Uncertainty of numerical weather prediction (NWP)

Henrik Feddersen, DMI
Numerical weather prediction

Observations → Analysis → Atmospheric model → Forecast

\[
\begin{align*}
\frac{\partial U}{\partial t} + \frac{1}{a \cos \theta} \left(U \frac{\partial U}{\partial x} + V \cos \theta \frac{\partial U}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta (U^2 + V^2) \right) &= 0 \\
\frac{\partial V}{\partial t} + \frac{1}{a \cos \theta} \left(U \frac{\partial V}{\partial x} + V \cos \theta \frac{\partial V}{\partial \theta} \right) &= 0 \\
\frac{\partial T}{\partial t} + \frac{1}{a \cos \theta} \left(U \frac{\partial T}{\partial x} + V \cos \theta \frac{\partial T}{\partial \theta} \right) &= \frac{\partial \phi}{\partial \eta} \\
\frac{\partial q}{\partial t} + \frac{1}{a \cos \theta} \left(U \frac{\partial q}{\partial x} + V \cos \theta \frac{\partial q}{\partial \theta} \right) &= \frac{\partial \phi}{\partial \eta} \\
\frac{\partial}{\partial \theta} \left(\frac{\partial p}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\frac{\partial p}{\partial \theta} \right) &= 0
\end{align*}
\]
Uncertainties

- Observations
- Model
- Nonlinearity and chaos
Uncertainties

• Observations
 - Accuracy
 - Errors
 - Coverage

• Model

• Nonlinearity and chaos
Uncertainties

• Observations
 – Accuracy
 – Errors
 – Coverage

• Model
 – Unresolved scales
 – Theory
 – Numerics
 – Bugs

• Nonlinearity and chaos
Initial condition uncertainty

- Specify initial probability density
- Use Monte Carlo method to sample initial probability density and integrate model for every sample
Initial condition uncertainty

- Specify initial probability density
- Use Monte Carlo method to sample initial probability density and integrate model for every sample
In practice: Ensemble forecasting

- Perturb the analysis
- Run a limited number of ensemble members (~10 – 100) using perturbed analyses as initial conditions
Model uncertainty
Multi-scheme ensemble

NWP model physics

- Condensation 1
- Condensation 2
- Radiation
- Turbulence
- Surface 1
- Surface 2
DMI ensemble setup

Observations

Analysis → atmospheric model

Forecast
DMI ensemble setup

Observations

ECMWF

Analysis → Global atm model → Forecast

Boundary conditions

Observations

DMI

Analysis → Limited-area atm model → Forecast

Boundary condition perturbations

Initial condition perturbations

Model perturbations
DMI ensemble configuration in the MUD, MESO and FAUNA projects

- HIRLAM model
- Horizontal resolution 0.05°
- 40 vertical levels between surface and 10hPa
- Forecast length: 48-54h; 4 runs per day
- 21-25 ensemble members per run
Model domains

MUD and MESO

FAUNA
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure

Precipitation, 850hPa wind, MSLP 2016042712+18h
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure
Ensemble spread, MESO experiment

- Ensemble mean wind and precipitation
- “Spaghetti” and ensemble mean mean sea level pressure
Ensemble spread, MESP experiment

- Ensemble mean wind and precipitation
- "Spaghetti" and ensemble mean mean sea level pressure
Ensemble point forecasts, MESO experiment

Skrydstrup air base

Karup air base
Ensemble point forecasts, FAUNA experiment

Fukushima

Mito
Precipitation spread, FAUNA experiment

Precipitation min, max
2011031400+12h
Valid on Monday 14 Mar 12:00 UTC

3h precip, mbr002

3h precip, mbr013