Accelerator Mass Spectrometry for long-lived radionuclides

Vasily Alfimov
Laboratory of Ion Beam Physics, ETH Zürich, Switzerland

NKS-B Workshop, Risø-DTU, Denmark, 2009
AMS in Zürich

1960s, 6 MV
AMS since 1979

15 m

^{10}Be, ^{36}Cl
AMS in Zürich

1960s, 6 MV
AMS since 1979

15 m

^{10}Be, ^{36}Cl

1990s, 600 kV

2.5 m

^{10}Be, ^{129}I, $^{239}/^{240}\text{Pu}$
AMS in Zürich

10Be, 36Cl

1960s, 6 MV
AMS since 1979

10Be, 129I, 239/240Pu

1990s, 600 kV

14C

2000s, 200 kV

15 m

2.5 m

1 m
Content

Introduction to Accelerator Mass Spectrometry (AMS)

Detection limits

Applications of AMS for radioecology and nuclear waste management

Summary
What is AMS?

The most sensitive isotope selective detection method

- Single ion detection capabilities
- Huge dynamic range
- Extreme sensitivity
- High accuracy

Sample:
long-lived radioisotopes (10Be, 14C, 36Cl, 129I, $^{239/240}$Pu,...)

Isotope ratios:
10^{-8} - 10^{-15} (for example 36Cl/Cl)

Typical size:
1 mg ≈ 1 million atoms of long-lived radionuclide
Long-lived Radionuclides

- **14C**: 5730 yrs
 - Archaeology, Art History, Oceanography, Earth & Environmental Sciences

- **10Be**: 1.5 Myrs
 - Oceanography, Geology, Geophysics, Earth & Environmental Sciences...

- **26Al**: 716 krys
 - Geology, Geophysics, Life sciences, Biomedical Applications...

- **36Cl**: 301 krys
 - Polar Ice Cores, Geology, Solar Activity, Hydrology

- **41Ca**: 103 krys
 - Life Sciences, Biomedical Applications

- **129I**: 16 Myrs
 - Earth & Environmental Sciences, Radioecology, Nuclear safeguards...

- Actinides (Pu, U, Pa)
 - Radioecology, Nuclear Safeguards, Oceanography
Limits of Mass Spectrometry

Measurement of radioisotopes with long half-life

Problems:
- Molecular interferences
- Isobaric interferences

Solution:
- Stripping process (Breaking up bindings)
- Negative ion formation
- Particle identification

AMS
Overview

2. filter mass analysis (low-energy end)

3. filter molecule destruction

4. filter mass analysis (high-energy end)

5. filter particle identification dE/dx

1. filter negative ion formation

stripping process charge exchange

mass spectrometer

electrostatic deflector

$^{13}\text{C} / ^{12}\text{C}$

$^{14}\text{C} / ^{12}\text{C}$

^{12}C

^{13}C
Ion source

- Cs-sputtering
- Solid samples
- High yield neg. ions

Samples at the large machine
Sample wheel at Tandy
Ø 2.5 • 0.5 mm
Ion Beam Physics

ETH

Stripper

negative ions

incoming beam

(molecular break-up caused by ion gas collisions)

Argon gas

positive ions

outgoing beam

- no molecular background

\[
\begin{align*}
\text{incoming beam:} & \quad 238\text{U}^{16}\text{OH}^- \\
& \quad 238\text{U}^{17}\text{O}^- \\
& \quad 239\text{Pu}^{16}\text{O}^- \\
\text{molecular break-up:} & \quad \text{ion gas collisions} \\
\text{outgoing beam:} & \quad 239\text{Pu}^{n+} \\
& \quad 238\text{U}^{n+} \\
& \quad \text{H}^+ \\
& \quad \text{O}^{n+}
\end{align*}
\]
Detector

Ionization
Charge collection
Charge sensitive Pre-Amplifier
Energy loss measurements

Si$_3$N$_3$: revolution in low energy particle detection
Isobar Separation in Detector

\[\frac{dE}{dx} \text{(a.U.)} \]

- boron
- beryllium

\[\Delta E \text{ (30 mm)} \]

Path (a.U.)
^{10}Be Spectrum

\[\Delta E \]

\[E_{\text{res}} \]
Detection limits

- $^{36}\text{Cl} \sim 3 \times 10^5$ atoms (0.02 fg)
- $^{129}\text{I} \sim 10^6$ atoms (0.2 fg)
- $^{239}\text{Pu} \sim 2 \times 10^5$ atoms (0.1 fg)
Why AMS?

- no need to wait for decay
- no molecular background
- effective suppression of isobars for $Z < 20$
- huge dynamic range (up to 10^6)
- small sample sizes
Applications of AMS for radioecology and nuclear waste management
129I from Sellafield and La Hague

- >95% from Sellafield and La Hague
- Point-like location, well-known release function
- Conservative tracer
Disequilibrium in 129I system

+ Speciation!
+ Biophilic!
^{129}I in oceanography & ecology

- Water mass labeling (all European outflows!)
- Transport times, ventilation rates
- Benchmark for global models

Alfimov et al., 2004
^{129}I as a benchmark for ocean circulation models

Orre et al, 2009
129I as a benchmark for ocean circulation models

Orre et al, 2009
^{129}I for retrospective dosimetry

Map of Chernobyl release

^{137}Cs deposition density

- $185-555 \text{ kBq m}^{-2}$
- $>555 \text{ kBq m}^{-2}$

Michel et al, 2005
129I for retrospective dosimetry

Map of Chernobyl release

Michel et al, 2005
\textbf{36Cl in U-rich environments}

- Subsurface n-flux
- Tracing U & Th-rich deposits

36Cl/C\textsubscript{0} vs. U-equivalent [ppm]

\begin{align*}
y &= 3.9143x + 1.1 \\
R^2 &= 0.9999
\end{align*}

\textbf{Balderer et al, 2009}
^{36}Cl and ^{63}Ni in Hiroshima: recovery of fast and thermal neutron fluxes

Calculation

Measured ^{63}Ni

Straume et al, 2003
^{36}Cl and ^{63}Ni in Hiroshima: recovery of fast and thermal neutron fluxes

Nagashima et al, 2004
Dating groundwater with meteoritic ^{36}Cl
^{36}Cl in Dye-3 and Berkner Island

Year / AD

$^{36}\text{Cl} / g$
„Bomb-pulse“ 36Cl for nuclear waste storage facilities

Recent measurements of 36Cl in Yucca Mountain rock, soil and seepage

J. V. Cizdziel,1* Y. Wei,1 K. J. Stetzenbach,1 V. F. Hodge,2 J. Cline,3 R. Howley,3 F. M. Phillips4

1 Harry Reid Center for Environmental Studies, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154, USA
2 Department of Chemistry, UNLV, USA
3 Department of Geoscience, UNLV, USA
4 Department of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology, MSEC 202, 801 Leroy Place, Socorro, NM 87801, USA

(Received February 13, 2007)

Samples of rock, soil and seepage were collected from Yucca Mountain, USA, and analyzed for 36Cl/Cl ratios by accelerator mass spectrometry (AMS). Rock excavated from the Drill Hole Wash fault at repository horizon depths produced a ratio suggesting that small amounts of water with “bomb-pulse” 36Cl had percolated to that site over the past 50 years. Rock from four other sites within the exploratory studies facility did not yield bomb-pulse ratios. Ratios in the soil varied depending on depth and location, with some samples producing bomb-pulse signatures. Ratios for seep water were slightly elevated above the present cosmogenic background value. This paper also discusses results from a column study mimicking the passage of 36Cl through volcanic rock and from an experiment using bromide instead of chloride as a carrier in sample preparation for AMS.

Rock... at repository horizon depths produced a ratio suggesting that small amount of water with „bomb-pulse“ 36Cl had percolated to that site over the past 50 years.
„Bomb-pulse“ ^{36}Cl for underground water flows

Infiltration of the gravel aquifer from the Danube river, western Hungary

Balderer et al, 2004
Collaborations with
- ZSR Hannover
- Universidad de Sevilla

240Pu/239Pu for source determination

- Gas Cooled
- Boiling Water
- Pressurised Water
- Advanced Gas Cooled

Power reactors

Average weapon test

Weapon grade

Weapon grade (pre 1960)

Taylor et al. 2001
Accident with nuclear weapons (1966)

Collaboration with University of Seville
$^{240}\text{Pu}/^{239}\text{Pu}$ in Soil samples

Chamizo et al., 2006

Collaboration with Universidad de Sevilla
240Pu/239Pu in the North Sea

- 0.18 - 0.19
- 0.22 - 0.25
- 0.31 - 0.37
North Sea 1995

Tanja Bisinger PhD-Thesis, 2009

Wasserproben

Isotopenverhältnis $\frac{^{240}\text{Pu}}{^{239}\text{Pu}}$
Summary

- AMS is perfect for long-lived radionuclides \(^{10}\text{Be}, \, ^{14}\text{C}, \, ^{26}\text{Al}, \, ^{36}\text{Cl}, \, ^{129}\text{I}, \, ^{240}/^{239}\text{Pu}\)
- \(^{36}\text{Cl}\) is useful to study hydrology near nuclear storage facilities, to investigate U-rich rocks.
- \(^{129}\text{I}\) traces the marine and airborne releases of European wastes and calibrates the global circulation models
- \(^{240}/^{239}\text{Pu}\) shows sources of plutonium
Co-workers, who contributed to this talk:

- Marcus Christl, Lukas Wacker, Hans-Arno Synal

Thank you!