

National Institutes for Quantum and Radiological Science and Technology National Institute of Radiological Sciences (Radiological Science Research and Development Directorate)

Determination of potentially bioavailable Pu in Japanese rice paddy soils with SF-ICPMS

Youyi Ni^{1, 2}, Jian Zheng², Qiuju Guo¹, Wu Men², Keiko Tagami², Shigeo Uchida²

¹ School of physics, Peking University, China. ² National Institutes for Quantum and Radiological Science and Technology, Japan.

- Soil-rice transfer of Pu: potential radiological impact
 - FDNPP accident highlighted food safety with radionuclides
 - Rice is the staple food in Japan

• Transfer factor: estimate bioavailability quantitatively

• Traditional transfer factor (TF) for radionuclides

$$TF = \frac{A_P}{A_s} \times 100\%$$

 $A_{\rm p}$ (Bq/kg) and $A_{\rm s}$ (Bq/kg) are radionuclide activity concentrations in the dry sample of plant tissue and in the soil

• Available transfer factor (ATF, Beaza et al., 2005):

$$ATF = \frac{A_P}{A_s \times AF} \times 100\%$$

AF is the bioavailable fraction (%) of radionuclide

Only a small fraction of the radionuclide is available for plant uptake!

Considerations between ATF and TF

ATF vs. TF for a radionuclide

- ATF: considers the part of radionuclide that is "actually" involved in transfer process
- TF: is it appropriate to apply an averaged TF from literature to a localized case?

ATF vs. TF among radionuclides

 ATF reasonably reflects the difference of bioavailability between radionuclides

Main goal of this study:

Investigate the bioavailability of Pu in Japanese rice paddy soils with potentially bioavailable fraction and ATF

Comparison of TF and ATF of soil-fungi transfer for ¹³⁷Cs and ⁴⁰K (data from Baeza et al., 2005)

Reagents for evaluation of bioavailable Pu

Bioavailable fraction of elements in soils

Note. * and ** indicate the statistical significance at probability levels of p < 0.05 and p < 0.01, respectively.

Linear correlation coefficients between heavy metals in rice and extracted fractions (from Zhang et al., 2010)

Reagents for evaluation of bioavailable Pu

• NH₄OAc: widely used to extract exchangeable Pu in soil

Source	Fraction	Reagent	Radionuclides	Ref.
Artificial solution	exchangeable	1M NH ₄ OAc	²³⁹ Pu	Wilson 1966
Artificial solution	exchangeable	1M MgCl ₂	²³⁹ Pu	Lee 2002
Chernobyl	water soluble, reversibly bound	H ₂ O, 1M NH ₄ OAc	²³⁸ Pu, ²³⁹⁺²⁴⁰ Pu, ²⁴¹ Am	Ovsiannikova 2010
Chernobyl	exchangeable	1M NH₄OAc	²³⁹⁺²⁴⁰ Pu, ²⁴¹ Am	Sokolik 2004
Global fallout	exchangeable, diluted acid soluble	1M NH₄OAc, 1M HCI	²³⁹⁺²⁴⁰ Pu, ⁹⁰ Sr, ¹³⁷ Cs	Guillén 2015
Global fallout	exchangeable, diluted acid soluble	1M NH₄OAc, 1M HCI	²³⁹⁺²⁴⁰ Pu, ⁹⁰ Sr, ²⁴¹ Am	Baeza 2006
Global fallout/Palomares accident	exchangeable	0.4M MgCl ₂	²³⁹⁺²⁴⁰ Pu, ⁹⁰ Sr, ¹³⁷ Cs	Baeza 2005

H₂O and 1M NH₄OAc were employed for the extraction of bioavailable fraction of Pu in soil

Schematic diagram of the determination of bioavailable Pu

Results and discussion

Comparison of pretreatment methods

•

- **Method A**: Fe(OH)₃ co-precipitation
 - Method B: acid digestion + Fe(OH)₃ co-precipitation
- Method C: total digestion + Fe(OH)₃ co-precipitation

Method B showed the highest recovery

	Water soluble fraction (%)			Exchangeable fraction (%)		
Sample ID	Method A	Method B	Method C	Method A	Method B	Method C
1	50	57	54	48	79	24
2	52	62	68	41	82	58
3	68	81	82	52	66	51
4	79	79	68	58	55	70
Mean	62±14	70±12	68±11	50±7	71±12	51±20

Potentially bioavailable Pu in Japanese soils

 Potentially bioavailable Pu in Japanese rice paddy soils:

0.14±0.08% (n=20)

- No difference was found between upland soils and rice paddy soils
- Sequential extraction (modified from Bunzl et al., 1998 and Hou et al., 2003):

>90% of Pu associated with organic matter and residual

ATF/TF and bioavailable fraction of Pu among ecosystems

Bioavailable fraction of Pu varies greatly with ecosystems

ATF is a reasonable parameter for evaluation of bioavailability

