
Stress test on Norwegian research reactors

NKS Fukushima seminar Stockholm 8th – 9th January 2013

By Atle Valseth

23.01.2013

Stress test -initiative

- Fukushima initiating event (earth quake): 11. March 2011.
- Meeting at IFE safety Committee (18 March 2011)
 - Topic: Safety at IFE in light of Fukushima accident
 - Discussions on 3 scenarios:
 - Total blackout when reactor in operation.
 - Total blackout during design basis accident
 - Total blackout during beyond design basis accident.
 - <u>Decision</u>: The thermo hydraulics calculations for both reactors for a new review by the safety committee.

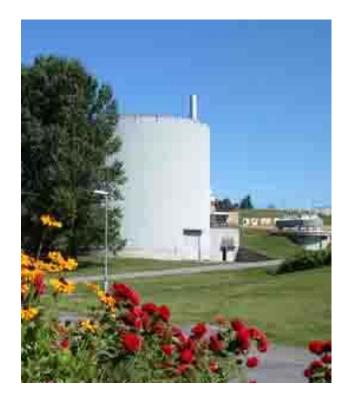
Re-assessment of thermal hydraulics

- Reactor coolant thermal hydraulics
 - Verify cooling by natural heat transfer in all shut down situations
 - Theoretical / experimental
- Cladding temperature/integrity
 - Show that local fuel damage would not occur for reactor fuel or experimental fuel.

Assessment both of reactors and spent fuel.

Regulatory requirement (of 18 Sept 2011)

- IFE to prepare report focusing the following topics:
 - Initial events
 - Earth quake, flooding, power loss.
 - Identification and assessment of potential cliff edge effects
 - Consequences of loss of safety systems due to the initial events
 - Assessment of time before fuel failure (reactor and fuel pool) at loss of support function (power)
 - Emergency preparedness
 - Evaluation of need for modification of preparedness plans due to stress test
- Report was sent December 1st 2011



Initiating events

- Assessments of initiating events in SAR based on IAEA NS-R-4
- Reassessment of initiating events in light of stress test:
 - Geophysics, metrology, hydrology.
 - Airplane crash a separate assessment (Ongoing)
 - Malicious act a separate assessment (ongoing)
- Conclusion:
 - Assessment in SAR unaltered

JEEP II

- **Commissioned 1967**
- «One of a kind»- design
 - Norwegian design
- **Cooling and Moderation: D₂O**
 - 4 m³
- Operates at 2 MW, 55 °C and 1 bar
- Tank type reactor
 - -Vessel: Aluminium
- UO₂ fuel average 3,4 % enrichment
- «Steel cylinder» containment
 - All reactor systems within containment. •

23.01.2013

JEEP II results

- Reactor coolant (D₂O):
 - Temperature increase at loss of cooling: 17,6 °C (typical)
 47,1°C (max)
 - Worst case; Maximum temperature (100,1 °C) reached after 3,5 days. (Boiling point (D2O): 101,4 °C)
- Fuel integrity:
 - Temperature of Fuel cladding (AI) well below safe limits at natural circulation.
- Spent fuel:
 - Fuel could in no circumstances be uncovered before 12 days after loss of coolant

Halden Boiling Water Reactor (HBWR)

- Commissioned 1959
- «One of a kind»- design
 - Prototype
 - Norwegian design
- Cooling and Moderation: D₂O
 - 14 m³
- Operates at 25 MW, 240 °C and 33,6 bar
- Tank type reactor
 - -Vessel: ferritic steel (60 mm) with Stainless steel cladding (5 mm)
- UO₂ fuel
 - average 6,6 % enrichment
- «Rock» containment
 - The primary and parts of the secondary system are located in a mountain cage

HBWR results

- Reactor coolant (D₂O):
 - Verify reactor cooling/ decay heat removal by natural circulations when shut down from up to 25 MW(t).
 - Normal operation: 18 MW(t)
- Fuel integrity
 - Experimental fuel in forced circulation could be uncovered already after 6 minutes.
 - Design modified: For test rigs on forced circulation (approx. 10 out of 30).
- Spent fuel pool
 - Worst case: Uncovering of fuel after 7,5 h
 - Design modified: New water line from outside containment.

Emergency preparedness

- Updated operational procedures
 - New procedures to cover both loss of power during normal operation and under accident conditions.
 - Loss of instrumentation is a challenging situation, even if power is not needed to maintain safety functions.
- Review of emergency preparedness during loss of power (ongoing).
 - Review of available equipment for characterization and communication.
 - Exercise planned.

Regulatory review on report

- NRPA concludes that SAR and Emergency preparedness plans is still valid.
- IFE has identified some areas where there is a need for further assessments and measures
 - NRPA considers non of those to compromise the safety of continued operation.
 - Report by March 9th 2012 and approved thereafter by NRPA.
 - NRPA approval of the stress test report June 29th 2012

Lessons learned

- External focus at IFE during Fukushima accident
 - Important of show a pro active attitude.
- Stress test had a positive effect on safety
 - Identified gaps.
 - New focus on support infrastructure during emergency situations.
- Important to verify ability for natural heat transfer.
 - Low vulnerability for most initiating events
 - Positive value of reassessing thermal hydraulic calculations
- WENRA stress test requirement as guidance
 - Guidelines for RR could be useful.

