Pb isotope ratios measurements using ICP-QQQ Applications to environmental materials to assess pollution source terms

Zilvinas Zacharauskas

Supervisors: Ian Croudace, Phil Warwick, Ben Russell [GAU-Radioanalytical (Uni Southampton); NPL^{*}]

Contents

- Applications of Pb isotopes
- ► High precision Pb isotope ratio measurements
- Methodologies used in this study
- Chemical separation procedure and contamination control
- ► ICP-QQQ
- MC-ICPMS vs ICP-QQQ
- Summary
- Conclusion

Applications of precise Pb isotope ratio measurements

- Pb has 4 major stable isotopes
- 204 is primordial
- 206, 207 and 208 are Radiogenic
- 206, 207 are formed from ²³⁸U, ²³⁵U decay while
- $\blacktriangleright 208 \text{ is from } ^{232}\text{Th decay}$
- Environmental studies commonly use 206/207 ratio to identify different Pb sources in samples
- In the UK, Australian, Canadian and US ores were used in leaded petrol which have significantly different isotopic ratios from UK lead ores
- 206/204 : Normally less precisely measured due to the low abundance of 204 isotope and possible isobaric interference from mercury (²⁰⁴Hg)

High precision measurements

MC-ICPMS (Thermo Neptune)

- Double Pb spike (Taylor et al., 2017)
 - Accurately measure the instrumental mass fractionation of Pb isotopes
 - > Pair of artificially enhanced isotopes. Compare spiked vs unspiked to calculate the fractionation
 - Often hampered by significant interferences from laboratories and procedural blanks
- Thallium spiking
 - Non-isobaric mass fractionation through the use of another element (TI)
- Bracketing
 - Externally correct fractionation bias
 - Can be used in tandem with other methods (double spike and TI spiking)

How effective is the Agilent ICP-QQQ-MS for Pb isotope ratio measurements?

Sample Acid Leaching Methodology

All reagents are sub-boiled and stored in PFA bottles All handling is carried out in two small purpose-designed HEPA cabinets All containers are acid washed with sub-boiled acids

Pb Extraction – anion exchange chromatography

Clean lab conditions

State-of-the-art NOCS clean labs Class 100 - 1000; Cost 600k Euros

GAU-designed HEPA cabinets that proved highly effective at contamination control; Cost 1.2k Euros

ICP-QQQ-MS

Benefits

- MS/MS
- good abundance sensitivity
- \blacktriangleright NH₃ can be used to suppress isobaric Hg 204
- Conditions for analysis assessed and chosen
 - ▶ Free aspiration
 - ► SQ
 - No gas
 - Sample bracketing with NIST-981 Pb ISO standard
 - ▶ 10 ppb solution analysis
 - Replicate, maximum sweeps/replicate, maximum integration

Locations of sediment cores investigated

Windermere, largest English lake NW England

- 0.5 m lake sediment core
- Important tourist facility since 1850s leisure linked to rising affluence linked to Industrial Revolution
- Inside a National Park
- Hythe salt marsh, Southampton Water, England
 - 0.8 m estuarine sediment core
 - Industrial port area since Victorian Era
 - The main build-up location for D-Day during WW2 naval operations
- Dating ¹³⁷Cs allowed conversion of core depth to age

Age vs Depth Models for Windermere and Hythe cores Based on Cs-137, Pb-210 and other known historical geochemical indicators

- Introduction of leaded petrol in the UK was ~1925
- 1986 : 50% reduction in Pb added to leaded petrol in the UK

Multi-collector vs ICP-QQQ Windermere lake sediment core profile Dates inferred from Cs-137 and other geochemical changes

Multi-collector vs ICP-QQQ Hythe saltmarsh sediment core profile Dates inferred from Cs-137

Summary

MS Mode	Instrument Precision (% RSD) 206/207	Instrument Precision (% RSD) 206/204	References
SQ	1-2%	~2-4%	Walder and Furuta 1993, Mukal et al., 1993,
TIMS	0.009	0.0260	Galer and Abouchami 1998 , Thirlwall 2002, Kuritani and Nakamura 2003, Amelin and Davis 2006, Hoernle et al., 2011
MC	0.003	0.007	Thirlwall 2002, Baker et al., 2004, Makishima et al., 2007, Makishima and Nakamura 2010,
TOF	0.099	0.854	Tian et al., 2000, Baker et al., 2004,
QQQ (SQ)	0.185	0.134	This work
QQQ (MS/MS)	0.254	0.563	This work

Conclusion

- Agilent 8800 well-suited for determination of environmentally-useful Pb isotope variations
- Best precision is obtained using a high efficiency chemical purification
- No need for MS/MS as the improved sensitivity outweighs abundance sensitivity
- ▶ No need for NH₃ reaction gas to reduce 204 Hg as chemical separation removes Hg
- ▶ 8800 SQ mode was used as it produces the highest sensitivity
- Mass bias correction carried out using sample bracketing (using NIST 981)
- Results show very good consistency with the 'gold standard' ultra-high precision MC-ICPMS
- ▶ 8800 Pb isotope data are of research quality for environmental forensic and related studies

Thank you for listening

Acknowledgements

- ► GAU-Radioanalytical for provision of geochemical facilities and for co-funding the PhD
- National Physical Laboratory (NPL, Teddington) for co-funding the PhD
- Agilent for a travel bursary to attend the Riso conference
- MSci collaborators (Alex Hately and Callum Slade) who contributed to the Pb chemical separation

