NOW WE KNOW WHY THERE ARE SO FEW EXAMPLES OF MICROCOSM STUDIES IN RADIOECOLOGY.

Tanya. H. Hevroy, PhD
Mismatch between environmental protection goals and the endpoints measured

Ecosystem approaches are needed to support protection goals

Lack of good experimental data to evaluate ecosystem-level effects of radiation

...aim to have negligible impact on
- biological diversity,
- conservation of species,
- health and status of natural habitats / communities

The future of Radioecology
Radioecology studies thus far...

RAPS approach:
- Single species endpoints:
 - Mortality, reproduction, chromosome damage
- Models

Ecosystems approach:
- Population endpoints
 - growth, size, density, age, net reproduction, rates
- Community endpoints
 - Structure (biodiversity, food web)
 - Functional (primary production, biomass, energy)
- Indirect effects
How to study an ecosystem?

Size / organisational / ecological level

- Genome
- Proteins
- Tissues
- Organism
- Population
- Community
- Ecosystem

Molecular Assays
One-species experiments
Few species
Many sp’s
Field investigations

Ecological relevance / nature-like
Interpretability / replicates

Figure: Hallvard Haanes
Microcosms and mesocosms...

Multispecie experimental units.

1. **Contain abiotic and biotic components**
2. **Can show ecological processes**
B; Radioecology and environmental assessments.

NORCO I & NORCO II
NORCO I: Radiation effects and ecological processes in a freshwater microcosm.

Ecosystems approach:
- Population endpoints
 - growth, size, density, age, net reproduction, rates
- Community endpoints
 - Structure (biodiversity, taxonomi, food web)
 - Functional (primary/NEP production, biomass, energy)
- Indirect effects
Cosms exposed to ionizing radiation from Co-60 source for 21 days
Dose comparisons

Chernobyl Lakes – 0.1 – 30 mGy/hr

Chernobyl acute phase – estimated absorbed dose up to 20 Gy/d for pine trees (UNSCEAR 2008)

Fukushima – Strand et al 2014
Some results...

<table>
<thead>
<tr>
<th>Plants: photosynthetic parameters - different sensitivity</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lemna minor</th>
<th>Lysemachia nummularia</th>
<th>Egeria densa</th>
</tr>
</thead>
<tbody>
<tr>
<td>I a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I b) Log ETR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II a) Log PS II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III a) Log qP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III b)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grazers and production

![Graphs and images related to grazers and production.](image-url)
Structural equation Modelling (SEM)

- Networks to estimate **Indirect effects**.
- Hypothetical or defined pathways
Summary of NORCO I

• Few significant effects of dose rate at endpoints measured
• Individual effects -> could lead to higher level effects…
• Ecosystem buffering

• Restricted by time
• Restricted by radiation field
NORCO II
Radionuclides in our ocean

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Rate of release</th>
<th>Produced water</th>
</tr>
</thead>
<tbody>
<tr>
<td>210Pb</td>
<td>1.1 GBq/år</td>
<td>34.88 Bq/s</td>
</tr>
<tr>
<td>226Ra</td>
<td>20.4 GBq/år</td>
<td>646.88 Bq/s</td>
</tr>
<tr>
<td>228Ra</td>
<td>19.3 GBq/år</td>
<td>612.00 Bq/s</td>
</tr>
</tbody>
</table>
NORCO II- Trophic transfer of radioisotopes of the micronutrients Mn-54, Zn-65 and Co-57 in the Baltic sea.

(Holmerin I, Bradshaw C, Hevrøy T, Jensen LK)

Aim: assess transfer and uptake of radionuclides through a benthic Baltic sea community consisting of algae and grazers.
Fucus – approx 70 Bq/g – no obvious variation among radionuclides

Idotea - B (Co = 150, Mn = 150 Zn = 240)
C (Co = 5, Mn = 5 Zn = 13)

Theodoxus – B (Co = 45, Mn = 50 Zn = 200)
C (Co = 4, Mn = 2 Zn = 14)

• Restricted by waste management, toxicity, half-lives