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Severe accident mitigation strategy in Nordic
BWRs:

— Lower drywell is flooded with water to prevent cable
penetrations failure in the containment floor.

— Core meltis released from the vessel into (7-12 m)
deep water pool.

— The melt is expected to fragment quench and form a
coolable debris bed.

Threats to containment integrity
— Steam explosion.
— Formation of non-coolable debris bed.

are dependent on the melt release and pool
State.

Melt release and pool state are affected by
uncertainty in the accident progression
— Epistemic (phenomena)
— Aleatory (scenarios).

Risk — uncertainty in effectiveness of the
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strategy for preventing containment failure.



Motivation: Nordic BWR Severe Accident

« Conceptually simple mitigation
strategy introduces complex
Interactions between:

— Scenarios, and

— Phenomena. {}

Vessel failure

of the accident progression. Steam

Condensation Stratification

o Circulation
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« The complexity is a source of
uncertainty and risk.

Droplets

Particles

Dispersion Debris
« Risk Oriented Accident oo Spreading
Analysis Methodology (ROAAM)
— marries probabilistic and Water inflow [ S bed Ko

deterministic approaches

— provides guidelines for
development of frameworks for
bounding of uncertainties

« Epistemic (phenomenological), and
« Aleatory (scenario)
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ROAAM+ framework
decomposes severe
accident progression
Into a set of causal
relationships (CR)
represented by
respective surrogate
models (SM)
connected through
Initial conditions.
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Full and Surrogate Modeling in ROAAM+ approach
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Initial conditions: are the input which is
created by the SM analysis at the previous
stages of the framework.

Experimental and other evidences:
provide a knowledge base for validation of
the FMs and calibration of SMs.

Full Model (FM): is implemented as
detailed fine resolution (computationally
expensive) simulation approach.

Database of the FM transient solutions:
is developed in order to provide better
understanding of basic physical processes
and typical behavior of the target
parameters.

Target parameters: are initial input
conditions which are used by the next
model in the framework.

Simplified modeling approaches and
data mining techniques: are used in
order to develop a surrogate model.

Surrogate model (SM): is an
approximation of the FM model prediction
of the target parameters which employ
(Dsimplified (coarse resolution) physical
modeling and (ii) calibratable closures. 5



1D transient code

— Eulerian for gas and liquid
— Lagrangian for fuel particles
— Premixing

— Explosion

Small variations in the

triggering time lead to large

changes in the explosion

energetics (ill-posed)

— Impulse variations up to 90%
of the total range (0.1 to 377

kPa-s) within 200 ms time
window.

Therefore explosion impulses
are characterized In
probabllistic terms

— Cumulative distributions of
explosion impulses.
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CDF

Database of the Full Model (FM) Solutions

1 - # Parameter Units Range Explanation
* min max
09l + 1 XPW m 5 9 Water level
; 2 PO Bar 1 4 System pressure
3 TLO K 288 368 Water temperature
0.8+ 4 RPARN m 0.035 0.3 Initial jet radius
— 5 CP J/ikg-K | 350 650 Fuel heat capacity
07 _ 6 RHOP kg/m3 | 7500 8500 Fuel density
) Do 7 PHEAT J/kg 260 000 | 400 000 Fuel thermal conductivity
Do 8 TMELT K 1600 2800 Fuel melting point
0.6 = 9 TPIN K 1620 3150 Melt superheat
Do 10 UPIN m/s -8 -1 Melt release velocity
P 11 KFUEL W/im- 2 42 Fuel thermal conductivity
050 K
Do 12 CFR - 0.002 0.0027 Proportionality constant for
04 the rate of fuel fine
Lo fragmentation
03b . 13 | TFRAGLIMT | ms 0.5 25 Fragmentation time
Q2 i
R R S A TR il L i
0.1 2 3 4 ] ]
10 10 10 10 10

Pressure impulse at wall, [Pa.s]

« Parameters were considered as independent.
« Halton method was used for sampling.
* Premixing/Explosion calculations with 4 ms interval.
« Total number of explosion cases: 455 386




Surrogate Model (SM)

« SM is implemented using Artificial Neural Networks
(ANN) to predict characteristics of CDF of explosion
Impulse for a given melt release scenario
— I.e. SM predicts which value of explosion impulse will not

be exceeded in 95%, 75%, 50% etc. percentile of
explosion calculations

Distribution of explosion impulse at containment wall, [Pa.s]
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Sensitivity analsysi: Morris Diagram
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Reverse Analysis for SEIM SM with ROAAM+

framework
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Failure Domain

 Every possible combination of PDFs of model input
parameters results in certain value of failure probability P

— probability of Load(L) exceeding Capacity(C)).
» Failure domain is represented as

— a function of most influential parameters
* RPARN (jet radius) and XPW (LDW water pool depth) based on

— as statistical characteristics of CDF(Py > P).
20 kPa*s fragility limit 50 kPa*s fragility limit

CDF(P;>1.e-3) > 95% - red
CDF(Pf > 1.e-3) < 5% - green
CDF(P, > 1.e-3) - [5-50%] - blue
,CDF(Pf > 1.e-3) - [50-95%] - purple
P(Impulse (mean+3std) on the wall > Capacity(50kPa*s))

CDF(Pf>1.e-3) > 95% - red
CDF(Pf > 1.e-3) < 5% - green
CDF(P, > 1.e-3) - [5-50%] - blue
CDF(Pf > 1.e-3) - [50-95%] - purple
Pf(lmpulse (mean+3std) on the wall > Capacity(20kPa*s))

RPARN(m)

XPW(m)

XPW(m)
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For flat debris bed, Dryout
Heat Flux (DHF)
determines the coolability
boundary.

For a fixed height, 2D

tan] Debris Bed Coolability Problem
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debris bed is more coolable
due to side ingress of
water.

However, for a fixed mass,
flat debris bed Is more
coolable because It has the
lowest height.

»”, y B s b
Gt 5N

Co

ol

4(33} { ' ;t'-*‘

V4 i % g 6
y i 2 }" . s S e A
% 3 "[ _ﬁ A % ;
5 1 LW S AP

ability

15



Debris Coolability: DECOSIM Development

« Coolabllity of the bed depends on the

— Bed shape, porous media properties, system pressure - affected by
« fuel-coolant interaction and debris bed formation phenomena
« scenarios of melt release and accident progression.

« Goal: Development of full (DECOSIM) and surrogate models
for coupled analysis of ex-vessel debris bed formation and
coolability phenomena in different accident scenarios.
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var
COOLOCE Tests at VTT with different bed

geom etries

COOLOCE-1-2 [Ny 1.6-2.0
multi-dimensional i

Cylindrical, top

COOLOCE-3-5 .
flooding

Spherical beads ~ 1.0-7.0

COOLOCE6-7  [hhia il 1.0-3.0
dimensional

Cylindrical, top

COOLOCE-8

1.0-7.0

flooding

Cvlindrical. to Irregular gravel
COOLOCE-9 JITCIEED, Vel 1.0

flooding*
COOLOCE-10 Cylindrical, Ia.teral S 1330

and top flooding )

Spherical beads

COOLOCE-11 Cylindrical, lateral e 1070

flooding

Cone on a cylindrical
COOLOCE-12 base, flooding
through conical part

Spherical beads  1.0-4.0




Shape Factor: Dependence of DHF (Conical Bed)
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* Good agreement with COOLOCE experiments for conical
bed (left) and cylinder with impermeable walls (right)
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SM for Dryout Occurrence

« DHF data for different shapes (Cylinder, Gaussian, Mound)
plotted together, solid line is solution for 1D flat bed

LoJ Shape-independent function! 1.75 -
- A {1 A —m— Cylinder

T \ 1.70 l\. —m— Gaussian Heap
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0.8 e I \

) l Flat Bed (1D) T 1.60 - "\
= Cylinder, R/H Mound, R/H 0 A N v

0.7 o 1 1 L 1.55 4 N \

1 A 15 1.5 T v \E A
v 2 2 ') \
06 = ¢ 3 1 50 = > N =
Gaussian, R /H N -
0.5 - ® 075 1.45 - S \\
) A 1 i ~ [ ]

1 v 15 B S o

0441 o > 1.40 - \\\.
'_;I'I'I'I'I'I'I'I'I'I 1.35 — T T T T
0O 1 2 3 4 5 6 7 8 9 10 05 10 15 20 25 3.0
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Dependence of DHF on debris bed
geometry is factored out.

|F (shape) = DHF/ DHF, =1.7(R/ H +0.5)

Function f describes dependence of DHF
on debris bed properties and system
pressure in non-dimensional variables.

0.175I
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Debris bed slope angle, tan o

Effect of Debris Spreading in the Pool

For gradual melt release, debris bed
formation is affected by convective
flows in the pool which spread melt
particles over the pool base mat,
reducing debris bed height.

A surrogate model for debris bed
formation in the gradual melt release
mode was developed and validated
against DECOSIM simulations.

m DECOSIM
—— Data fit 0.1076*;
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y T T 1 T 1
0 1 2 3 4
Flow-particle interaction parameter y

Flow-particle interaction is
described by parameter y which
depends on

— Particle diameter and density.

— Pool depth.

— System pressure.

— Decay heat power.

For saturated pool, dependence of
slope angle on y is found.

A correction is introduced in order
to take Into account initial transient
time before onset of pool boiling.
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 Base Case:
— Input parameters are sampled within possible ranges.

— Most important are
 Particle size (DPAR).
» Porosity.
* Pool subcooling.

Response function - DHF-HF, DHF-HF(MW/m?)

Response function DHF-HF - DHF-HF(MW/mZ)

L 4 time - [2.00e+00 5.00e+00] 1200 T T T T T [ [ T T 7
*  coriummass - [1.00e+02 2.56e+02]
1.2 + DPAR - [1.50e+00 4.00e+00] Ll
*  porosity - [3.50e-01 4.50e-01] 1000
%  po - [1.00e+00 4.50e+00]
1 *  xpw - [5.00e+00 9.00e+00] ||
% tlo - [-1.00e+00 -1.00e+00]
% tsub - [0.00e+00 8.00e+01] 800
0.8 + CP -[2.70e+02 6.50e+02] H
¥  PHEAT - [1.90e+05 4.23e+05] ?
S %  TLIQSOL - [1.60e+03 2.80e+03] 2 600
06 % TSH - [1.00e+01 1.00e+03] =z
*  tRel - [3.60e+03 1.00e+04]
syb 400
0.4
0.2 o HBRAR, | 200
e L Hipiummass
josoL ;
045 : 0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 -

Modified p DHF-HF



Porosity
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Failure domain analysis

Base Case failure domain.

Pr < P; in ~5% cases
— For large particle diameters (>2.5mm) and high porosity (>0.4)

Ps ~0.51n half of all the cases

There is a region with Pr > 0.99 in 5-50% cases.

CDF(Pf>1.006-03) > 95% - red CDF(Pf>5.00e-01) > 95% - red CDF(Pf>9.QOe-01) > 95% - red
CDF(P, > 1.00e-03) < 5% - green CDF(P, > 5.00e-01) < 5% - green CDF(P, > 9.90e-01) < 5% - green
CDF(Pf > 1.00e-03) - [5-50%] - blue CDF(Pf > 5.00e-01) - [5-50%] - blue CDF(Pf > 9.90e-01) - [5-50%] - blue
CDF(Pf > 1.00e-03) - [50-95%] - purple CDF(Pf > 5.00e-01) - [50-95%] - purple CDF(Pf > 9.90e-01) - [50-95%)] - purple
P (HF > DHF) P (HF > DHF) P (HF > DHF)

0.45 0.45

0.425 0.425

0.4 0.4

Porosity
Porosity

0.375 0.375

0.35 0.35
2 2.5 3 3.5 4 15 2 25 3 35 15 2 25 3 35 4

Dpar(Mm) Dpar(Mm) Dpar(mm)



Summary
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« ROAAM+ Helps to understand importance of different
factors based on simultaneous consideration of

— Scenario (aleatory), and
— Modeling (epistemic) uncertainty.

* Improved prediction of the size of the jet and
superheat are crucial for reduction of uncertainty in
steam explosion risk

— Further work is necessary on the vessel failure modeling.

* Debris spreading in the pool is crucial for resolution of
the debris bed coolability issue

— Further combined consideration is necessary for
coolability and
« Spreading in the pool.
« Self-levelling.
« Agglomeration.
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