Calibration of A Small Anode Germanium Well Detector

NKS GammaSpec 2017
DTU Nutech, Roskilde, Denmark
19-20.9.2017

Joonas Tikkanen
Introduction

• Small anode germanium (SAGe) well detector manufactured by Canberra/Mirion
• Measurements possible both on top of the detector and inside the well
• High detection efficiency inside the well
 o Detection down to 20 keV
 o Complications arising from true coincidence summing (TCS)
• New type of detector at STUK
• Calibration the topic of Master’s thesis
True coincidence summing

- TCS is dependent on the decay scheme of the nuclide, the full energy peak efficiency (FEPE) and the total efficiency
- Higher efficiencies cause more TCS
- The effect corrected with a TCS correction factor c_{TCS}
- Large $c_{\text{TCS}} \rightarrow$ Uncertainties in the total efficiency calibration become more important
Measurement Geometries

- Standard containers at STUK: W and T containers (left)
 - Variable sample height and material
 - Measurements on top of the detector
- Test tube sample (right)
 - Inside the well
 - Constant filling height (40 mm), only water samples (for now)
FEPE calibration samples

• Standard samples ordered from NPL
• Thin filters on bottom of W and T containers
• Radionuclide solution diluted in the test tube
• About 20 gamma lines, energies from 46 keV to 1.8 MeV
• Multiple nuclides with TCS correction
Total efficiency calibration samples

- Radioactive solution on thin filters and diluted into test tubes
- One nuclide in a sample
 - Only one gamma line, other gamma or x-rays should not cause a significant percentage of pulses
 - Very few suitable nuclides
- Nuclides used: Pb-210 (46.5 keV), Am-241 (59.5 keV) and Cs-137 (661.7 keV)
Low energy spectrum with SAGe and BEGe

- Sometimes low detection efficiency is not a bad thing
Measurements

- The time constants were optimised to ensure as good a resolution as possible
 - FWHM 0.75 keV at 46.5 keV and 1.75 keV at 1332.5 keV
- Measurements long enough to ensure good statistics for the peaks
- Analysis done with UniSampo Shaman

![Graph showing Sn-113, 255.2 keV]
Measurements

- The time constants were optimised to ensure as good a resolution as possible
 - FWHM 0.75 keV at 46.5 keV and 1.75 keV at 1332.5 keV
- Measurements long enough to ensure good statistics for the peaks
- Analysis done with UniSampo Shaman
FEPE curve for the W geometry without TCS correction
FEPE curve for the T geometry without TCS correction
FEPE curve for the test tube geometry without TCS correction
Simulations

- Simulations needed for two purposes: uncertainty estimates and total efficiency curve
- MCNP was used in the simulations
- Statistical uncertainty small with reasonable simulation times
- Reliable modeling of physics and the geometry the main sources of uncertainty
- Unknowns: dead layer, crystal-window distance, window thickness...
Constructing the MC model

- 1. Best guess for the detector shape
- 2. Adjustment to match experimental results
 - Mainly dead layer thickness but also crystal-window distance and window thickness
 - The model has to work with all the sample geometries
- Different dead layers for FEPE and total efficiency
 - 0.2 mm and 0.4 mm on top
 - 0.05 mm and 0.16 mm in the well
 - 0.3 and 3 mm on sides and bottom
Simulated uncertainty estimates

- Effects of container dimension uncertainties, positioning uncertainty, sample material and sample height related uncertainties were estimated with simulations.
- Parameters were varied and the change in the efficiency was taken as the uncertainty.
- Sample related uncertainties for W (left) and test tube containers (right):
Simulation of the total efficiency curves

- Total efficiencies and uncertainties calculated from experimental data for the Pb-210, Am-241 and Cs-137 samples
- The MC model was modified so that the simulated total efficiency curves matched the experimental values
TCS correction factors

- The FEPE values without TCS correction and the simulated total efficiency curves were fed to UniSampo Shaman
- c_{TCS} calculation \rightarrow new FEPE values
- New c_{TCS} calculation with the new FEPE values \rightarrow same correction factors as with the first calculation
 - Iteration if they had differed
- Fifth order logarithmic polynomial fit
FEPE curve for the W geometry
FEPE curve for the T geometry
FEPE curve for the test tube geometry
Comparison with a BEGe detector B6 at STUK

![Diagram showing comparison with a BEGe detector B6 at STUK](image)

FEPE

Well detector test tube sample
B6 zero thickness W sample

E (keV)

10 100 1000

[Graph showing comparison between FEPE and energy (E) for different samples]
The comparison of actual peak count rates

- Larger volume, more activity in the sample
- Full W container vs. test tube sample:
Conclusions

• Good resolution and uncertainties were achieved
 o Better self absorption correction methods should be developed
• BEGe detectors better for W and T samples but the well detector is adequate
• Superior detection efficiency inside the well
• The actual peak count rates limited by sample size
• Good sample types
 o Small volume
 o Heavily concentrated water samples