symposium Stockholm, Sweden, 235-238.	Mobility factors for estimat- ing the bioavailability of radionuclides in soil.	Norway	Cs-134, Cs-137 and Sr-90	Soil - grass	No specific	Both deposition and activities in vegetation varied by a factor of 100. In additional, the observed transfer factors varied by a factor of 100, 0.002- $0.362 \text{ m}^2/\text{kg}$, and large variations were also ob- served within the individual sites. For samples collected from Lierne, analysis of Cs-isotopes and Sr-90 were performed. The calculated transfer factors for Cs-137 and Sr-90 varied by a factor of 4 within 1m ² , and the deposition varied by a factor of 20.
Oughton, D.H., Tronstad, E., and Skipperud, L., (1995) In: Technical Report EKO-2.1, The sheep project 1994 and 1995, Nordisk Kjernesik- kerhetsforkning, TR-EKO-2(1995)1.	Mobility of Cs in Soil	Nordic Countries	Cs-134 and Cs- 137	Soil - vegetati- on/fungi - Lamb	grazing season	Soil to plant concentration ratios were higher for Cs-137 than for stable Cs both for Blomhöjden, Sweden, and Tjøtta, Norway, soil-plant systems. Data on Bq/kg soil for Hestúr soils is not available, but the few measurements of samples carried out indicate that stable Cs and Cs-137 transfer factors are of similar order of magnitude. We conclude that the decrease of Cs-137 in vegetation (and sheep) in Hestúr is more likely to be driven by the physical removal of Cs-137 from the rooting zone, than by chemical fixation in soils. In Blomhöjden and Tjøtta, removal of Cs-137 to irreversibly fixed sites could lead to reduction in transfer factors.
Oughton, D.H., Tronstad, E., and Skipperud, L., (1995) In: Technical Report EKO-2.1, The sheep project 1996, Nordisk Kjernesikkerhets-	Soil mobility: Laboratory studies	Nordic countries	Cs-134, Cs-137 and Sr-90	Soil-vegetation	Short time after deposition	Tracer studies show clearly that radionuclide mo- bility in soils varies at the different sites and within different soil types at the same site. Both Cs and Sr are rapidly sorbed to soil components, but whereas

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
forkning, TR-EKO-2(1997)1.						Sr remains in ion-echangable, easy extractable forms, Cs is strongly bound to soil components. Organic content and pH seems to have the greatest influence on Sr mobility. Mineral type and content is probably the most important factor for Cs mobil- ity.
Paakkola O. Book: Sood, D.D.; Reddy, A.V.R.; Pujari, P.K. (eds.). Radiochemistry Div. Frontiers in nuclear chemistry. Mumbai (India). Indian Association of Nuclear Chemists and Allied Scientists, 1996, 266 p., p. 229-255.	Environmental radioactivity and safety.	Finland.	¹³⁷ Cs, ¹³¹ I.	Milk.		Natural radionuclides and their genesis are de- scribed. Contributions of radionuclides from the weapon testing and nuclear power production are discussed with a special attention to the aftermath of Chernobyl accident. Various pathways of ra- dionuclides into the environment are described. Role of two important radioisotopes ¹³⁷ Cs and ¹³¹ I vis-a-vis environment is highlighted.
Paasikallio A. JR: Annales Agriculturae Fenniae, 1984, v. 23, p. 109-120.	The Effect of Time on the Availability of ⁹⁰ Sr and ¹³⁷ Cs to Plants from Finnish Soils.	Finland.	⁹⁰ Sr, ¹³⁷ Cs	Ryegrass, soil.	Different types of peat soils.	Over a period of four years ryegrass removed approximately 7% of the ⁹⁰ Sr and 4% of the ¹³⁷ Cs applied to the soils. The mean annual uptake of ⁹⁰ Sr by ryegrass ranged from 0.5% (compost) to 2.9% (sphagnum peat) and that of ¹³⁷ Cs from 0.07% (compost) to 3.6% (Sphagnum peat) according to soil type. ¹³⁷ Cs/ ⁹⁰ Sr ratios in plant samples varied markedly with years and soil types.
Paasikallio A. and SormunenCris- tian R. (1996). The transfer of Cs- 137 through the soil-plant-sheep food chain in different pasture eco- systems.	Agricultural and food science in Finland 5: 577-591.	Southern Finland	Cs-137	Sheep	Natural forest pasture, semi- natural pasture (set-aside pas- ture) and culti- vated pasture, all with clay soil. Seasonal varia- tion studied	Soil was moderately contaminated with Cs-137 from Chernobyl fallout. Study carried out between 1990-3. Seasonal and annual variation assessed. Transfer to sheep was highest from forest pasture and lowest from cultivated pasture. Transfer factors were higher to muscle and kidney than liver and heart. A seasonal variation was observed with highest transfer to the pasture plants occurring in June. 1993 was considered a typical year for Cs transfer to plants, and in this year the mean soil- meat aggregated transfer factors were 11.0, 0.28 and 0.03 for forest, semi natural and cultivated pastures, respectively.
Paasikallio A., Häkkinen U. and Lakanen E. Ann. Agr. Fenn., Ser. Agrogeol., Chim. Phys., 1971, 10, p. 125-130.	The Effects of Soil Factors on the Uptake of Radiostrontium by Plants. Part III.	Finland.	Sr-89.	Oats.	Different types of peat soils.	Uptake of Sr-89 by plants growing in different types of peat soils in relation to Ca was found to decrease with increasing C/N ratio. Increasing amounts of organic matter (humin) mixed with organic fine sand decreased the uptake of ra- diostrontium and calcium by plants. However, the Sr-89/Ca ratio of the plants increased when the organic matter content of the soil was low.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Paasikallio A.; Rantavaara, A.; Sippola, J. JR: Science of the total Environ- ment, 24 Aug. 1994, v.155 (2), p.109-124.	The transfer of Cs-137 and strontium-90 from soil to food crops after the Cherno- byl accident.	Finland, 7 loca- tions. 2-4 years.	Cs-137, Sr-90.	Vegetables, fruits, berries.	Coarse mineral soil, clay, silt, organic soil.	The plant/soil concentration ratio of ¹³⁷ Cs for field crops ranged from 0.001 to 0.26 (in the south) and 0.01 to 2.29 (in the north). The mean concentration ratio of ⁹⁰ Sr was about 9 times higher than value of ¹³⁷ Cs in the south part. Concentration ratio of ¹³⁷ Cs for vegetables decreased gradually after the first year. Soil retaining properties are also discussed.
Papastefanou C., Manolopoulou M., Loannidou A., Zahariadou K., Stoulos S and Charalambous S. In Book (Conf.): 4. International Symposium on Radiation Protection - Theori and Practice. Malvern (UK), 4-9 Jun 1989. Goldfinch, E.P., Proceedings, 1989, 511p. p201-204.	Post-Chernobyl Environ- mental Radioactivity Moni- toring at Thessaloniki, Greece.	Greece, Thessa- loniki Field data for two years after the accident.	Cs-134, Cs-137 and other fission products.	Grass, milk.	Soil, dry and wet depositions, weather condi- tions.	Sampling and measuring techniques are presented. Radioactivity concentrations versus time are given for soil, grass and milk. Results are discussed.
Papastefanou, C.; Manolopoulou, M.; Charalambous, S. JR: Journal of Environmental Radio- activity, 1988, v. 7, p. 49-64.	Radiation Measurements and Radioecological Aspects of Fallout from the Chernobyl Reactor Accident.	Greece, Thessa- loniki Field data for a year after the accident.	Radioisotopes of I, Cs and many other fission products.	Grass, milk, leafy vegetables.	Soil, dry and wet depositions, rainfalls, storms.	Air sampling commenced on May 3 and continued until June 15 when most of the short-lived radionu- clides were detectable. Results of cesium activity in soil and grass are also given in tables. The intensity of precipitation was 72*1 mm, typical for the May period. Iodine -131 was very important for milk and leafy vegetables, the nuclide transport time being only 4 days. Transfer ratios in air grass-cow- milk-man pathway for ¹³¹ I are given and have an excellent agreement with literature values. These ratios help quantify the transfer of fallout contami- nation from air through to the food chain.
Papastefanou, C. Manolopoulou, M. Stoulos, S. Ioanni- dou, A.& Gerasopoulos, E. (1999). Journal of Environmental Radioac- tivity, Volume 45, Issue 1, October 1999, p. 59-65	Soil-to-plant transfer of ¹³⁷ Cs, ⁴⁰ K and ⁷ Be	Europe.Thessalo niki area of northern Greece, in the temperate zone	Caesium-137, Potassium-40, Beryllium-7	Grass (graminae or poacheae) samples area of 3 m2 (0.125 kg of grass per m2)		Experiments with artificial wet depositions of Cs- 134 and Sr-85 at different times during the growth period were carried out. The studies are comple- mentary to the experiences after the Chernobyl fallout and the results are compared with similar earlier Swedish works on nuclide retention in ex- periments and on fallout in agriculture. The aim was to cover the nuclide transfer to grain crops after depositions at different times during the grow- ing period. The initial interception capacity per kg d.w., TRd, seemed to depend on the surface/weight ratio of the plant parts considered. Changes in TRd- values were rapid during the early growth but slower in later stages. The reduction half-time was then often 2 weeks for vegetative parts. Consider-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						ing the fraction of a deposition retained, FRd, the residence half-time had an average length of 3-4 weeks. During that time there were possibilities for caesium penetration into the plant and further transfer to ears and grain. Strontium did not seem to be transferred that way. There was no increase of caesium in the ears per unit d.w. after the initial interception. Soil-to-plant transfer factors, TF, i.e., the ratio; TF" [Ri*Bq/kg d.w.] plant // [Ri*Bq/kg d.w.] soil where Ri is the uptake of the i th ra- dionuclide by plants from the soil through the soil- root-trunk pathway.
Popplewell, D.S. Ham, G.J. JR: Journal of Radiological Protec- tion, Sep 1989, v. 9(3), p 189-193.	Transfer factors for ¹³⁷ Cs and ⁹⁰ Sr from grass to bovine milk under field conditions.	UK.	¹³⁷ Cs, ⁸⁵ Sr.	Pasture grass, milk.		Transfer factors for ¹³⁷ Cs and 90Sr from herbage to cow's milk have been calculated from data acquired from a routine monitoring programme in west Cumbria during 1977 to 1985. The values for ¹³⁷ Cs and ⁹⁰ Sr, 0.004 d 1-1 and 0.001 d 1-1, respectively, agree reasonably well with values reported in the literature from controlled experiments.
Popplewell, D.S. Ham, G.J. Stather, J.W. Report (Conf.): Workshop on the measurement of soils to plant trans- fer factors for radionuclides. Wagen- ingen (Netherlands), 1982, In two parts. 307 p. pt. 2, p. 164- 171 [.] INIS-mf10413	The uptake of ²³⁹ Pu + ²⁴⁰ Pu, ²⁴¹ Am, ⁹⁰ Sr and ¹³⁷ Cs into potatoes.	UK.	²⁴¹ Am, ¹³⁷ Cs, ²³⁹ Pu, ²⁴⁰ Pu, ⁹⁰ Sr.	Potatoes.		The objectives of this work are to measure season- by-season the uptake of plutonium, americium, ⁹⁰ Sr and ¹³⁷ Cs into potatoes and to provide the soil-to- plant transfer factors for modelling studies whose aim is to predict the dose to man through the food chain.
Puhakainen M. and Yläranta T. JR: Agric. Sci. Finl., 1992, 1, p. 27- 35.	Uptake of radionuclides by spring wheat and barley from cultivated soils supplemented by contaminated sewage sludge.	Finland.	¹³⁷ Cs	Sprig wheat, barley.		Experiments were conducted on clay, clay loam and sandy loam soils with spreading digested sludge on fields. TFs were defined for treated and untreated soils.
Rantavaara A, Kostiainen E, Sihvonen H. In Report: Ylätalo S, Pöllänen R (eds). Properties of Nuclear Fuel Particles and Release of Radionu- clides from Carrier Matrix. Finnish Association for Aerosol Research, University of Helsinki, Report Series in Aerosol Science 39. Helsinki 1998: 91-95.	The transfer of ¹³⁷ Cs from nuclear fallout to milk in Finland.	Finland.	¹³⁷ Cs	Milk, deposition		Comparison of the transfer of ¹³⁷ Cs from fallout to milk was compared in two different areas in Finland 1986-1996. The transfer of ¹³⁷ Cs to milk in the northern area was 2.3 times higher than in the southern area. The data confirmed that human exposure to environmental radiocaesium depends significantly on the type of soils used for agricul- tural production.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Rantavaara, A. Report: STUK-A78, Jun. 1991, 89 p.	Radioactivity of foodstuffs in Finland in 1987-1988. Sup- plement 4 to the Annual Reports STUK-A74 and STUK-A89.	Finland.	I-131, Cs-134, Cs-137, Sr-89, and Sr- 90.	Food of agricul- tural origin.		Nationwide survey was extended both areally and by types of foodstuffs after Chernobyl accident in 1986.The purpose was to give information for dose assessment.
Rantavaara A, Arvela H, Suomela M. Second report of the VAMP Multiple Pathways Assessment Working Group. Report IAEA- TECDOC-904. Vienna: International Atomic Energy Agency, 1996, 86- 196.	Documentation and evalua- tion of model validation data used in scenario S. Appendix I in: Validation of models using Chernobyl fallout data from southern Finland. Sce- nario S.	Finland.	Cs-134, Cs-137			
Rantavaara, A.; Haukka, S. Report: STUK-A58, Jun. 1987, 110 p.	Radioactivity of milk, cereals and other agricultural prod- ucts in Finland after the Cher- nobyl accident in 1986. Supplement 3 to annual re- port STUK-A55.	Finland.	I-131, Cs-134, Cs-137, Sr-89, and Sr- 90.	Cereals, meat, milk, eggs.		The main objectives were to assess the dietary intake of fallout radionuclides via milk, meat, cereals and eggs in Finland during period May- December 1986.
Rantavaara, A. Report: Studies on environmental radioactivity in Finland 1976-1977, Annual report, Apr. 1979, p. 35-64. STL-A26.	Radioactivity in milk and other foodstuffs.	Finland.	Sr-90, Cs-137.	Milk, other food samples.		The country-wide survey of fallout radioactivity in milk and the regional foodstuff programme made near Finland's nuclear power plants. Measurable quantity of ¹³¹ I was found in milk and in some other samples following the Chinese nuclear tests in 1976 and 1977.
Rantavaara, A. Report: Studies on environmental radioactivity in Finland 1978, Annual report, Jan. 1980, p. 29-45. STL-A32.	Radioactivity in milk and other foodstuffs.	Finland.	Sr-90, Cs-137.	Milk, meat, cereals, fruits, vegetable ^{s.}		The country-wide survey of ⁹⁰ Sr and ¹³⁷ Cs in milk continued in 1978. The regional foodstuff pro- gramme made for environmental studies near Finland's nuclear power plants. No fresh fallout from nuclear tests was detected.
Rantavaara, A Report: Studies on environmental radioactivity in Finland 1979, Annual report, Dec. 1980, p. 27-42. STL-A34.	Radioactivity in milk and other foodstuffs.	Finland.	Sr-90, Cs-137.	Milk, meat, cereals, fruits, vegetable ^{s.}		The country-wide survey of ⁹⁰ Sr and ¹³⁷ Cs in milk continued in 1979. The regional foodstuff pro- gramme made for environmental studies near Finland's nuclear power plants.
Rantavaara, A. Report: STUK-A 59, Jun. 1987, 88 p.	Radioactivity of vegetables and mushrooms in Finland after the Chernobyl accident in 1986. Supplement 4 to	Different areas of Finland.	¹³⁴ Cs, ^{137Cs} , ⁸⁹ Sr, ⁹⁰ Sr, 131I and other short-lived	Vegetables, fruits, berries, mushrooms.780 samples of the	Early May - six month period of the first fallout year.	In May 1986 ¹³¹ I and other short-lived isotopes were dominated. Later in season concentration of ¹³⁷ Cs in leafy and root vegetables, fruits and pota- toes was 0.3-8 Bq kg ⁻¹ on an average depending on

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	annual report STUK-A55.		radio-nuclides.	most common species.		species. In garden berries - from 10 to 30 Bq kg ⁻¹ , and in wild berries from 80 to 120 Bq kg ⁻¹ . The average concentration of ¹³⁷ Cs in mushrooms var- ied from 220 to 1100 Bq kg ⁻¹ . ⁸⁹ Sr and ⁹⁰ Sr were determined in a limited number of vegetables and berries, and content of ⁹⁰ Sr were about slightly higher than in the previous years. Fruit and vegetables of season 1986 contributed 3.4 Bq d ⁻¹ to the dietary intake, and mushrooms - 1 Bq d ⁻¹ .
Rauret G., Vallejo VR., Cancio D., Real J. JR: Journal of Environmental Radio- activity, 1995, v. 29(2), p. 163-184.	Transfer of Radionuclides in Soil-Plant Systems Following Aerosol Simulation of Acci- dental Release: Design and First Results.	France, Spain.	¹³⁴ Cs, ^{110m} Ag, ⁸⁵ Sr	Lettuce.		The behaviour of ¹³⁴ Cs, ^{110m} Ag and ⁸⁵ Sr was stud- ied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source.
Rauret, G., Alexakhin, R.M.; Kruglov, S.V., Cremers, A., Wauters, J., Valcke, E., Ivanov, Y., Vidal, M. Report (Conf.): 1. international conference on 'The radiological consequences of the Chernobyl accident', Minsk (Belarus), 18-22 Mar 1996, p.81-96. INIS-BY020	Physical and chemical factors influencing radionuclide behaviour in arable soils.	Belarus, Ukraine, Russia. Plant growth experi- ments.	¹³⁷ Cs, ⁹⁰ Sr.	Spinach.	Podsolic and peat soils, different chemical condi- tions.	Study of the factors affecting the equilibrium of the radionuclides between solid and soil solution phases. Considering these factors, the calculation of the in situ KD values helps to predict the relative transfer of radionuclides. The calculation of the KD of the materials that could be used as countermeasures could permit the prediction of its suitability to decrease transfer of radionuclides.
Renaud P., Réal J., Maubert H. and Roussel-Debet S. (1999) Health Physics 76 (5). 495-501	Dynamic modelling of the cesium, strontium and Ruthe- nium transfer to grass and vegetables.		Cs, Sr and Ru	Grass and vege- tables (tomatoes, salads, beans and radishes)	compost, single aerosol contami- nation to pre- planted crops, only deals with year 1	Transfer factors monitored over time since single deposition, including transfer factors for successive harvests. This was then modelled as part of the ASTRAL post-accident radioecology model. Cs and Sr global transfer (m2/kg) to grass starts at ~0.7 in the first 20 days (the similarity of the transfer factors indicate that mainly physical processes govern direct contamination). After 1 year the transfer factor is ~0.001 for Sr and 0.0004 for Cs. The transfer factors are constant from 100 days after the contamination event. For radishes beans and tomatoes, the global transfer factor of Cs starts at ~0.062 and decreases over time to 0.0003 by 178 days, giving a first year integrated transfer factor of approximately 0.006 m2 a /kg. If a second crop is

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						grown, the transfer factor is constant over time 1.8 x 10(-5) from day 77 - day 178. Sr shows similar patterns, with the first crop global transfer factor decreasing from ~0.062 - 0.0003 by day ~80, and then the first crop has a constant transfer factor, equal to that of the second crop grown, of ~0.0003. This means that the first year integrated transfer factor is approximately 0.005 m2 a /kg. Leaf vegetable TF are ~0.21 on day 1, and decrease steadily (Cs and Sr) to 0.021 on day ~45, this gives a first year integrated transfer factor of approximately 0.2 m2 a/kg. The second crop TF were lower, at 0.0001 for Cs and 0.00004 for Sr.
Repin, V., Novak, N., Perevoznikov, O., Tsygankov, N. JR: Radiation Protection Dosimetry, 2000, v. 88(3), p. 207-221.	Retrospective estimation of strontium-90 intake dynamics and doses for the population living in the territories af- fected by the Chernobyl accident.	Reconstruction based on data from Zhytomir region of Ukraine.	Cesium 137, strontium 90.	Milk, potatoes.		Using the proposed model the total annual intake of ⁹⁰ Sr in 1986-1994 were found, the values of transfer factors from soil to milk and potato have been calculated.
Riedel, H.; Bretschneider, J.; Gesewsky, P. Report: STH21/77, May 1977, 66p.	Measurements of the Institut fuer Strahlenhygiene of ra- dioiodine in air, precipitation and fresh milk after the Chi- nese nuclear bomb test of Sept. 17, 1977. Messungen des Institut fuer Strahlenhygiene von Radio- jod in Luft, niederschlag und Frischmich nach dem chinesi- schen Kernwaffenversuch vom 17.9.1977. In German.	Germany.	¹³¹ L.	Pasture grass, milk.	11 days period in air; 40 days on pastureland and milk.	About 35% of milk contamination was caused by wet deposition. The ¹³¹ I concentration in milk when deposition had ended shows an effective half-life of 6 days. Over the whole period of detectable ¹³¹ I concentrations in milk a total air to milk transfer factor 325 Ci/l:Ci/m ³ .
Riedel, H.; Gadow, A. Von ; Ge- sewsky, P. Report, STH3/77 May 1977, 66p.	Studies on radioiodine con- centrations in air, precipita- tion, grass, cow's and goat's milk after the Chinese nuclear bomb test on September 26th, 1976. Untersuchungen ueber das Auftreten von Radiojod in Luft, Niederschlag, Gras, Kuh- und Ziegenmilch nach dem chinesischen Atombom-	Ge ^r many.	¹³¹ I. Air: max 191 fCi/m ² , ave. 42.5; Precipita-tion: max 6.3 pCi/m ² ave. 3.0;	Grass, cow's and goat's milk.	Six weeks period.	Concentrations of ¹³¹ I were estimated in grass: max. 164 pCi/m ² , ave. 105 pCi/m ² ; in cow's milk: max. 18.5pCi/l, ave. 9.0 pCi/l; in goat's milk: max. 26.9pCi/l, ave. 14.9 pCi/l. With the additional assumption on a retention factor on grass for washout (20%) and an effective half-life of ¹³¹ I on grass (3,9 and 5 d) from these data the deposition velocity of ¹³¹ I on pasture and the transfer coefficients air-grass and grass-milk as well as air-milk have been calculated.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	benversuch vom 26 [.] 9.1976. In German.					
Riise, G., Bjørnstad, H.E., Lien, H.N., Oughton, D.H., and Salbu, B., (1990) Journal of Radioanalytical and Nuclear Chemistry, Vol 142, No 2, pp 531-538.	A study on radionuclide association with soil compo- nents using a sequential ex- traction procedure.	Central Norway	Cs-134, Cs-137 and Sr-90	Mobility in soil		Radioactive Cs-isotopes, deposited after the Cher- nobyl accident, are predominantly associated with components in the upper layer (0-2 cm). Based on sequential extraction the Cs-isotopes are strongly bound, especially to mineral matter, and less than 10% can be considered mobile. To a large extent, isotope exchange with naturally occurring stable caesium appears to have taken place during the 3 years after deposition. In the upper layers, Sr-90 is predominantly present in a leachable form. Com- pared to the Cs-isotopes a much higher relative fraction of Sr-90 should be considered mobile and available for plant uptake.
Robb, Paul Owen, L.M.W. Crews, H.M. JR: Journal of Analytical Atomic Spectrometry, Sep. 1995, v. 10(9), p. 625-630.	Stable isotope approach to fission product element stud- ies of soil-to-plant transfer and in vitro modelling of ruminant digestion using inductively coupled plasma mass spectrometry.	UK.	Sr, Cs, Ce iso- topes.	Fruits, berries.		Limits of detection (dry mass LODs) of 0.053 mg kg ⁻¹ for Sr, 0.011 mg kg ⁻¹ for Cs and 0.084 mg kg ⁻¹ for Ce were low enough to allow the determination of soil-to-plant transfer factors for soft fruit and the application of the approach to an in vitro model of ruminant digestion.
Roca M.C., Vallejo V.R., Roig M., Tent J., Vidal M. and Rauret G. (1997) J. Environ. Qual. 26. 1354- 1362	Prediction of cesium-134 and strontium-85 crop uptake based on soil properties.	Lysimeters	¹³⁴ Cs and ⁸⁵ Sr	Lettuce and peas	Medditerranean soil types: a Calcic Luvisol and a Fluvisol; the contamina- tion was via an aerosol directly to the bare soil. Plants were grown subse- quently	Soil properties evaluated were CEC and radionu- clide available fraction for radiostrontium and soil solution composition, solid-liquid distribution coefficient and radionuclide available fraction for Cs. This helped improve predictions with respect to results, but factors depending on plant physiology need to be better evaluated. Results (given in weighted concentration ratios of kg soil (dry weight)/kg plant (dry weight): 1) Sr: a) Lettuce: Loamy soil, seedling = $7.5+/-1.8$, Commercial = 5.8 +/- 1.5; Loam Sandy, seedling = $40.6 +/- 30.2$, commercial = $22.9 +/- 17.8$. b) Pea plant: Loamy soil, seedling = $8.6 +/-3.5$, mature = $43.2 +/- 12.3$, fruit = $8.2 +/- 2.9$; Loam Sandy, seedling = 131.1 +/- 36.5, mature = $457.1 +/- 57.2$, fruit = $13.2 +/-2.7. 2)$ Cs: a) Lettuce: Loamy soil, seedling = $0.7+/- 0.3$, Commercial = $0.2 +/- 0.1$; Loam Sandy, seedling = $3.6 +/- 2.9$, commercial = $1.1 +/- 1.0$. b) Pea plant: Loamy soil, seedling = $1.0 +/- 0.4$, ma- ture = $50.1 +/- 19.2$, fruit = $8.3 +/- 1.2$; Loam Sandy, seedling = $8.8 +/- 2.9$, mature = $32.8 +/-$

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
			•			24.3, fruit = $9.1 + - 6.2$.
Roca MC., Vallejo VR., Rauret G., Vidal M., Real J., Cancio D. Book (Conf.): International sympo- sium on environmental impact of radioactive releases, Vienna, Austria, 8-12 May 1995. IAEA, Oct 1995, 874 p., p. 669-672. IAEA-SM339/198P; STI/PUB 97 ¹	T ^r ansfer of ¹³⁴ Cs, ⁸⁵ Sr and 110Agm in Different Soil- Plant Systems (Tarras Pro- ject).	Spain. Experi- ments.	134Cs, 85Sr, 110Agm.	Lettuce, pea.		Experiments based on the deposition on bare soils (sandy loam and sandy soils), which had been sown with lettuce and pea plant seeds. TFs (kg soil/kg plant and m ² soil/kg plant d.w.) are given for seed-lings and mature plants, leaves, stems and fruit.
Roca, M.C. Vallejo, V.R. JR: Journal of Environmental Radio- activity, 1995, v. 28(2), p. 141-159.	Effect of soil potassium and calcium on caesium and strontium uptake by plant roots.	Spain.	¹³⁴ Cs, ⁸⁵ Sr.	Lettuce plants.	Sandy-Ioam soils.	The transfer factors were higher in the sandy soil. Greater K selectivity than ¹³⁴ Cs was always ob- served, although the selectivity of K was higher in the sandy soil which had a lower K concentration. In the sandy-loam soil which had a higher Ca con- centration, selectivity of ⁸⁵ Sr was higher than that of Ca. These results suggest that radionuclide up- take by roots depended on the availability in the soil of the radionuclides and root uptake selectivity, which were both related to the nutrient concentra- tion in the soil solution.
Rosén, K, Andersson I, Lönsjö, H. (1994) Meeting September 12-16, 1994, Varna Bulgaria. Soil-Plant Relationships. Proceedings of the XXIVth Annual ESNA/IUR, Ed. Martin Gerzabek. Varna, Bulgaria, pp 204-210.	Transfer of Radiocaesium from Soil to Vegetation and to Grazing Lambs in a Moun- tain Area in Northern Sweden	Sweden.	Cs-137.			A field survey investigation was carried out in the Chernobyl fallout area in Sweden to find out the experiences of the farmers during the fallout period 1986-87 with regard to the activities of the authori- ties and to their own counter actions. Also the private situation of the farmers during the period and their attitudes to similar situations in the future were discussed. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Rosén, K. & Öborn, I. (1990). Proceedings. International Union of Radioecologists. VIIth report of the working group soil-to-plant transfer factors. Report of the working group meeting in Uppsala, Sweden Sep- tember 27-29, 1990. Netherlands. Uppsala, Sweden, pp 206-210.	Effects of potassium on cae- sium to crops.	Sweden.	Cs-137.			Review of some Swedish field studies on the Cs- 137-soil-to-plant transfer, with special reference to effective chemical and soil management counter- measures to decrease the transfer in case of fallout. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Rosén, K. (1988). Proc. Det femte nordiska radioekologiseminariet, 22- 25 August 1988, Rättvik, Sweden, pp 1-8.	Kaliumgödslingens betydelse för kontroll av ce- siumtransporten från Tjerno- byldrabbade Norrlandsjordar.	Sweden.	Cs-137.	vall, spannmål	Different soil types from large agricultural regions of Swe-	Four activation products and two fission products were deposited in eight different soils placed in micro plots. The transfer of the nuclides from these soils to clover, timothy and wheat over the period

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
					den.	1976-1984 was studied. Changes with time of the transfer factors for crops and soils were recorded as well as the differences between the soil types and between the crop products. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Rosén, K. (1991). The Chernobyl fallout in Sweden. Results from a research programme on environ- mental radiology (Ed. L. Moberg). The Swedish Radiation Protection Institute, Stockholm, pp 305-322.	Effects of potassium fertiliza- tion on caesium transfer to grass, barley and vegetables after Chernobyl.	Sweden.	Cs-137.	grass, cereals, vegetables (Let- tuce, Potatoes, Carrots and Leek)	different soil types in Sweden	Influence of K-fertilization (00, 50, 100 and 200 kg K/ha) on Chernobyl-Cs-137 was studied. The K-fertilization was effective already on the 50-100 kg level, although 200 kg gave the highest reduction; decrease with 60-89 % on grassland. The Cs-137 transfer to barley was an about one order of magnitude lower. It decreased relatively to the same extent as for grassland. Among the vegetables, the order in caesium transfer to the crops was Let-tuce <potatoes<carrots<leek. (bq="" bq="" cs-137="" d.w.="" factors="" g="" of="" plant="" soil)<="" td="" transfer=""></potatoes<carrots<leek.>
Rosén, K. (1994). The Transfer of Radionuclides through Nordic Eco- systems to Man. (Ed. Henning Dahl- gaard). Elsevier Science Publishers, Amsterdam, pp 239-259.	Studies on countermeasures after radioactive deposition in Nordic Agriculture. In: Nor- dic Radioecology.	Sweden.	Cs-137, Sr-90, I- 131.			This study demonstrates the relationship between radiocaesium deposition in soil and the activity transfer to pasture in a natural or semi-natural ecosystem. Factors that may influence the transfer are described. The study also demonstrates which level of radiocaesium that can be expected in lambs grazing in the mountain area when no counter- measures are taken. The results indicate that agri- culture, especially animal production, based on the utilization of the natural and semi-natural environ- ment, is very sensitive in a fallout situation. Prob- lems may persist for many years and counter- measures have to be taken for a long time in order to provide acceptable levels of radiocaesium in animal products for human consumption. Other- wise diet recommendations should be given. Ch - Rosén, K., Andersson, I. & Lönsjö, H. (1995). J. Environ. Radioactivity, Vol. 26, pp 237-257.
Rosén, K. (1996). Marginal and semi-natural areas in the county of Jämtland. Sci. Total Environ, Vol. 182. Nos. 1-3, pp 135-145.	Transfer of Radiocaesium in Sensitive Agricultural Envi- ronments after the Chernobyl fallout in Sweden. II.	Sweden.	Cs-137.	pasture and grass		This thesis deals with appearance of Chernobyl ¹³⁷ Cs and ¹³⁴ Cs in some of the agricultural areas of the U-, C-, X-, Y- and Z-counties. The investiga- tions were carried out on real field conditions from 1986 up to 1995 on farms where transfer to grass and milk the first years were high. The results show that agriculture, and especially livestock holding, based on feeding by animals is sensitive for transfer of radiocaesium to diet. At some farms there were

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Rosén, K. (1996). PhD. Thesis.	Field studies on the behaviour	Sweden.	Cs-137.			need of countermeasures to reduce the transfer to milk and meat and it may exist for long time. After the Chernobyl fallout 1986, the grass crops were heavily contaminated in some areas, and the first cut had to be discarded on some farms in the most contaminated areas. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil) Concentrations of Cs-137 were measured from
Report SLU-REK-78	of radiocaesium in agricul- tural environments after the Chernobyl accident					sheep, goats and reindeer in the period 1987-1989. Reindeer and goats had the most diverse food selection whereas sheep fed mainly on grasses, forbs and to some extent, on leaves of willow. Depending on the type
Rosén, K. (1997). Inst. för radioe- kologi, Rapport SLU-REK-79	Underlag för utarbetande av myndigheternas rekommenda- tioner till lantbrukare i hän- delse av en kärnenergiolycka (efter ett larm, men före ned- fallet av radioaktiva ämnen).	Swedish condi- tions.	Expected fallout within the near future.	Crop and animal products.	Different parts of the season.	The report contains calculation of expected Cs-137 transfer and development of the transfer from con- taminated agricultural land (1 MBq/m2) to crop and animal products in the southern parts of Swe- den. Different soil types and different management of the enterprises were compared as well as differ- ent types of counter actions to reduce the nuclide transfer to the food produced. The two most impor- tant countermeasures which can be made by farm- ers are extra potassium fertilisation and ploughing before reuse of contaminated land.
Rosén, K. Haak, E. Eriksson, A. (1998). The Science of the Total Environment. Volume 209, Issue 2- 3,19 January, 1998, P. 91-105	Transfer of radiocaesium in sensitive agricultural envi- ronments after the Chernobyl fallout in Sweden: III. County of Vasternorrland	Sweden.	Cs-137, I-131.	grass and cereals		Countermeasures are discussed for a situation of impending disaster, when maybe heavy fallouts are expected.
Rosén, K. von Fircks, Y & Sen- nerby-Forsse, L. (1999) Eds: Jens Søgaard-Hansen & Anders Damkjær. Nordic Society for Radia- tion Protection 12th ordinary meet- ing, 23-27 August 1999. Roskilde. Skagen, Denmark, pp 277-281. (Poster presentation.)	Uptake and activity concen- tration of ¹³⁷ Cs and ⁹⁰ Sr in Salix viminalis. Proceedings	Sweden.	Cs-137, Sr-90.	energy forest, salix	Soil: loam and clay loam soils and the subsoil was loamy sand	Long-term measurements over an 11-year period. Cs-137 transfer coefficients, TF, from soil to plants (grass) ranged from 0.002 to 7.42. Potassium-40TF values from soil to plants (grass) ranged from 0.25 to 2.42 (average 0.73). Transfer factors of Cs-137 and Sr-90 (Bq/g d.w.plant // Bq/g d.w. soil)
Rosén, K. Öborn, I. Lönsjö, H. (1999). Journal of Environmental Radioactivity, Volume 46, Issue 1, October 1999, P. 45-66	Migration of radiocaesium in Swedish soil profiles after the Chernobyl accident, 1987- 1995	Sweden.	Cs-137.	grass		Little is known about the behaviour of caesium and strontium in energy forest systems. Plants were grown in micro plots with an area of 0.25 m2 under field conditions. The soils in experimental site had been contaminated in 1961 with 35.7 and 13.4 MBq per m2 of ¹³⁷ Cs and ⁹⁰ Sr, respectively. The

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						experiment was carried out for three years. The plots were fertilised with 60 kg N/ha and different amounts of K per ha, 0 kg, 80 kg and 240 kg during the two first years. The concentration of ¹³⁷ Cs in the different plant parts varied between 20 000 to 140 Bq kg ⁻¹ and ranked in the following order: roots > leafs > cuttings > stems. The ¹³⁷ Cs concentration was higher in the 0 kg K treatment than in the 80 kg K or 240 kg K treatment. Leafs contained more ⁹⁰ Sr than stems and cuttings.
Rosén, K., Andersson, I. & Lönsjö, H. (1995). J. Environ. Radioactivity, Vol. 26, pp 237-257.	Transfer of Radiocaesium from Soil to Vegetation and to Grazing Lambs in a Moun- tain Area in Northern Sweden	Sweden.	Cs-137.	soil, herbs, grasses, woody plants, trees and shrubs and lambs		Transfer coefficients, Fm, of Cs-137 from pasture and fodder to cow's milk were determined for one month on winter-fodder, and for the first month in 1987 and 1988 on pasture. The average Fm for all investigations was estimated to be 0.0055. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Rosén, K., Eriksson, Å. & Haak, E. (1996). Sci. Total Environ. Vol. 182, pp 117-135.	Transfer of Radiocaesium in Sensitive Agricultural Envi- ronments after the Chernobyl fallout in Sweden. I. County of Gävleborg.	Sweden.	Cs-137, I-131.	grass and cereals		In 1986-1994 two Chernobyl-affected areas in county of Jämtland, a Mountain area and a River valley area were investigated as to radiocaesium behaviour and transfer to grass. Grass samples were analysed on 9 temporary grassland sites and 8 permanent pasture sites. The aim of this investiga- tion was to study the sensitivity of different soil types and influence of normal farming practises, ploughing and K-fertilization on the caesium trans- fer, in short- and long-term perspectives after the Chernobyl fallout. As expected, the transfer of Cs- 137 to grass was usually higher on permanent pasture than on temporary grassland. The transfer was reduced considerably showing a range of 0.1- $177.3 \text{ m}^2/\text{kg d.w.} * 10^{-3}$. As shown, both counter- measures, ploughing and K-fertilization, are of potential value to decrease grass contamination. Where both measures were employed a reduction in the range of 78-95 % was recorded in the year after ploughing. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. so
Rosén, K., Eriksson, Å. & Haak, E. (1996). In Ten years terrestrial radioecological research following the Chernobyl accident. Proceed- ings. Ed. Martin Gerzabek. Interna- tional Symposium on Radioecology	Transfer of Radiocaesium in sensitive agricultural envi- ronments 1986-1994 after the Chernobyl fallout in Swede	Sweden.	Cs-137.	grass and cereals	different soil types in Sweden	In 1986 to 1994, 15 farms in the Chernobyl- affected area of the county of Gävleborg were investigated for radiocaesium transfer to grass and cereal grain. The aim was to study the impact of site and soil characteristics on sensitivity of Cs-137 transfer in a long-term perspective. The transfer

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
1996. Vienna, Austria, pp 101-110.						was much higher to grass than to cereal grain. For both crop products, however, there was a consider- able annual reduction. The annual reduction in transfer to grass was reduced by a factor of 2 to 100, one order less. It was less on organic than on mineral soils. Both ploughing through the surface layer and the mixing of radiocaesium with soil, contributed to a decreased transfer of radiocaesium to crops. Thick stubble and grass sward on the grassland sites was the main reason for a lag period of high persistent transfer. Transfer factors of Cs- 137 (Bq/g d.w.plant // Bq/g d.w. soil)
Sauras Yera T., Vallejo, R., Wae- geneers N., Madoz-Escande CH. Report (Conf.): 28. annual meeting of the European Society for New Methods in Agricultural Research Annual meeting of the International Union of Radioecology (IUR) Work- ing Group Soil-to-Plant Transfer Brno (Czech Republic), 26-29 Aug 1998, 202 p., p. 82. INIS-CZ0022	¹³⁷ Cs and ⁹⁰ Sr root uptake by beans in soils with contrasting properties.	Czech Republic.	¹³⁷ Cs, ⁹⁰ Sr.	Bean plants.	Different soil types and condi- tions.	Radionuclide soil to crop transfer was analysed under controlled climatic conditions. The ¹³⁷ Cs concentration in soil solution varied from 400 Bq/l to 9 Bq/l in the various types of soil. The ¹³⁷ Cs root uptake crop reflected the specific scenario of each soil. K, Ca and Mg in the soil solution play an important role in the ¹³⁷ Cs and ⁹⁰ Sr root uptake and, in addition to the soil type and specific growing conditions, are important factors governing the transfer.
Sauras Yera T., Vallejo V. R, Valcke E., Colle C.,Förstel H. , Millán R. and Jouglet H. JR: Journal of Environmental Radio- activity, 1999, v. 45(3), p. 191-217.	¹³⁷ Cs and ⁹⁰ Sr root uptake prediction under close-to-real controlled conditions.	Belgium, France, Spain, Germany, and UK.	Cs-137 Sr-90.	Winter barley		Radionuclide soil-to-crop transfer was analysed in large undisturbed soil monoliths installed in lysimeters under controlled climatic conditions. The activity concentration of radionuclides in the plants was negatively correlated with crop yield, indicating that high crop productivity produced a general dilution effect in radionuclide concentra- tion activity in plants. The relative radionuclide crop accumulation expressed in Bq m ⁻² was pre- dicted from the soil availability parameters, avail- able ¹³⁷ Cs fraction divided by the distribution coef- ficient (KD) and by the K concentration in soil solution, and the available ⁹⁰ Sr divided by the cationic exchange capacity (CEC). These predic- tions could not be obtained when using the CR, as this does not fully account for the crop growing conditions which influence radionuclide uptake by the crop.
Saxen, R., Rantavaara, A., Arvela, H., Aaltonen, H.	Environmental radioactivity in Finland after the Chernobyl	Finland.	¹³⁷ Cs and ¹³⁴ Cs.	Agricultural products, fish,		Results of environmental monitoring programmes years 1986-1988. Milk and beef made the dominant

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Report (Conf.) International sympo- sium on environmental contamina- tion following a major nuclear acci- dent., Vienna (Austria), 16-20 Oct. 1989. Proceedings, IAEA, 1990, 497 p., v.1, p.23-39. IAEA-SM306/84	accident.			berries, mush- rooms.		contribution to dietary intakes of radionuclides in the first fallout year. In the second year the contri- bution of natural products to intakes almost equalled, and in the third year exceeded that of agricultural products.
Schelenz, R. Report: Bundesministerium des Innern, Bonn (Germany, F.R.). Status report on radionuclide trans- fer. Statusbericht ueber den Transfer von Radionukliden. Jan 1980. 166 p. p. 146-149. INIS-mf6902	Transfer from vegetation to meat. Transfer Futter/Fleisch. In German	Germany. Compiled data.	⁹⁰ Sr, ¹³⁷ Cs.	Animal feeds, meat.		A list of the transfer factors food/meat for Sr and Cs which have been referred to in several articles. The author proposes to deal intensively with the literature in order to achieve more knowledge on the transfer factors food/meat for Sr and Cs and for other relevant radionuclides.
Scotti, I. A. JR: Journal of Environmental Radio- activity, 1997, v. 33(2), p. 181-191.	Effect of Treatment Time on the ¹³⁴ Cs and ⁸⁵ Sr Concentra- tions in Green Bean Plants.	Italy. Experi- ments.	Radio-isotopes of Cs and Sr.	Green bean plants.		Green bean plants were sprayed with ⁸⁵ Sr and ¹³⁴ Cs at three different growth stages; 4 h after each treat- ment, half of all treated plants were sprinkled; at harvest, pod and leaf activity were detected. Results indicate that treatment time has an important role in the concentration of radionuclides in both sprinkled and non-sprinkled plants. Furthermore sprinkling reduces ¹³⁴ Cs and ⁸⁵ Sr concentrations, since the three growth stage reductions were 65, 60 and 52% for ¹³⁴ Cs, and 24, 39 and 58% for ⁸⁵ Sr.
Sennerby-Forsse, L., Melin, J., Rosén, K. & Sirén, G. (1993) Jour- nal of substainable forestry, Vol. 1(3), pp 93-103.	Uptake of radiocaesium in fast-growing Salix Viminalis L.	Sweden.	Cs-137 and Cs- 134.	salix	organic soil	The influence of soil parameters, contact time and various concentrations of Cs, K and ammonium ions in the solution on the sorption ratio for radio- caesium were determined by using Cs-134 as a tracer. Important parameters influencing the sorp- tion were clay content, pH, and the concentration of cations in particular that of potassium and ammo- nium ions, which compete with caesium for the sorption sites. Transfer factors of Cs-137 (Bq/g d.w. plant // Bq/g d.w. soil).
Shenber, M.A. (1992). Thesis, Inst. för radioekologi, Report SLU-REK- 68.	Sorption behaviour of radio- caesium in soils from various regions of Libya and Sweden.	Experimental work in the labo- ratory. Sweden.	Cs-137.		Libyan and Swedish soils	Sorption and desoprtion behaviour of radiocaesium on 7 Libyen and 13 Swedish soils as well as influ- ence of Zeolite amendments on the Cs-134 uptake by wheat. Adding zeolite to soil caused a consider- able reduction in Cs-134 uptake. A reduction of transfer by a factor of 3-8 was observed with in- creasing equilibration time for Cs-134 before sow-

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						ing.
Sheppard, S.C. Report: AECL11474, Dec 1995, 63 p.	Application of the Interna- tional Union of Radioecolo- gists soil-to-plant database to Canadian settings.	Canada.	Large selection of radionuclides and isotopes.	Different plants.	Different soil types, different conditions.	The International Union of Radioecologists (IUR) has compiled a very large database of soil-to-plant transfer factors for Cs, Sr, Co, Pu and Np, and contains records for Am, Ce, Cm, I, La, Mn, Ni, Pb, Po, Ra, Ru, Sb, Tc, Th, U and Zn. The tables presented here summarize the data in a way that should be immediately useful to modellers. Values are averaged for a number of crop types and spe- cies. Correction factors are developed to facilitate interpolation among soil conditions.
Sheppard, S.C. and Evenden W.G. JR: Health Physics, May 1997, v. 72(5), p. 727-733.	Variation in Transfer Factors for Stochastic Models: Soil- to-Plant Transfer.	Canada.	Radio-nuclides.			CR.
Shinonaga T, Gerzabek MH, Strebl F, Muramatsu Y. (2001). The Science of the Total Environ- ment 267, 33-40	Transfer of iodine from soil to cereal grains in agricultural areas of Austria	38 Austrian agricultural areas	Iodine (stable)	Cereal grains (winter wheat, spring wheat, winter rye, and wheat).	?	Transfer factors (concentration in dry mass of plant/ concentration in dry mass of soil in the upper 20 cm) for iodine from topsoil to grain were in the range 0.0005 to 0.017, with an arithmetic mean of 0.0029 and a standard deviation of 0.0034. The median TF was 0.0016 and the geometric mean was 0.0019.
Shutov V.N., Bruk G.Y., Balonov M.I., Parkhomenko V.I., Pavlov I.Y. In Book: Merwin, S.E.; Balonov, M.I. (eds.) The Chernobyl papers. Volume1. Doses to the Soviet popu- lation and early health effects stud- ies. Richland, WA (USA). Research Enterprises.1993, p. 167-218.	Cesium and strontium ra- dionuclide migration in the agricultural ecosystem and estimation of internal doses to the population.	Bryansk and Tula regions. Central part of Russia.	¹³⁷ Cs and ⁹⁰ Sr.	Grassy vegeta- tions.	Torf-podsol sandy soil and black earth soil.	A quantitative relationship between Cs and Sr for radionuclide transfer factors to grassy vegetation and its dependence on the chemical properties of soil are investigated.
Shutov, V. Conf: 24.annual meeting of the European Society for New Methods in Agricultural research (ESNA). Varna (Bulgaria) 12-16 Sep. 1994. ESNA - XXIV annual meeting. Book of abstracts. Stara Zagora (Bulgaria). Nauka i Tekhnika OOD, 1994, 124 p., p. 74.	Influence of soil properties and time elapsed after the accident on caesium and strontium intake to vegeta- tion.	St. Petersburg, Russia.	Cs, Sr	Grasses, potato, maize, grain and straw of barley, rye, wheat and oats.	Different soil characteristics.	Depending on soil properties Tfs of Cs and Sr for different plants varied by order 1-3 of magnitude. The Cs soil-to plant Tf over the first 5 years de- creased exponentially with a half-time of 0.8 to 2 years. The Sr Tf over the first 7 years decreased with a half-time of 6 to 10 years.
Silva, S. Report: EUR14927; 1993, p.565-578.	Chemical treatment to reduce the transfer of caesium radio- isotopes to the human food- chain after a serious nuclear	Experimental. CEC.	Cesium isotopes.	Crops, milk, meat.		The possibility of reduction of the TF in plants, milk and meat following a severe nuclear accident.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	accident.					
Simmonds J.R. and Linsley C.T. JR: Nuclear Safety, Nov-Dec. 1981, v. 22(6), p. 766- 777.	A Dynamic Modelling Sys- tem for the Transfer of Ra- dioactivity in Terrestrial Food Chains.	UK.	Radio-nuclides of iodine, ce- sium, strontium and other.	Leafy vegeta- bles, grain, milk.	Soil types and profiles	The main application of dynamic food-chain mod- els is the prediction of the consequences of acci- dental releases to the environment. A number of parameters, such as interception and retention values, translocation mechanism and soil concen- tration factors are discussed. Transfer coefficients for ⁹⁰ Sr in the pasture-cow-milk model are pre- sented in table.
Skarlou V. Nobeli, C. Anoussis, J. Haidouti, C. Papanicolaou, E. (1999). Journal of Environmental Radioactivity, Volume 45 Issue 2, October 1999, P. 139-147	Transfer factors of ¹³⁴ Cs for olive and orange trees grown on different soils	Europe. northern Greece	Cs-134	Olive and citrus trees in green- house experi- ment.		The study site comprises temporary and permanent grassland in areas in central and northern Sweden which were strongly affected by the Chernobyl fallout in 1986. The aim of the study was to investigate the vertical migration of radiocaesium from 1987. Transfer factors of Cs-134 (Bq/kg D.W.plant // Bq/kg D.W. soil)
Skarlou, V. Papanicolaou, E. No- beli, C. Conf.: 24. Annual meeting of the European Society for New Methods in Agricultural research (ESNA). Varna (Bulgaria). 12-16 Sep., 1994. ESNA - XXIV annual meeting. Book of abstracts. Stara Zagora (Bulgaria). Nauka i Tekhnika OOD, 1994, 124 p., p. 74.	Comparison of transfer factors of 85Sr and ¹³⁴ Cs for some Greek soils and crops.	Greece.	¹³⁴ Cs, ⁸⁵ Sr.	Wheat, alfalfa, radish, string bean, cucumber, lettuce.	Soil conditions.	The TFs for the tested crops and soils ranged be- tween 0.3 and 36.5 for ⁸⁵ Sr and between 0.01 and 1.72 - for ¹³⁴ Cs. For 85Sr the TFs of the edible parts were much lower than those of the rest plant material, while this difference was not so high for 134Cs. The correlation between TFs and pH was for ⁸⁵ Sr r=-0.89, for ¹³⁴ Cs r=-0.82. The values of TRs indicated a trend towards negative correlation with other soil properties (cation exchange capacity - CEC, clay %). The exchangeable (Ca+Mg) cations gave a significant or highly significant correlation with TFs of both radionuclides.
Smajda, B. Hanusik, V. Szabova, T. Musatovova, O. JR: Radioaktivita a Zivotne Prostre- die, 1983, v. 6(1), p. 49-64.	Migration of selected ra- dionuclides in the food chain. I. ⁹⁰ Sr and ¹³⁷ Cs migration in the soil-plant system. Sirenie vybranych radionuk- lidov v potravinovom retazci. I. Sirenie ⁹⁰ Sr a ¹³⁷ Cs v sys- teme poda-rastlina. In Slovak.	Czechoslovakia.	⁹⁰ Sr, ¹³⁷ Cs.	Important agri- cultural plants.	Different types of soil, organic additives.	The behaviour of radionuclides in soils and their transfer into plants is affected mainly by the soil type, the content of organic matter, the share of the loam fraction, the biological properties of plants and the method of soil tillage. Attention is devoted mainly to the transfer factors in the soil-plant sys- tem for important agricultural plants.
Smolders E., Sweeck L., Merckx R. and Cremers A. JR: Journal of Environmental Radio- activity, 1997, v. 34(2), p. 161-170.	Cationic Interactions in Ra- diocaesium Uptake from Solution by Spinach.	Belgium.	Cs.	Spinach.		Interionic effects on radiocaesium uptake in spin- ach were measured in 15 different nutrient solu- tions, spiked with ¹³⁷ Cs, in which K, NH ₄ , Ca and Mg concentrations were varied at four different total salt concentrations between 5·3 meql ⁻¹ and 21 [°] 2 meql ⁻¹ . The plant/solution ¹³⁷ Cs transfer factor

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						(TF) varied between 41 lkg ⁻¹ and 117 lkg ⁻¹ . How- ever, radiocaesium levels were significantly re- duced by increasing Ca + Mg concentrations in solution. A quantitative relationship is presented between the ¹³⁷ Cs TF and the fractional loading of ¹³⁷ Cs in the apoplast, which is calculated by ion exchange laws. This relationship is linear (R2 = 0.81) for the 15 different solutions studied.
Smolders, E. Sweeck, L. Merckx, R. Cremers, A. (1997). Journal of Environmental Radioactivity, Vol- ume 34, Issue 2, 1997, P. 161-170	Cationic Interactions in Ra- diocaesium Uptake from Solution by Spinach,	Europe.	Cs-137	spinach (Spinacia ol- eracea L. cv. Subito)	5 different nutri- ent solutions	From 1986 to 1994, 25 sites in the county of Gäv- leborg and 17 sites in the county of Jämtland in Sweden were investigated regarding Cs-137 trans- fer to grass on different types of pasture and to cereal grain. The transfer of Cs-137 was higher to grass on permanent pasture land than on temporary grassland. It was much higher to grass than to cereal grain. For both crop products, however, there was a considerable annual reduction. In the following years, the transfer to grass was reduced by a factor of 2 to 100. Ploughing down and mixing of the contaminated surface soil layer with a larger soil volume was effective in reducing the transfer to crops.
Spezzano, P. and Giacomelli, R. JR: Journal of Environmental Radio- activity, 1991, v. 13, p. 235-250.	Transport of ¹³¹ I and ¹³⁷ Cs from Air to Cows' Milk Pro- duced in North-Western Italian Farms following the Chernobyl Accident.	Italy.	Cs-137, I-131.	Pasture grass, milk.		The observed values of the vegetation-to-air, milk- to-vegetation and milk-to-air concentration ratios were compared with the values predicted by an assessment model for the transfer of radionuclides through terrestrial food chains. Predicted values were higher than the observed results by factors of 2.6, 2.1 and 5.6 for I-131 and 4.3, 3.7 and 16 for Cs-137, for the vegetation-to-air, milk-to- vegetation and milk-to-air ratios, respectively.
Staaland, H.; Garmo, T.H.; Hove, K.; Pedersen, O. (1995). Journal of Environmental Radioactivity, 1995, v. 29(1), p. 39-56.	Feed selection and radiocae- sium intake by reindeer, sheep and goats grazing alpine summer habitats in southern Norway.	Norway.	Cs-137, Cs-134, I-131 and K-40.	Plants, animals.	Different sub- alpine areas.	Radioecological studies on a mountain farm in the Chernobyl fallout area in the county of Jämtland, Sweden, have shown a fairly high transfer of radio- caesium from soil to vegetation and further to grazing lambs in 1990-1993. Activity analyses of soil samples, taken to 10 cm depth at nine sampling sites within a grazing area of about 10 km2 showed a mean deposition of Cs-137 of 15.7 (range 14.1- 17.6) kBq/m ² . The average transfer factor soil-plan ^t of 0.067 (range 0.074-0.057) m ² /kg. The Cs-137 concentration in single plant species decreased in the order: herbs > grasses > woody plants > trees

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						and shrubs. Transfer factors (plant to muscle) de- creased from 0.93 kg d.w./kg w.w. in 1990 to 0.61, 0.56 and 0.71 in the following years.
Steffens W., Fuhr F., Mittelstaedt W. Conf. 2. International symposium on radiology, Cadarache, France, 19-22Jun.1979. CEA. 1980. 774 p. p. 705-709.	The evaluation of laboratory experiments to determine transfer factors of radionu- clides from soil to plant.	Germany. Experiment.	⁹⁰ Sr, ¹³⁷ Cs.	Plants.	Different soil types.	Published transfer data are based on small scale laboratory experiments using a few hundred grams of soil only. However, it is known that in such experiments the uptake are greatly influenced by: 1) soil type, 2) distribution of the radionuclide in the soil, 3) density of plants and root mass in the soil, respectively, 4) daily water fluctuations and water supply, 5) growth conditions and transpiration rates, 6) fertilizer application rates. Therefore, in comparison to outdoor lysimeter studies 'Neubauer' experiments were conducted to determine the trans- fer factors for ⁹⁰ Sr and ¹³⁷ Cs.
Steffens W., Fuhr F., Mittelstaedt W. Conf. 5. International Congress of the International Radiation Protec- tion Association, Jerusalem, Israel, 9 - 14 March 1980. International Radiation Protection Association, Washington, DC (USA). Book of papers. 1980. v. 3 p.343-346. INIS-mf5876.	Evaluation of small scale laboratory and pot experi- ments to determine realistic transfer factors for radionu- clides ⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co and ⁵⁴ Mn.	Germany. Field, greenhouse and pot experi- ment.	⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co, ⁵⁴ Mn.	Barley, potatoes, sugar beet, salad vegetables.	Podsolic and loess soils.	The transfer factors of the small scale Neubauer cup experiments differed greatly from those ob- tained from the outdoor lysimeter. In the pot ex- periments, the transfer factors for ⁹⁰ Sr, ¹³⁷ Cs and ⁵⁴ Mn showed less deviation from the lysimeter results especially in crops grown on podsolic soil. Transfer factors obtained in pot experiments can only be applicable to a limited extent to field condi- tions.
Steffens W., Fuehr F., Mittelstaedt W., Klaes J., Foerstel H. Report: Juel2250, Dec 1988, 123 p.	Investigation of the transfer of ⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co, and ⁵⁴ Mn from soil to plant, and of the main soil parameters that have influence on the transfer process. Final report. Untersuchung des Transfers von ⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co und ⁵⁴ Mn vom Boden in die Pflanze und der wichtigsten, den Transfer beeinflussenden Bodenparameter. Abschluss- bericht. In German.	Germany.	Cesium, stron- tium, cobalt, manganese isotopes.	Plants.	2 soil types.	In lysimetric field experiments with 2 soil types and small pot experiments under reproducible climatic chamber conditions were to examine whether or not transfer data from laboratory and pot experiments can be applied to field conditions. In large-scale comparative pot experiments the relative transfer factors were determined.
Steffens W., Förstel H., Mit- telstaedt W. Book (Conf.): 25. Annual meeting of Fachverband fuer Strahlenschutz	Lysimeter experiments on root uptake of Co-60, Sr-90 and Cs-137 from soil into vine and apple trees and on	Germany.	¹³⁷ Cs, ⁹⁰ Sr, ⁶⁰ Co.	Apple trees, wine.	Parabraunerde and podzol soils.	The transfer of ⁶⁰ Co, ⁹⁰ Sr and ¹³⁷ Cs from soil into vine and apple trees was investigated over a time period of 5 years (1988-1992). The soil was con- taminated in 1978, so that at the beginning of the

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
e.V. (FS): Environmental radioactiv- ity, radioecology, radiation effects. Binz auf Ruegen (Germany), 28-30 Sep 1993, p. 679-686. FS93-67-T	the transfer into grapes and apples. Lysimeterversuche zur Wurzelaufnahme von Co-60, Sr-90 und Cs-137 aus dem Boden bei Weinreben und Apfelbaeumen sowie zum Transfer in Weintrauben und Aepfel. In German.					experiment the radionuclides were already aged. The transfer factors varying between 0.001 and 0.029 for ⁶⁰ Co, 0.01 and 0.036 for ⁹⁰ Sr and 0.001 and 0.109 for ¹³⁷ Cs, respectively. The influence of the soil type is shown by the higher incorporation of ⁶⁰ Co, ⁹⁰ Sr and ¹³⁷ Cs into the single plant organs and by the higher transfer factors in must and ap- ples grown on the podzolic soil.
Steffens W., Mittelstaedt W., Fuhr F. Conf. 5. International Congress of the International Radiation Protec- tion Association, Jerusalem, Israel, 9 - 14 March 1980. International Radiation Protection Association, Washington, DC (USA). Book of papers. 1980. v. 3 p.347-350. INIS-mf5876.	The transfer of Sr-90, Cs-137, Co-60 and Mn-54 from soils to plants - results from lysimeter experiments.	Germany.	⁹⁰ Sr, ¹³⁷ Cs, ⁶⁰ Co, ⁵⁴ Mn.	Pastures grass mixture, pota- toes, sugar beets, winter wheat, summer barley and red clover.		While the transfer factors measured on the sandy podzol in the simulated accident situation are 3-10 times lower than after permanent contamination, on average they are 2-4 times lower in the parabrown earth, rich in clay and silt. The influence of the soil type differences between the plants on the transfer factors is discussed.
Stoutjesdijk, J.F. Desmet, G.M. Pennders, R.M.J. Sibbel, R. Report (Conf.): Meeting of the IUR workgroup on soil-to-plant transfer factors, Saint-Paul-lez-Durance (France), 16-18 Apr. 1984, 185 p., p. 132-139. INIS-mf10171	Determinations of soil-plant transfer factors for Dutch soils (1981-1983).	Netherlands. Experimental.	¹³⁷ Cs, ⁸⁵ Sr, ⁶⁰ Co, ⁵⁴ Mn, ⁶⁵ Zn.	Grass.	Dutch soil: loess, sandy soil and river clay.	Long term experiments and consists of 32 contain- ers filled with three different types of Dutch soil: loess, sandy soil and river clay. The soils have been labelled with ⁵⁴ Mn, ⁶⁰ Co, ⁶⁵ Zn, ⁹⁰ Sr and ¹³⁷ Cs, i.e. three activated corrosion products and two fission products. Soil-grass transfer factors for different soil types are given per kg dry soil.
Suolanen, V. Report: IAEA, Vienna (Austria). Validation of models using Cherno- byl fallout data from southern Finland. Scenario S. Second report of the VAMP multiple pathways assessment working group, Sep 1996, 483 p., and p 373-411. RP IAEA-TECDOC904	DETRA: Model description and evaluation of model performance (Doses via Environmental Transfer of Radionuclides).	Simulation mod- elling on Cher- nobyl fallout in Finland.	Radionuclides.	Crops, vegeta- bles, milk, meat.		The computer code DETRA is a generic tool for environmental transfer analyses of radioactive or stable substances. The code has been applied for the biospheric transfer of radionuclides in consid- eration of foodchain exposure pathways in the analyses of off-site consequences of reactor acci- dents. For each specific application an individually tailored conceptual model can be developed. The biospheric transfer analyses performed by the code are typically carried out for terrestrial, aquatic and food chain applications.
Suolanen, V. Report: STUK-YTO-TR115, Dec. 1996, 43 p.	Model description and evaluation of model perform- ance, scenario S. Multiple pathways assessment of the	Southern and central Finland. Simulation.	Assumed Cs-137 deposition pro- file and quantity similar to those	Various food- stuffs.		A modelling approach was used to predict doses via terrestrial and aquatic environments. Intermedi- ate results of the study, such as concentrations in various foodstuffs and the resulting body burdens

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
	IAEA/CEC co-ordinated research programme on vali- dation of environmental model predictions (VAMP).		resulting from the Chernobyl accident.			were presented.
Suolanen, V. Report: STUK-YTO-TR65, Feb. 1994, 30 p.	Model of transfer of cesium and strontium to domestic animal products as a conse- quence of accidental deposi- tion on ground. In Finnish.	Finland.	¹³⁷ Cs, ¹³⁴ Cs and ⁹⁰ Sr.	Plants, milk products, meat (beef and pork), grain.	Deposition time- points: 1st May; 1st July; 1st September.	Simulation model of dynamic behaviour of ra- dionuclides after an accident was applied and stud- ied. The contamination of domestic animal prod- ucts and grain are predicted in relation to the sea- son of deposition case.
Suolanen, V.; Ilvonen, M. Report, STUK-YTO-TR149, Oct. 1998, 20 p.	Generic uncertainty model for DETRA for environmental consequence analyses. Appli- cation and sample outputs.	Finland [.] Simulation.	Cs-137, 10 kBq/m ² .	Milk.	Pasture and season model- ling.	Estimation of contamination of milk caused by radioactive deposition was carried out with the computer simulation model DETRA. The multi- sequence calculation consisted of a pasture model- ling and season modelling parts. DETRA provides an easily applicable tool for uncertainty analyses.
Tompkins J.A., Wadey P., Bell J.N.B., Butler A.P., Shaw G., Wheather H.S. Report (Conf.): 28. annual meeting of the European Society for New Methods in Agricultural Research Annual meeting of the International Union of Radioecology (IUR) Work- ing Group Soil-to-Plant Transfer Brno (Czech Republic), 26-29 Aug 1998, 202 p., p. 87. INIS-CZ0022	New Scalable Transfer Fac- tors: A Study of the Key Processes Affecting Soil-to- Plant Transfer Factors and the Development of a New Scal- able Approach.	UK.				TF.
Tracy, B.L., Walker, W.B. and McGregor, R.G. JR: Health Physics, Mar. 1989, v. 56(2), p. 239-243.	Transfer to Milk of ¹³¹ I and ¹³⁷ Cs Released During the Chernobyl Reactor Accident.	Canada.	Cs-137, I-131.	Pasture grass, milk.		For the transfer of radionuclides from air to pasture grass and milk observed, it appears that dry deposition was more significant for I and wet deposition for Cs. Concentrations of I-131 in milk measured in Bq/l were 1,000 to 2,000 times the concentrations of particulate I-131 in air measured in Bq/m ³ . About 10% of deposited Cs was intercepted by the edible portion of the grass.
Ulvsand, T. and Lönsjö, H. (1994). Försvarets Forskningsanstalt Rap- port, FOA 4 C-40325-4.3.	Beräknade effekter av radio- aktivt nedfall på jordbruk- prosduktionen i Sverige. Dosbesparing vid senarelägg- ning och effekter på utfallet i växtodling.	Dose calculations for three regions: Gss/ south, Ss/middle and Nn/north Swe- den.	Accumulated external dose was 100 mSv during the first week after fall- out event.		Calculations for a whole production season in Swed- ish agriculture with start after fallout event.	A literature revue of Nordic study of countermea- sure was investigated. A description of the short- as well as the long-term agricultural situation after a deposition of radioactive nuclides provides the background for a review of experimental work to develop efficient countermeasures, carried out since the sixties. Experiments have mainly concerned two

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						strategies: 1. Ploughing in a contaminated surface soil layer to place it at a considerable depth in the soil profile. External radiation is reduced, as too root accessibility and plant availability of the nu- clides. 2. Fertilization and liming to dilute plant- available caesium and strontium in the soil, thereby reducing root uptake of the nuclides.
United Nations Scientific Committee on the Effects of Atomic Radiation 1988 Report for the General Assem- bly, with annexes	Sources, Effects and Risks of Ionizing Radiation	Europe	I-131, Cs-137	Milk, Leafy Vegetables, Grain, Meat	European soils, non-specified	Actual measurements, correlation curves fitted showing integrated transfer factors according to latitude. First year data. Transfer factors quoted as Bq a/kg per kBq/m ² : I-131 Milk: ~4 (32 N) - 0.1 (~56 N); Leafy vegetables: ~6 (3 N) - 0.09 (60 N); Cs-137 in Milk: ~6 (41 N) - ~3 (60 N), Grain ~5 (37 N)- ~0.8 (60 N); Leafy vegetables ~6 (35 N) - ~0.8 (60 N); Vegetables/fruit ~5.5 (40 N) - ~1 (58 N); Meat ~8 (40 N) - ~5 (60 N); Total diet ~7.5 (23 N) - 3 (60 N). See attached worksheet for full data.
UNSCEAR 2000: Sources and ef- fects of ionizing radiation	United Nations		Sr-90, I-131, Cs- 137	Deposition to diet data (total diet)		See attached worksheet for the deposition to diet data and the annual effective does per unit deposi- tion density data
Wagner, A. Hellmuth, K.H. Fischer, E. Report: BFE-R88-01, Dec. 1988, 116 p.	Radioecological investiga- tions in the food-chain air- soil-vine-wine. Pt. 1. Transfer of fallout from nuclear weapon tests from soil to wine. Radiooekologische Untersuchungen in der Nah- rungskette Luft-Boden-Rebe- Wein. T. 1. Transfer von Kernwaffenfallout vom Bo- den in den Wein. In German.	Germany.	H-3, C-14, Sr- 90, and Cs-137.	Beverages, grapes.	Soil parameters, climatic condi- tions.	The contents of H-3, C-14, Sr-90, and Cs-137 in air, soils, leaves of the vine, grapes and wine were measured and site-specific transfer factors were calculated. Data concerning soil parameters, cli- matic conditions, cultivation and vinification were collected. Transfer factors soil-grapes were 0.027 for Sr-90 and 0.0057 for Cs-137.
Wagner, A. Report: BFE-R89-03, Oct 1989, 205 p.	Radioecological investiga- tions in the food-chain air- soil-vine-wine. Pt. 2. Final report. Radiooekologi- sche Untersuchungen in der Nahrungskette Luft-Boden- Rebe-Wein. T. 2. Abschluss- bericht . In German.	Germany.	Sr-90, Cs-137, Cs-134, K-40, H-3, C-14 and Ra-226.	Vine leaves, grape.	Soil parameters, climatic condi- tions.	This Part 2 presents all of the results, including the harvest of 1986 and 1987 and thus describes the consequences of the Chernobyl accident. H-3, C-14, Sr-90 and Cs-137 were determined in soil, vine leaves, grapes and wine at different locations.Sitespecific transfer factors were calculated for Sr-90 and for the Cs radionuclides. Site-specific influences such als soil parameters, climate, cultivation, vinification and differences between years had no pronounced effects on transfer factors.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Wagner, H. Mirna, A. Conf: Radioecology symposium. Stuttgart (Germany, F.R.). 15-16 Oct., 1981.	Transfer factors feed/meat in bovine and pigs. Transferfaktoren Futtermit- tel/Fleisch bei Rind und Schwein. In German.	Various parts of the FR of Ger- many.	⁹⁰ Sr, ¹³⁷ Cs, ²¹⁰ Pb.	Animal feeds, consumer prod- ucts.		Meat samples examined for their content of Cs- 137, Sr-90, and Pb-210. The data determined by measurement for each of the location-specific samples revealed a transfer factor for Cs-137 rang- ing between 3 x 10-2 and 7.5 x 10-2. For Sr-90, agreement between measured data and the theoreti- cal value given in the General Instructions and Standard Values for Calculation is found.
Valcke, E. Elsen, A. Cremers, A. (1997). Zeolites, Volume 18, Issue 2-3, 3 February 1997, P. 225-231	The use of zeolites as amendments in radiocaesium- and radiostrontium- contami- nated soils: A soil-chemical approach. Part IV: A potted soil experiment to verify laboratory-based predictions.	Europe. Belgium	Sr-85, Cs-137	spinach	sandy podzol soil	Interionic effects on radiocaesium uptake in spin- ach (Spinacia oleracea L. cv. Subito) were meas- ured in a solution culture experiment. Radiocae- sium levels in the plants were poorly, but posi- tively, correlated with the K concentration in solu- tion.
Valcke, E. Vidal, M. Cremers, A. Ivanov, J. Perepelyatnikov, G. (1997). Zeolites, Volume 18, Issue 2-3, 3 February 1997. P. 218-224	The use of zeolites as amendments in radiocaesium- and radiostrontium- contami- nated soils: A soil-chemical approach. Part III: A soil- chemical test to predict the potential effectiveness of zeolite amendments	Europe. Belgium	Sr-85, Cs-138	spinach	sandy podzol soil	A potted soil experiment was performed to test the effect of the addition of different types of zeolites on the Cs-137 or Sr-85 uptake by spinach grown on a sandy podzol soil. In all cases, a significant re- duction of the Cs-137 or Sr- 85 soil-to-plant trans- fer
Van den Hoek J., Kirchmann R.J., Colard J. and Sprietsma J.E. JR: Health Physics, 1969, v. 17, p. 691-700.	Importance of some Methods of Pasture Feeding, of Pasture Type and of Seasonal Factors on ⁸⁵ Sr and ¹³⁴ Cs Transfer from Grass to Milk.	Belgium.	⁸⁵ Sr, ¹³⁴ Cs.	Grass, milk.		The transfer coefficient from grass to milk ranged from $0.31 - 0.45\%$ for ¹³⁴ Cs and from $0.05 - 0.07\%$ for ⁸⁵ Sr, the lowest transfer of ¹³⁴ Cs and the highest of ⁸⁵ Sr being recorded at the beginning of the grazing season.
Vandenhove, H. Van Hees, M. Bacquoy, C. Vandecasteele, C.M. (1997). Journal of Environmental Radioactivity Volume 37, Issue 2, 1997, 193-200.	Usefulness of AFCF as a Countermeasure for Radio- caesium Transfer from Loamy Soil to Rye-grass and Clover	Europe.	radiocaesium	rye-grass grown and clover,	on sandy soil and loamy soil	A laboratory method is presented to estimate the effectiveness of zeolite amendments on soils con- taminated with radiocaesium and radiostrontium. The method is tested for various soil types from Belgium, Belarus, Russia, and Ukraine. Transfer factors of Cs-137 (Bq/g d.w.plant // Bq/g d.w. soil)
Vankerkom, J., Van Hees M., Vandecasteele CM., Colard J., Culot JP. and Kirchmann R. Book (Conf.): 4. Cadarache interna- tional Symposium on Radioecology. Cadarache (France). 14-18 Mar 1988. Vol. 2. Cadarache (France). Section Documentation - CEN/Cadarache.	Transfer to Farm Animals (Ruminants) and Their Prod- ucts of Cs-134, Cs-137 and I- 131 after the Chernobyl Ac- cident.	Belgium.	Cs-134, Cs-137, I-131.			The evolution of the transfer of radioisotopes from grass to milk was followed in open field conditions during first months after deposition. The ecological half-lives in grass and milk for iodine were 4.6; 5.3 and 5.8 d respectively; for radiocesium values were 33, 80 and 87 d. The calculated transfer coefficients provided values increasing during the period of 4 months after deposition from 0.03 to 0.08 d/l for sheep and from 0.003 to 0.01 d/l for cows.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
p. E111 - E119.			•		,	
Ward G.M. and Johnson J.E. JR: Health Physics, Mar. 1965, v. 11, p. 95-100.	The cesium-137 Content of Beef from Dairy and Feed- Lot Cattle.	USA.	¹³⁷ Cs [.]	Hay, grain, milk, meat		The ¹³⁷ Cs levels per kg of edible meat leveled off at less than 1per cent of the daily intake in mature dairy cattle, at 3 per cent in feed-lot cattle and 15 per cent in calves. The ratio of activity meat/milk per kg ranged from 1.2 to 4.9.
Ward G.M., Johnson J.E. and Stewart H.F. In Book: Radioactive Fallout from Nuclear Weapons Tests. Proceedings of the Second Conference, German- town, Maryland, Nov. 3-6, 1964. p.703-710.	Cesium-137 Passage from Pre ^c ipitation to Milk.	USA.	¹³⁷ Cs.			TF.
Watabe, Teruhisa JR: Hoken Butsuri, 1993	Transfer factor of ¹³⁷ Cs from deposition to total-diet: P ₂₃ for assessing effective dose equivalent commitment of the general public through inges- tion pathways by UN- SCEAR's method, (1). Appli- cation for the radioactivity survey data to preparation of the P ₂₃ Tokio and Hokkaido.	Japan Tokio and Hok- kaido	Depo ^s ition den- sity 1kBq/km ² (¹³⁷ Cs).	Total-diet that includes milk and meat.		
Vetrov V.A., Andrianova G.A. Book (Conf.): International sympo- sium on environmental contamina- tion following a major nuclear acci- dent, Vienna, Austria, 16-20 Oct 1989. IAEA, 1990, 451 p., v. 2, p. 17-27. IAEA-SM306/116.	Accumulation of Chernobyl Radionuclides in Agricultural Plants During 1986-1988 in Relation to Contamination Conditions and Soil Charac- teristics.	Russia, Ukraine.				Interception factors from soil to plants are given.
Vidal, M. Rauret, G. JR: Journal of Radioanalytical and Nuclear Chemistry, Jun 1994, v. 181(1), p. 85-95.	Prediction capacity of a se- quential extraction scheme.	Spain.	⁸⁵ Sr, ¹³⁴ Cs, ¹¹⁰ Ag.	Plants.	Sandy, sandy- loam soils.	Total soil-to-plant transfer of ¹³⁴ Cs and ⁸⁵ Sr is higher in sandy oils than in sandy-loam soil, as expected and predicted by the scheme.
Wiechen, A. Report: Status report on radionuclide transfer. Statusbericht ueber den Transfer von Radionukliden. Jan. 1980, p. 140-145. INIS-mf6902	Transfer from vegetation to milk. Transfer Futter - Milch. In German.	Germany.	Sr, Cs, I and other radio- isotopes.	Animal feeds, plants, milk.	D ⁱ ffe ^{re} nt soils.	The transfer of 3H, 14C, Sr-, I- and Cs isotopes from food into milk is reported. The transfer factors found in several experiments and in different soils are listed.
INIS-mf6902 Wiechen, A.; Heine, K.	Conclusions from the results	Germany.	¹³¹ I.	Milk.		The observed contaminations were a consequen

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
JR: Kieler Milchwirtschaftliche Forschungsberichte, 1978, v. 30(2), p. 205-217.	of I-131 surveillance in milk and grass in 1976 and 1977. Folgerungen aus den Ergeb- nissen der J-131- Ueberwachung von Milch und Bewuchs in den Jahren 1976 und 1977. In German.			Grass samples.		of two nuclear weapon tests on 26/9/1976 and 17/9/1977 in China. On the basis of the numerical values of these measurements a transfer factor grass-milk 1.1.10-3 pCi/l : pCi/daily intake has been estimated. This mean value is about one power of tenths lower than the value assumed by the German Radiation Protection Commission. Direct measurements of ¹³¹ I in air and milk lead only to transfer factors of 200 to 800 m3 air/l milk, that correspond far better with the experience in ¹³¹ I surveillance measurements.
Wilkins BT., Green N. and Brad- ley EJ. Book (Conf.): 4. Cadarache interna- tional Symposium on Radioecology. Cadarache (France). 14-18 Mar 1988. Vol. 2. Cadarache (France). Section Documentation - CEN/Cadarache. p. E129 - E135.	A Comparison of the Transfer from Feed to Milk for Radio- cesium of Different Origins.	UK.	Cs-137.		Dry and wet depositions. Seasonal varia- tions.	This paper compares results from several field investigations to illustrate the influence of the form of the radiocesium upon availability for uptake. Milk transfer coefficients derived from artificial conditions are not sufficient to describe transfer in natural system adequately. Several factors can affect the intake of activity by grazing cattle, and their relative importance changes with ti _m e and ^c ircumstance. Values of Fm (d L-1) are given in table for a season and dry / wet depositions.
Wilkins, B.T.; Green, N.; Cooke, A.I.; Weekes, T.E.C.; Rimmer, D.L. JR: Radiation Protec- tion Dosimetry, 1997, v. 69(2), p.111-116.	The availability of soil- associated radionuclides for uptake by ruminants: implica- tions for radiological assess- ment models.	U.K.	¹³⁷ Cs, ^{239/240} Pu and ²⁴¹ Am; limited studies on ⁹⁰ Sr.	Grass	A range of soil types.	Foodchain model, validation using published data and dedicated in vitro experiments.
Wilmott, S.; Nair, S.; Ponting, A.C. Report (Conf.): Seminair on Meth- ods and Codes for Assessing the off- side Consequences of Nuclear Acci- dents. Athens (Greece), 7-11 May 1990. EUR1301/2	An uncertainty analysis of the digetion dose following a discrete deposition from atmosphere.	Simulation. CEC.	¹³¹ I, ¹³⁷ Cs, short- and long-lived isotopes.	Vegetables, milk.		Probability distributions for the committed dose equivalent per unit intake of ¹³¹ I and ¹³⁷ Cs have been derived. The expectation values of the dose conversion factors were found to be in good agreement with ICRP recommended values.
Wirth, E. Book, Berlin, Germany, F.R. Reimer, 1980, 112 p. STH1/80.	Literature on the problem of the transfer of long-lived radionuclides from soil to plants. Literaturstudie zur Problema- tik des Transfers langlebiger Radionuklide aus dem Boden in die Pflanzen. In German.	Germany. Literature survey.	Long-lived radionuclides.	Plants.		Test principle and test conditions are briefly de- scribed. When judging the measured transfer fac- tors for Ce, Co, J, Mn, Tc, Pu, Sr, Cs, and Zr as to their relevance for the agricultural practice, obvious failures in testing and mistakes in the evaluation are pointed out. As for the transfer of the elements Ce, Co, J, Mn, and Tc from the ground into the plants, only 1 to 3 points in literature are quoted in the expertises.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
Voigt G., Howard B.J., Van- decasteele C., Mayes R.W., Belli M., Sansone U., Stakelum G., Colgan P.A., Assimakopoulos, P., Crout N.M.J., Jones B.E.V, Hove, K. Book (Conf.): 25. Annual meeting of Fachverband fuer Strahlenschutz e.V. (FS): Environmental radioactiv- ity, radioecology, radiation effects. Binz auf Ruegen (Germany), 28-30 Sep 1993, p.599-604. FS93-67-T	Factors Affecting Radiocae- sium Transfer to Ruminants. Results of a Multi-National Research Group.	International team. Six countries, Nine laboratories.	¹³⁷ Cs, ¹³⁴ Cs.			A two year CEC-DG XII Radiation Protection Programmewere aimed to identify and quantify some of the most important factors influencing the radiocaesium levels in animal food products. Programme has adopted a more mechanistic ap- proach and conducted experiments to measure the true absorption coefficient (A_t) of radiocaesium. Coefficients are given in tables.
Voigt G., Müller H., Pröhl G. and Paretzke HG., Propstmeier G., Röhrmoser G. and Hofmann P. JR: Health Physics, Mar. 1989, v. 57(6), p. 967-973.	Experimental Determination of Transfer coefficients of ¹³⁷ Cs and ¹³¹ I from Fodder into Milk of Cows and Sheep after the Chernobyl Accident.	Germany.	Cs-137, I-131.	Feed, milk		Transfer coefficients for cow's milk were calculated to be 0,003 d L ⁻¹ (range 0,0015 to 0,005) for 131 I and 0,003 d L ⁻¹ (range 0,0025 to 0,004) for 137 Cs.
Voigt, G.; Probstmeier, G.; Roehrmoser, G. Report: GSF8/93, Mar 1993, 32 p.	Investigations into the effect of stable iodine administra- tion to cows on the transfer of iodine-131 from the food to the cow's milk. Final report. Untersuchungen zum Einfluss der Versorgung von Milch- kuehen mit stabilem Jod auf den Transfer von I-131 vom Futter in die Milch. Ab- schlussbericht. In German.	Germany.	Iodine-131.	Animal feeds, milk.		The investigations were carried out with the aim to quantify the effects of stable iodine taken up in various concentrations with the food on the rates of radioactive iodine-131 eliminated in the milk. Milk transfer factors remained in the range of 0.015+- 0.002 d/L and bore no relation to the added con- centrations of stable iodine (10 and 100 mg/d). The only exceptions are cows kept in low supply areas. Here, it appears likely that the addition of stable iodine to the food would have a detectable effect on the elimination rates.
Voigt, G.; Henrichs, K.; Proehl, G.; Paretzke, H.G. JR: Radiation and environmental Biophysics, May 1988, v.27 (2), p. 143-152.	Measurements of transfer coefficients for ¹³⁷ Cs, ⁶⁰ Co, ⁵⁴ Mn, ²² Na, ¹³¹ I and ^{95m} Tc from feed into milk and beef.	Germany. Experimental.	¹³¹ I, ¹³⁷ Cs.	Animal feed, meat, milk.		The equilibrium transfer coefficients for 137 Cs for milk 0.0022±0.0002 d/l; for meat 0.0062±0.0006d/kg. For 131 I for milk 0.009± 0.0014d/l.
Voors P.I. and van Weers A.W. JR: Journal of Environmental Radio- activity, 1991, v. 13, p. 125-140.	Transfer of Chernobyl Radio- cesium (¹³⁴ Cs and ¹³⁷ Cs) from Grass Silage to Milk in Dairy Cows.	Netherlands.	¹³⁷ Cs, ¹³⁴ Cs.	Grass silage, milk.		An average transfer coefficient from feed to milk, F_m of 0.25% d liter ⁻¹ has been derived for radiocesium.
Yassine, T.; Al-Oudat, M.; Oth- man, I.; Sharaneq, A. Report, AECS-PR/FRSR166. Jul. 1998, p. 66.	Transfer of ¹³⁷ Cs and ⁹⁰ Sr from contaminated soil to some crops in Syria. In Arabic.	Syria.	Isotopes of Cs and Sr.	Vegetables, crops, cereals.	Natural soil with added mineral and organic matter.	The Tfs (expressed as Bq/g of dried material to Bq/g of soil) highest values were 3.78 for ⁹⁰ Sr and 0.067 for 137Cs in green vegetables, whereas cereal grains had the lowest values. The TFs for both

Yasine, T: Al-Oudat, M.: Oth- man, I.; Sharanck, A. Transfer of radio-cosium and radio-strontium forn typical soil to score crops by factor up to 4 man, I.; Sharanck, A. Transfer of radio-cosium and radio-strontium forn typical soil to score crops in Syria. Syria. ¹¹ Cs, ¹⁰ Sr. Cercal crops, vegetables. High pH, low organic matter and high cs. Angeothe was not found form "Sr. Mar-Apr 1999, (60), p. 82-83. Transfer of radio-cosium and radio-strontium forn typical soil to score crops in Syria. Syria. ¹¹ Cs, ¹⁰ Sr. Cercal crops, vegetables. High pH, low organic matter and high cs. Angeothe was not found form "Sr. Yusuda, Hiroshi Uchida, Shigen, JR: Journal of Nuclear Science and Dec 1994, v. 31(12), p. 1308-1313. Statistical analyses of soil-to- tium and cesium. Japan. ¹¹⁷ Cs, ⁴⁰ Sr. Leafy plants: cabbage, spinach and grass. Two soil types: loam and sand. Yusuda, Hiroshi Uchida, Shigen, JR: Journal of Nuclear Science and technology, Dec 1994, v. 31(12), p. 1308-1313. Statistical analyses of soil-to- tium and cesium. Japan. ¹¹⁷ Cs, ⁴⁰ Sr. Leafy plants: cabbage, spinach and grass. Two soil types: loam and sand. Yus, C; Gnanapragasam, E, Report, IAFA, Vienna (Austrin), Yuididation of model synthe the default Th of Cs were cansided for spin- ach, while the default Th of Cs were tikely to be and evaluation of model performance. Simulation mod- eling on Cher- nobyl fallou in Finland. Kadionuclides. Crops, vegeta- bles, milk, meat. Soils. RESRAD: Model description analyzed for the cost planto show equescipance in the contaminated soil; of rmatter seasessm	Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
man, I: Sharanek, A. JR. Aalam Al-Zara, Mar-Apr 1999, (60), p. 82-83.radio-strontum from typical soil. to some corps in Syria. In Arabic.radio-strontum from typical soil.vegetables.organic matter and high ex- changeable po- tassium and calcium in the soil.some common crops were investigated under field conditions for a period of three years. The results howed large variations in Tf values for both radiom- clicks were found in green vegetables.some common crops were investigated under field conditions for a period of three years. The results soil.some common crops were investigated under field conditions for a period of three years. The results calcium in the soil.some common crops were investigated under field conditions for a period of three years. The results calcium in the soil.Yasuda, Hiroshi Uchida, Shigeo. JR. Journal of Nuclear Science and Technology, Dec 1994, v. 31(12), p. 1308-1313.Statistical analyses of soil-to- plum and cesium.Japan.137Cs, ⁵⁰ Sr.Leafy plants: cabbage, spinch and grass.Two soil types: loam and sand and grass.Two soil types: loam and sand.Two soil types: loam and sand.Two soil types: loam and sand.Vu, C.; Ginamapragasam, E. Report: JAEA, Vienna (Austria), Validation of model performance.Restront model using Cheven two soil types loam and sand.Soils.RestRAD uses the relation between radionuclide conventinger spin which is the sum of products of pathway factors'. Nine potential copource of path cost stront ifinland.Yu, C.; Ginamapragasam, E. Report: JAEA, Vienna (Austria), Spi 1996, 483 p., and p 412-432. RP 14EA-TECIDOC904Restront model using Chever and products of pa							matter and high exchangeable potassium and ^{cal-} cium in the soil. The TFs of ¹³⁷ Cs were decreased from the first year for most crops by factor up to 4, while this approach was not found for ⁹⁰ Sr.
JR: Journal of Nuclear Science and Technology, Dec 1994, v. 31(12), p. 1308-1313. plant transfer factors. Stron- tium and cesium. plant transfer factors. Stron- tium and cesium. loam and sand. summarized in the IUR report were statistically analyzed for three leafy plants: cabbage, spinach and grass. Dec 1994, v. 31(12), p. 1308-1313. plant transfer factors. Stron- tium and cesium. plant transfer factors. Stron- tium and cesium. plant transfer factors. Stron- tium and cesium. Val, C.; Gnanapragasam, E. Report: IAEA, Vienna (Austria). Validation of models using Cherno- byl fallout dtat from southerm Finland. Scenario S. Scend report of the VAMP multiple pathways assessment working group, Sep 1996, 483 p., and p 412-432. RP IAEA-TECDOC904 RESRAD: Model description and evaluation of mate stress of the transfer factors. Stron- tium and cesium. Simulation mod- elling on Cher- nobyl fallout in Finland. Soils. Soils. RESRAD uses the relation between readounces pathway sum, which is the sum of products of "pathway sum, which is the sum of products of "pathway fallow dtat from livestock fed with fodder grown in the contaminated soil; of meat from livestock fed with fodder grown in the contaminated soil; and from ingestion of aquatic foods (fish) from drinking water from a well or	man, I.; Sharanek, A. JR: Aalam Al-Zarra, Mar-Apr 1999, (60), p. 82-83.	radio-strontium from typical soil to some crops in Syria.	Syria.		vegetables.	organic matter and high ex- changeable po- tassium and calcium in the soil.	some common crops were investigated under field conditions for a period of three years. The results showed large variations in Tf values from one crop to another. The highest values for both radionu- clides were found in green vegetables, whereas cereal grains had the lowest values. The transfer factor values of Sr-90 were generally much higher than those of Cs-137 for the same crop by factors ranged up to 263.
Report: IAEA, Vienna (Austria). Validation of models using Cherno- byl fallout data from southern Finland. Scenario S. Second report of the VAMP multiple pathways assessment working group, Sep 1996, 483 p., and p 412-432. RP IAEA-TECDOC904and evaluation of model performance.elling on Cher- nobyl fallout in Finland.concentrations in soil and the dose expressed as a pathway sum, which is the sum of products of "pathway factors". Nine potential exposure path- ways are analyzed. Among others: internal radia- tion from ingestion of plant foods grown in the contaminated soil; of meat from livestock fed with fodder grown in the contaminated soil; of milk from livestock fed with fodder grown in the contaminated soil; and from ingestion of aquatic foods (fish) from drinking water from a well or	JR: Journal of Nuclear Science and Technology,	plant transfer factors. Stron- tium and cesium.			cabbage, spinach	loam and sand.	analyzed for three leafy plants: cabbage, spinach and grass. Tfs reported by IAEA were examined. The Tfs in the IUR report showed log-normal distributions for the three leafy plants. The geomet- ric mean was found to be significantly different between plant species and between two soil types: loam and sand. In comparison to the IUR values, the default Tfs of Sr were considered to be overes- timated for cabbage and underestimated for spin- ach, while the default Tfs of Cs were likely to be overestimated for cabbage and underestimated for spinach and grass.
	Report: IAEA, Vienna (Austria). Validation of models using Cherno- byl fallout data from southern Finland. Scenario S. Second report of the VAMP multiple pathways assessment working group, Sep 1996, 483 p., and p 412-432. RP IAEA-TECDOC904	and evaluation of model performance.	elling on Cher- nobyl fallout in Finland.			Soils.	RESRAD uses the relation between radionuclide concentrations in soil and the dose expressed as a pathway sum, which is the sum of products of "pathway factors". Nine potential exposure path- ways are analyzed. Among others: internal radia- tion from ingestion of plant foods grown in the contaminated soil; of meat from livestock fed with fodder grown in the contaminated soil; of milk from livestock fed with fodder grown in the contaminated soil; and from ingestion of aquatic

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
JR: Health Physics, 1985, v. 49(5), p. 737-745.	Food Animals to Man's Inges- tion Dose.		nuclides.			sources are documented and presented in table.
Årkrog A. Danish Data from Cher- nobyl fallout	Risø	Denmark	Sr-90 and Cs- 137	rye, barley, wheat, oats, dried and fresh milk, beef, pork and total diet		Post Chernobyl first year data - average of Jutland and islands data. The following first year results are given in mBq/kg per Bq/m ² Sr-90: Rye: 14.8. Barley: 14.4. Wheat: 13.4. Oats: 23.4. Potatoes: 1.5. Cabbage: 8.1. Carrot: 9.2. Apples: 0.3. Milk: 2.7. Beef: 0.1. Pork: 0.9. Cs-137: Rye: 9.6. Barley: 0.8. Wheat: 0.6. Oats: 0.7. Potatoes: 0.2. Cabbage: 0.2. Carrot: 0.1. Ap- ples: 1.4. Milk: 1.3. Beef: 1.7. Pork: 0.6. Total diet (Bq per Bq/m ²): Sr-90 = 2.1; Cs-137 = 0.4
Årkrog A. Danish Data from fallout (pre-Chernobyl)	Risø	Denmark	Sr-90, Cs-137	rye, barley, wheat, oats, dried and fresh milk, beef, pork and total diet		Pre-Chernobyl fallout data. Time integrated and first year data, based on measurements. The follow- ing results are given in mBq y kg ⁻¹ , with the inte- grated data given first, followed by the first year data for each foodstuff. Sr-90: Rye: 32; 23. Barley: 24; 17. Wheat 23; 15. Oats: 37; 14. Dried milk (Jutland) 4.6; 1.8. Dried milk (islands): 2.6; 1.5. Fresh milk (Jutland): 3.5; 1.8. Fresh milk (islands): 3.4, 1.3. Beef: 1.4; 0.5. Pork 1.0; 0.23. Cs-137: Rye: 11; 11. Barley: 8; 8. Wheat 8; 8. Oats: 7; 7. Dried milk (Jutland) 4.4; 3.7. Dried milk (islands): 2.9; 2.6. Fresh milk (Jutland): 3.6; 3.4. Fresh milk (islands): 2.6, 2.4. Beef: 28; 25. Pork 35; 18. Total diet (Bq per Bq/m ²): Sr-90 = 5.0; 1.1; Cs- 137= 4.2; 1.8.
Årkrog A. In Book: Dahlgaard, H. (ed.) Nordic radioecology. The transfer of ra- dionuclides through Nordic ecosys- tems to man, Amsterdam (Netherlands), Elsevier, 1994, 496 p., p. 433-456.	Doses from the Chernobyl Accident to the Nordic Popu- lations via Diet Intake.	Denmark.				
Årkrog, A. In Book: Dahlgaard, H. (ed.) Nordic radioecology. The transfer radionu- clides through Nordic ecosystems to man, Amsterdam, 1994, p.149-163.	Direct contamination - sea- sonality.	Denmark.	¹³¹ I, ¹³⁷ Cs and other radionu- clides.	Terrestrial vege- tation, crops.	Contamination depends on the season of the year. Thus, im- pact of fallout was higher in southern than in	Direct contamination and secondary depositions; seasonality and temperature dependence.

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
					northern Europe for the same deposition den- sity.	
Årkrog, A. JR: Journal of Environmental Radio- activity, 1988, v. 6(2) p. 151-162.	The radiological impact of the Chernobyl debris compared with that from nuclear weap- ons fallout.	Denmark.	¹³¹ I, ¹³⁷ Cs, ⁹⁰ Sr.	Barley, oats, rye, wheat, cereals, milk.		Special emphasis is paid to the contamination of milk and cereal products. Furthermore, it is shown how the composition of the Chernobyl debris changed with distance from Chernobyl, due to the differences in volatility of the various radionuclides involved. Finally, the paper compares the dose equivalents received from unit releases (1 PBq ¹³⁷ Cs) of global fallout and of Chernobyl accident debris.
Årkrog, A. Conf.: 6. Nordic radio-ecological seminar, Torshavn, Foeroyar (Denmark), 14-18 Jun 1992, 398 p., p. 1-10.	Ecological half-lives in the Faeroe Islands' and in Danish agricultural ecosystems. Oekologiske halveringstider i faeroeske og danske land- brugsoekosystemer. In Danish.	Denmark.	Sr-90, Cs-137.	Cereals, milk.		It is important to be conversant with the ecological halving times when determining doses from radio- active pollution of the environment. This subject is elaborated and dose calculations and transfer fac- tors are dealt with. It is stated that Sr-90 shows a longer ecological halving time then Cs-137. Cs-137 from global fallout has a longer halving time than that originating from the Chernobyl accident. Un- expectedly, global fallout in Danish food products has a longer ecological halving time than is found in products from the Faroe Islands.
Å rkrog, A. Report (Thesis of Dissertation), RISO-R437(pt.1) Jun 1979, 267p.	Environmental studies on radioecological sensitivity and variability with special emphasis on the fallout nu- clides ⁹⁰ Sr and ¹³⁷ Cs. Pt.1. Main text.	Denmark.	⁹⁰ Sr, ¹³⁷ Cs.	Cereals, bread, milk, meat, vegetables.	Soils.	Radiological sensitivity and variability were applied to the ⁹⁰ Sr and ¹³⁷ Cs data obtained from the environmental studies on the human foodchain carried out during the last two decades in Denmark, the Faroe Island, and Greenland.
Årkrog. A. JR: Health Physics, May 1975, v. 28, p. 557-562.	Radionuclide Levels in Ma- ture Grain Related to Ra- diostrontium Content and Time of Direct Contamina- tion.	Denmark.	Cs-137 Sr-90 and oth- ers.		Crops, different stage of devel- opment.	The direct contamination of cereals depends greatly on the stage of development of the plants. Certain nuclides, e.g. ⁹⁰ Sr, ¹⁴⁴ Ce and ¹⁰⁶ Ru will hardly show up in the grain, if contamination takes place at the early stages of development. Nuclides such as ⁶⁵ Zn, ⁵⁵ Fe, ¹³⁷ Cs, ⁶⁰ Co and ⁵⁴ Mn are, on the other hand, easily translocated to the seeds.
Øhlenschlæger M., Gissel-Nielsen G. Report: RISØ-M2831, Nov 1989, 20 p.	Transfer of radiocaesium to barley, rye grass and pea.	Denmark.	Cs-137, Cs-134.	Spring barley, rye grass and pea.	Clay-loam and organic soil.	The aim was to identify crops with relatively low or high root uptake of ¹³⁷ Cs and ¹³⁴ Cs. Although such differences may be small, a shift in varieties might be a cost-effective way to reduce collective doses. Each crop was grown in two types of soil, a clay- loam and an organic soil. ¹³⁷ Cs was added to the

Author/Source	Publication name	Site	Deposition	Product(s)	Soil, season	Abstract
						clay-loam. The organic soil, which was contami-
						nated with ¹³⁷ Cs from the Chernobyl accident, was
						supplied with ¹³⁴ Cs. Barley and Italian rye-grass
						were identified among the species tested as plants
						with a relative high uptake of radio-caesium.

Bibliographic Data Sheet

Title	Transfer Factors for Nuclear Emergency Preparedness
Author(s)	Eila Kostiainen * Riitta Hänninen * Klas Rosén [#] Enok Haak [#] Åke Eriksson [#] Sven Poul Nielsen ⁺ Miranda Keith-Roach ⁺ Brit Salbu [¤]
Affiliation(s)	 * Radiation and Nuclear Safety Authority (STUK), Finland # Swedish University of Agricultural Science, Sweden + Risø National Laboratory, Denmark ¤ Agricultural University of Norway
ISBN	87-7893-134-7
Date	December 2002
Project	NKS/BOK-1.4
No. of pages	103
No. of tables	15
No. of illustrations	5
No. of references	12
Abstract	This report by the NKS/BOK-1.4 project subgroup describes transfer factors for radiocaesium and radiostrontium for the fallout year and the years after the fallout. The intention has been to collect information on tools to assess the order of magnitude of radioactive contamination of agricultural products in an emergency situation in Nordic environment. The report describes transfer paths from fallout to plant, from soil to plant and to animal products. The transfer factors of radionuclides (Sr, Cs, I) given in the report are intended to be used for making rough estimates of the contamination of agricultural products soon after the heaviness and composition of the deposition (Bq m ⁻²) is known.
Key words	Transfer factor; Agriculture; Emergency Preparedness; Sr; Cs; I;

Available on request from the NKS Secretariat, P.O.Box 30, DK-4000 Roskilde, Denmark. Phone (+45) 4677 4045, fax (+45) 4677 4046, e-mail nks@catscience.dk, www.nks.org